
Symbolic Music Generation from a Single MIDI File
via Positive De�nite Kernels, Interval Graphs, Kernel PCA, and Bezier

Trajectories

Orges Leka

Germany, Limburg

orges.leka@gmail.com

November 4, 2024

Abstract

We develop a pipeline that, given a single input MIDI (or MusicXML) �le, con-

structs a novel symbolic piano composition by (i) de�ning a positive de�nite simi-

larity kernel on musical notes, (ii) building an interval graph to capture temporal

overlaps, (iii) extracting connected components as structural units, (iv) applying

Kernel Principal Component Analysis (KernelPCA) via Nyström approximation for

dimensionality reduction, (v) planning smooth trajectories in the reduced space

with Bezier curves, and (vi) reconstructing music via nearest-neighbor mapping.

We present each step with mathematical formulations and pseudocode, and discuss

implementation details.

1 Introduction

Automatic music generation often requires large corpora. Here, we demonstrate single-

instance learning : generating new music solely from one input �le. This report introduces
a novel method that utilizes a combination of mathematical and machine learning tech-
niques to generate music sequences that are both structurally coherent and musically
pleasing, derived solely from a single input MIDI �le. We combine four mathematical
tools:

1. Positive de�nite kernels to quantify note-to-note similarity based on musical per-
ception.

2. Interval graphs to model polyphonic temporal structure and relationships.
3. Kernel PCA (with Nyström approximation) to embed graph components in low-

dimensional Euclidean space.
4. Bezier curves to de�ne smooth, controllable trajectories through that space.

A �nal k-Nearest Neighbors (k-NN) step maps trajectory points back to original musical
units (connected components of the graph), allowing reconstruction of the generated piece.
This method yields coherent, musically valid output without large training sets by focusing
on the intrinsic structure of the input.

1

2 Mathematical Preliminaries

2.1 Positive De�nite Kernels

A function K : X × X → R is a positive de�nite kernel if for any �nite set {xi}ni=1 ⊂
X the Gram matrix [K(xi, xj)]

n
i,j=1 is symmetric positive semide�nite. Kernels corre-

spond to inner products in some (possibly high-dimensional) Hilbert space H, K(x, y) =
⟨ϕ(x), ϕ(y)⟩H, where ϕ : X → H is a feature map.

2.2 Bezier Curves

Given control points P0, . . . , PN ∈ RD, the degree-N Bezier curve is de�ned for s ∈ [0, 1]
as:

B(s) =
N∑
k=0

(
N

k

)
(1− s)N−ksk Pk.

These curves provide smooth interpolation between the control points.

3 Note Similarity Kernel

We represent each note or rest as a tuple:

n = (p, d, v, r),

where:

� p ∈ Z is the MIDI pitch (a default value, e.g., 60, is used for rests).
� d ∈ R+ is duration (e.g., in quarter note lengths, normalized if needed).
� v ∈ {0, . . . , 127} is MIDI velocity (volume); rests typically have v = 0 or a low
default.

� r ∈ {0, 1} indicates rest (r = 1) or note (r = 0).

We de�ne attribute kernels to capture similarity across dimensions:

� Pitch Similarity (Kp): Captures perceptual consonance based on the simplicity
of the frequency ratio f2/f1 = 2(p2−p1)/12. We �nd the best rational approximation
a/b for this ratio using continued fractions (getlowestfraction). The similarity is
then based on the greatest common divisor (GCD):

Kp(p1, p2) =
gcd(a, b)2

a · b
. (1)

This assigns higher similarity to consonant intervals like octaves, �fths, and fourths.

� Duration Similarity (Kd): Uses a Jaccard-like index for positive durations:

Kd(d1, d2) =
min(d1, d2)

max(d1, d2)
. (2)

2

� Volume Similarity (Kv): Similarly measures the ratio of MIDI velocities:

Kv(v1, v2) =
min(v1, v2)

max(v1, v2)
, for v1, v2 > 0. (3)

(Special handling might be needed if velocities can be zero).

