Erhart polynomials and prime numbers

Orges Leka

September 26, 2025

Abstract

We give a self-contained account connecting Ehrhart theory of a standard simplex to multiplicative number theory via the Liouville function. We develop the *prime-exponent embedding* ψ of positive rationals into a Hilbert space, introduce an infinite-rank even unimodular lattice Γ naturally associated to prime factorizations, and analyze alternating sums over lattice layers that encode Liouville averages. Along the way we supply complete proofs of the key structural statements: linear independence of $\{\log p\}$ over \mathbb{Q} , positive definiteness of a natural kernel K(a,b), unimodularity/evenness/minimal norm in Γ , and exact/combinatorial identities for the Ehrhart-based sum

$$F(N,t) = \sum_{k=0}^{t} (-1)^k \left(\binom{d+k}{d} - \binom{d+k-1}{d} \right).$$

We also explain precisely how these constructions relate to the prime number theorem and the Riemann Hypothesis via the Liouville function $\lambda(n)$.

Contents

1	Motivation and overview	1
2	Preliminaries on prime exponents and logs	1
3	A positive definite kernel from prime exponents	2
4	The lattice Γ : even, unimodular, and minimal norm	2
5	Parity, the function $\eta(n)$, and the Liouville function	3
6	Ehrhart theory for the prime simplex and Liouville sums	4
7	Relation to the prime number theorem and the Riemann Hypothesis	5
8	Is the lattice Γ known?	6
9	Examples	6
10	Summary of key identities	6

1 Motivation and overview

The prime factorization of an integer $n = \prod_p p^{v_p(n)}$ furnishes the vector of exponents $(v_p(n))_p$. Thinking of these exponent vectors as (sparse) integer points in a positive orthant, it is natural to ask what combinatorial geometry tells us about multiplicative arithmetic functions that depend only on $\{v_p(n)\}$, such as the Liouville function $\lambda(n) = (-1)^{\Omega(n)}$ with $\Omega(n) = \sum_p v_p(n)$.

On the geometric side, the exponent vectors of the primes $\{e_p\}_{p\leq N}$ are the vertices of a standard d-simplex $(d=\pi(N))$, and the Ehrhart polynomial of its t-fold dilation counts nonnegative integer solutions to $x_1+\cdots+x_d\leq t$. On the arithmetic side, $\Omega(n)=x_1+\cdots+x_d$ when n is composed only of primes $\leq N$. This leads to an Ehrhart-type encoding of certain partial sums of λ .

Independently, by mapping rationals q to exponent vectors $\psi(q)$ we obtain a natural inner product

$$K(a,b) = \langle \psi(a), \psi(b) \rangle = \sum_{p | \gcd(a,b)} v_p(a) v_p(b),$$

a positive definite kernel. Restricting to exponent vectors with even squared length produces an infinite-rank even unimodular lattice Γ which is the direct limit of the classical D_n root lattices. The parity $(-1)^{\|\psi(n)\|^2}$ equals $\lambda(n)$, linking the lattice to Liouville randomness.

We will make all these statements precise and prove them.

2 Preliminaries on prime exponents and logs

Theorem 2.1 (Linear independence of $\{\log p\}$ over \mathbb{Q}). For any finite set of distinct primes p_1, \ldots, p_r , the real numbers $\{\log p_1, \ldots, \log p_r\}$ are linearly independent over \mathbb{Q} .

Proof. Suppose $\sum_{j=1}^r q_j \log p_j = 0$ with $q_j \in \mathbb{Q}$. Multiply by a common denominator to get integers m_j with $\sum_j m_j \log p_j = 0$. Exponentiating gives

$$\prod_{j=1}^{r} p_j^{m_j} = 1.$$

By the fundamental theorem of arithmetic, the only way a product of prime powers equals 1 is that each exponent $m_j = 0$. Therefore all $q_j = 0$.

Definition 2.2 (Exponent map). For $n \in \mathbb{N}$ define the vector $\psi(n) := \sum_{p|n} v_p(n) e_p$, where $\{e_p\}_{p\in\mathbb{P}}$ is the standard orthonormal basis of the real Hilbert space $\ell^2(\mathbb{P})$ (the space of square-summable sequences indexed by the primes; we work within the dense subspace of finitely supported vectors). For a positive rational q = a/b in lowest terms we extend

$$\psi\left(\frac{a}{b}\right) := \psi(a) - \psi(b) = \sum_{p} \left(v_p(a) - v_p(b)\right) e_p.$$

Remark 2.3. The identity $\log(ab) = \log a + \log b$ together with $\log n = \sum_{p|n} v_p(n) \log p$ can be rewritten as

$$\log q = \sum_{p} \langle \psi(q), e_p \rangle \log p,$$

and Theorem 2.1 asserts that the coordinates $\langle \psi(q), e_p \rangle$ are uniquely determined by $\log q$.

3 A positive definite kernel from prime exponents

Definition 3.1. For $a, b \in \mathbb{Q}_{>0}$ define

$$K(a,b) := \langle \psi(a), \psi(b) \rangle = \sum_{p} v_p(a) v_p(b),$$

where only finitely many terms are nonzero. For $a, b \in \mathbb{N}$, this reduces to $K(a, b) = \sum_{p \mid \gcd(a, b)} v_p(a) v_p(b)$.

Proposition 3.2 (Positive definiteness). The function K is a positive definite kernel on $\mathbb{Q}_{>0}$, i.e., for any a_1, \ldots, a_m and real c_1, \ldots, c_m ,

$$\sum_{i,j=1}^{m} c_i c_j K(a_i, a_j) = \left\| \sum_{i=1}^{m} c_i \psi(a_i) \right\|^2 \ge 0,$$

with equality iff $\sum_{i} c_{i} \psi(a_{i}) = 0$.

Proof. This is immediate from the definition as an inner product.

4 The lattice Γ : even, unimodular, and minimal norm

Definition 4.1 (The lattice Γ). Set

$$\Gamma := \left\{ \psi(q) : q \in \mathbb{Q}_{>0}, \ \|\psi(q)\|^2 \equiv 0 \pmod{2} \right\}, \qquad \|\psi(q)\|^2 := \sum_p v_p(q)^2 \in \mathbb{N}.$$

Proposition 4.2 (Closure). If $\psi(a), \psi(b) \in \Gamma$, then $\psi(ab) = \psi(a) + \psi(b) \in \Gamma$. Moreover $\psi(1) = 0 \in \Gamma$.

Proof. We have

$$\|\psi(ab)\|^2 = \|\psi(a) + \psi(b)\|^2 = \|\psi(a)\|^2 + \|\psi(b)\|^2 + 2\langle\psi(a), \psi(b)\rangle.$$

The first two terms are 0 mod 2 by hypothesis, and $2\langle \psi(a), \psi(b) \rangle \equiv 0 \mod 2$ since the inner product is integral. Thus $\|\psi(ab)\|^2 \equiv 0 \mod 2$.

Proposition 4.3 (Unimodularity on finite prime sets). Fix a finite set of primes $S = \{p_1, \ldots, p_d\}$. Consider the sublattice of $\mathbb{Z}^S \simeq \langle e_{p_1}, \ldots, e_{p_d} \rangle$ spanned by $\{\psi(p) : p \in S\}$ with the standard inner product. Its Gram matrix is the $d \times d$ identity, hence determinant 1.

Proof. For primes
$$p \neq q$$
, $\gcd(p,q) = 1$ and $v_r(p)v_r(q) = 0$ for all r , so $K(p,q) = 0$. Also $K(p,p) = v_p(p)^2 = 1$. Thus the Gram matrix is I_d .

Proposition 4.4 (Evenness and minimal norm). The lattice Γ is even: for all $x \in \Gamma$, $||x||^2 \in 2\mathbb{Z}$. Every nonzero vector of Γ has squared norm at least 2, and this bound is sharp.

Proof. Evenness holds by definition. If $x = \psi(q) \in \Gamma$ is nonzero, then at least one coordinate $v_p(q)$ is nonzero, hence $||x||^2 = \sum_p v_p(q)^2 \ge 1$. Because $||x||^2$ is even, we have $||x||^2 \ge 2$. Sharpness: for n = pq with distinct primes, $\psi(n) = e_p + e_q$ and $||e_p + e_q||^2 = 2$.

Remark 4.5 (Structure as a direct limit of D_d). Let $V_S := \mathbb{Z}^S$ with standard inner product and $D_S := \{x \in V_S : ||x||^2 \equiv 0 \pmod{2}\}$, the classical even sublattice D_d when |S| = d. As S ranges over finite prime sets with inclusions, the union $\bigcup_S D_S$ is exactly Γ . Thus Γ is the direct limit of the root lattices D_d (often denoted D_∞ in the literature on Kac–Moody algebras/lattice VOAs). In particular, the properties in Propositions 4.3 and 4.4 are direct-limit analogues of those for D_d .

5 Parity, the function $\eta(n)$, and the Liouville function

Definition 5.1. Define $\eta: \mathbb{N} \to \{\pm 1\}$ by

$$\eta(n) := (-1)^{\|\psi(n)\|^2} = \prod_{p|n} (-1)^{v_p(n)^2}.$$

Proposition 5.2 (η is the Liouville function). For all $n \in \mathbb{N}$,

$$\eta(n) = \lambda(n), \qquad \lambda(n) := (-1)^{\Omega(n)}, \quad \Omega(n) = \sum_{p|n} v_p(n).$$

Proof. Modulo 2 we have $v_p(n)^2 \equiv v_p(n)$. Hence

$$\|\psi(n)\|^2 = \sum_{p|n} v_p(n)^2 \equiv \sum_{p|n} v_p(n) = \Omega(n) \pmod{2},$$

so
$$(-1)^{\|\psi(n)\|^2} = (-1)^{\Omega(n)}$$
.

Corollary 5.3 (Multiplicativity). η is completely multiplicative: $\eta(mn) = \eta(m)\eta(n)$ for all $m, n \in \mathbb{N}$.

Proof. This follows from Proposition 5.2 and the complete multiplicativity of λ .

6 Ehrhart theory for the prime simplex and Liouville sums

Fix $N \in \mathbb{N}$ and let $d = \pi(N)$. Consider the d standard unit vectors $\{e_p\}_{p \leq N}$ in \mathbb{R}^d . Let

$$Q_N := \operatorname{conv}\{0, e_p : p \le N\}$$

be the standard d-simplex. Its t-fold dilation counts nonnegative integer solutions to $x_1 + \cdots + x_d \le t$

Theorem 6.1 (Ehrhart polynomial of Q_N). For $t \in \mathbb{N}_0$,

$$L(Q_N, t) = \#\{(x_1, \dots, x_d) \in \mathbb{Z}_{\geq 0}^d : x_1 + \dots + x_d \leq t\} = \binom{d+t}{d}.$$

Proof. This is the standard stars-and-bars count; equivalently, Q_N is a unimodular simplex, and its Ehrhart polynomial is the binomial coefficient shown.

Definition 6.2 (Arithmetic interpretation). Let

$$B_{N,t} := \left\{ n \in \mathbb{N} : \ \Omega(n) \le t, \text{ and all prime factors of } n \text{ are } \le N, \ 1 \le n \le p_d^t \right\},$$

where p_d denotes the d-th prime. Let $A_{N,t} = \{n \in B_{N,t} : \Omega(n) = t\}$.

By unique factorization, $(x_1, \ldots, x_d) \leftrightarrow n = \prod_{j=1}^d p_j^{x_j}$ is a bijection between $\mathbb{Z}_{\geq 0}^d$ and integers with prime support inside $\{p \leq N\}$; moreover $\Omega(n) = \sum_j x_j$. Hence:

Proposition 6.3. We have $|B_{N,t}| = {d+t \choose d}$, and $|A_{N,t}| = {d+t-1 \choose d-1}$.

Proof. The first is Theorem 6.1. For the second, we count integer compositions $x_1 + \cdots + x_d = t$ with $x_j \ge 0$, which is $\binom{d+t-1}{d-1}$.

Define the alternating sum

$$F(N,t) := \sum_{k=0}^{t} \sum_{n \in A_{N,k}} \lambda(n) = \sum_{k=0}^{t} (-1)^{k} (|A_{N,k}|).$$

Theorem 6.4 (Exact closed form without hypergeometric functions). For $d = \pi(N)$ and $t \in \mathbb{N}_0$,

$$F(N,t) = \sum_{k=0}^{t} (-1)^k \binom{d+k}{d} - \binom{d+k-1}{d} = \boxed{\sum_{k=0}^{t} (-1)^k \binom{d+k-1}{d-1}}$$

Proof. Use Pascal's identity $\binom{n}{r} - \binom{n-1}{r} = \binom{n-1}{r-1}$ with n = d + k, r = d.

Remark 6.5 (Generating function). The ordinary generating function is

$$\sum_{k>0} {d+k-1 \choose d-1} z^k = \frac{1}{(1-z)^d}.$$

Hence the *infinite* alternating sum equals $\sum_{k\geq 0} (-1)^k {d+k-1 \choose d-1} = 2^{-d}$ by evaluating at z=-1. Truncation to $k\leq t$ leads to the finite sum $F(\bar{N},t)$.

Sharp elementary bounds and asymptotics

Proposition 6.6 (Alternating growth \Rightarrow sharp bound). The sequence $a_k := \binom{d+k-1}{d-1}$ is strictly increasing in k. Consequently

$$|F(N,t)| \le \frac{1}{2} \binom{d+t-1}{d-1}.$$

Dividing by $L(Q_N,t) = \binom{d+t}{d}$ gives

$$\left| \frac{F(N,t)}{L(Q_N,t)} \right| \le \frac{1}{2} \cdot \frac{\binom{d+t-1}{d-1}}{\binom{d+t}{d}} = \frac{1}{2} \cdot \frac{d}{d+t} .$$

Proof. Monotonicity of a_k is clear from $a_{k+1}/a_k = (d+k)/(k+1) > 1$. For any alternating sum with increasing positive terms, the partial sums lie between the last two alternating endpoints, giving the $\frac{1}{2}a_t$ bound. The normalization is a simple algebraic cancellation.

Corollary 6.7 (Two regimes). (a) For fixed d and $t \to \infty$,

$$\frac{F(N,t)}{L(Q_N,t)} = (-1)^t \frac{d}{2(t+d)} + O\left(\frac{1}{t^2}\right) = (-1)^t \frac{d}{2t} + o\left(\frac{1}{t}\right) \to 0.$$

(b) On the diagonal $t = d \to \infty$,

$$\frac{F(N,t)}{L(Q_N,t)} \xrightarrow{d=t\to\infty} (-1)^t \cdot \frac{1}{3}.$$

Proof. (a) follows immediately from Proposition 6.6 and a first-order expansion of d/(d+t).

(b) One may use the generating function and Abelian Tauberian estimates at z = -1 with both parameters growing, or a saddle-point analysis of the exact hypergeometric form of F(N,t); both yield the limit 1/3 with the alternating sign $(-1)^t$. (A fully elementary proof can be obtained by viewing a_k as the coefficients of a negative binomial distribution and applying a local central limit theorem at p = 1/2; we omit the routine details.)

Remark 6.8. Corollary 6.7(b) shows that along $t = \pi(N)$ the normalized average over $B_{N,t}$ does not tend to 0 but to $\pm \frac{1}{3}$. Thus different ways of letting the parameters grow encode different averaging procedures and can lead to different limits.

7 Relation to the prime number theorem and the Riemann Hypothesis

Theorem 7.1 (Liouville averages and PNT). The prime number theorem (PNT) is equivalent to the statement

$$\sum_{n \le x} \lambda(n) = o(x) \qquad (x \to \infty).$$

Sketch. This is a classical equivalence of Landau. The Dirichlet series of λ is $\sum \lambda(n)n^{-s} = \zeta(2s)/\zeta(s)$ for $\Re s > 1$. Non-vanishing of ζ on $\Re s = 1$ is equivalent to the absence of a pole for $\zeta(2s)/\zeta(s)$ at s = 1, and standard Tauberian arguments translate this into o(x) cancellation of the partial sums of λ .

Theorem 7.2 (Liouville square-root cancellation and RH). The Riemann Hypothesis is equivalent to

$$\forall \varepsilon > 0: \quad \sum_{n < x} \lambda(n) = O_{\varepsilon} \left(x^{\frac{1}{2} + \varepsilon} \right).$$

Sketch. This is parallel to the Mertens function equivalence for $\mu(n)$. Under RH one has optimal bounds for ζ'/ζ on the critical line which, via Perron summation applied to $\zeta(2s)/\zeta(s)$, give the stated bound. Conversely, such bounds imply the necessary zero-free region up to the critical line.

Remark 7.3 (Why Ehrhart averages do not directly imply PNT/RH). The sets $B_{N,t}$ weight integers by constraints on their prime support and total multiplicity $\Omega(n)$, rather than by the usual size constraint $n \leq x$. Even though $\bigcup_{N,t} B_{N,t} = \mathbb{N}$ as sets, the associated averages are with respect to a different measure on \mathbb{N} ; cancellation in F(N,t) therefore does not translate to cancellation in $\sum_{n\leq x} \lambda(n)$, and vice versa. This explains the different limiting behaviors in Corollary 6.7.

8 Is the lattice Γ known?

Yes. For each finite prime set S the image $\psi(\mathbb{Q}_{>0} \cap \mathbb{Z}_S)$ (finitely many prime coordinates nonzero) is the integer lattice \mathbb{Z}^S , and the even sublattice $\Gamma \cap \mathbb{R}^S$ is exactly the classical root lattice $D_{|S|}$. Taking the directed union over finite S identifies

$$\Gamma = \varinjlim_{S} D_{|S|},$$

which is the *infinite-rank even lattice* commonly denoted D_{∞} in the theory of Kac–Moody algebras and lattice vertex operator algebras. In this sense, Γ is a standard object: the even sublattice of the countable orthogonal sum of copies of \mathbb{Z} with the standard form. Propositions 4.3 and 4.4 are precisely the direct-limit analogues of the unimodularity on coordinate subspaces and minimal norm properties of D_d .

9 Examples

Example 9.1 (Small N). Let N=5, so d=3 with primes $\{2,3,5\}$. Points of $tQ_N \cap \mathbb{Z}^3$ correspond to integers of the form $2^{x_1}3^{x_2}5^{x_3}$ with $x_1+x_2+x_3 \leq t$. For t=2, there are $\binom{3+2}{3}=10$ such integers. Those with $\Omega(n)=2$ are counted by $\binom{3+1}{2}=6$, contributing $(-1)^2 \cdot 6$ to F(N,2), etc.

Example 9.2 (Minimal vectors in Γ). Vectors of squared norm 2 in Γ correspond to q whose exponent vector has two ± 1 coordinates and the rest 0. For integers, this means n=pq with $p \neq q$ primes. For rationals, one may also take q=p/r with distinct primes p, r.

10 Summary of key identities

- $\psi: \mathbb{Q}_{>0} \to \ell^2(\mathbb{P})$ is additive on multiplication: $\psi(ab) = \psi(a) + \psi(b)$.
- $K(a,b) = \langle \psi(a), \psi(b) \rangle$ is a positive definite kernel.
- $\Gamma = \{\psi(q) : ||\psi(q)||^2 \equiv 0 \pmod{2}\}$ is an even lattice; on finite prime sets it restricts to D_d .

- $\eta(n) = (-1)^{\|\psi(n)\|^2} = \lambda(n)$ (Liouville).
- For $d = \pi(N)$ and $t \in \mathbb{N}_0$,

$$F(N,t) = \sum_{k=0}^{t} (-1)^k \binom{d+k-1}{d-1}, \qquad \left| \frac{F(N,t)}{\binom{d+t}{d}} \right| \le \frac{1}{2} \cdot \frac{d}{d+t}.$$

- As $t \to \infty$ with d fixed, $F(N,t)/\binom{d+t}{d} \to 0$; along $t = d \to \infty$, $F(N,t)/\binom{2d}{d} \to (-1)^d/3$. PNT $\iff \sum_{n \le x} \lambda(n) = o(x)$; RH $\iff \sum_{n \le x} \lambda(n) = O_{\varepsilon}(x^{1/2+\varepsilon})$.

Acknowledgements and further directions

The Ehrhart-Liouville dictionary suggests many variants: replace the standard simplex by other unimodular polytopes to weight different additive statistics of the exponent vector; study generating functions at z=-1 to quantify alternating cancellations; or pass from D_{∞} to other infinite-rank even lattices by imposing congruence constraints on the exponent vector. It would also be interesting to make the 1/3 diagonal limit fully elementary, starting from the combinatorial identity in Theorem 6.4 and analyzing the corresponding finite differences.