� Rest Similarity (Kr): Binary indicator:

Kr(r1, r2) =

{
1, if r1 = r2,

0, otherwise.
(4)

These are aggregated into a composite kernel Knote, implemented as kernNote, using
weights (αp, αd, αv, αr):

Knote(n1, n2) =
αpKp(p1, p2) + αd Kd(d1, d2) + αv Kv(v1, v2) + αr Kr(r1, r2)

αp + αd + αv + αr

. (5)

The code uses typical weights (2, 4, 1, 8), emphasizing rests and duration, then pitch, then
volume. This kernel is designed to be positive de�nite if the individual attribute kernels
are (which holds for these de�nitions).

Algorithm 1 Compute Knote(n1, n2) with weights (2, 4, 1, 8)

Require: Notes ni = (pi, di, vi, ri) for i = 1, 2.
1: Compute k ← p2 − p1.
2: Use continued fraction (getlowestfraction, tolerance ε = 0.01) to approximate

2k/12 ≈ a/b.
3: Compute Kp ← gcd(a, b)2/(a b) (kernPitch).
4: Compute Kd ← min(d1, d2)/max(d1, d2) if d1, d2 > 0 else 1d1=d2=0 (kernDuration).
5: Compute Kv ← min(v1, v2)/max(v1, v2) if v1, v2 > 0 else 1v1=v2=0 (kernVolume).
6: Compute Kr ← 1 if r1 = r2 else 0 (kernPause).
7: return (2Kp + 4Kd + 1Kv + 8Kr)/15.

4 Interval Graph Construction

To capture temporal overlap and harmonic similarity in polyphonic music, we build an
interval graph G = (V,E).

� Vertices (V): Each vertex i ∈ V represents a musical interval derived from a note
or chord in the input �le, parsed using music21. An interval is represented as:

i = (v, timin, t
i
max, notesi),

where v is the voice index, [timin, t
i
max] is the time interval, and notesi is a list con-

taining one or more note tuples (p, d, v, r).

� Edges (E): An edge (i, j) ∈ E connects two intervals if they overlap temporally
and are su�ciently similar musically:

(i, j) ∈ E ⇐⇒ overlap(i, j) ∧ KintChord(i, j) > εq.

3

Temporal overlap is de�ned as:

overlap(i, j) ⇐⇒ [timin, t
i
max] ∩ [tjmin, t

j
max] ̸= ∅.

Musical similarity between intervals i and j is measured by KintChord:

KintChord(i, j) = Kchord(notesi, notesj)× J(i, j),

where J(i, j) is the Jaccard index of their time intervals
|[timin,t

i
max]∩[t

j
min,t

j
max]|

|[timin,t
i
max]∪[t

j
min,t

j
max]|

, and

Kchord compares the note content:

Kchord(C1, C2) =
1

min(|C1|, |C2|)

min(|C1|,|C2|)∑
m=1

Knote(C1[m], C2[m]).

Here, C1 = notesi and C2 = notesj are lists of notes, compared element-wise.
The threshold εq is chosen as a quantile (e.g., median or lower quartile) of the
KintChord values among all temporally overlapping pairs found using an IntervalTree,
ensuring that edges represent meaningful musical connections beyond mere temporal
coincidence.

Algorithm 2 Build pruned interval graph G

Require: List of voices {scorev}, each a sequence of (M21_note, notes list n). Parameter
τ for quantile threshold.

1: Parse scores into a list of intervals I ← {(v, tmin, tmax, n)}.
2: Build IntervalTree `tree` over time intervals [tmin, tmax] from I.
3: Initialize empty graph Gf with nodes I.
4: Create a list `overlap_similarities`.
5: for all time-slices t subdividing [0, Tmax] (or use e�cient tree query) do
6: S ← intervals in `tree` covering t.
7: for all pairs {i, j} ⊆ S, i ̸= j do
8: if edge (i, j) not already processed in Gf then
9: Add edge (i, j) to Gf .

10: Compute kij = KintChord(i, j).
11: Append kij to `overlap_similarities`.
12: if `overlap_similarities` is not empty then
13: Let εq ← Quantileτ (overlap_similarities).
14: else
15: Let εq ← 0.
16: Initialize graph G with nodes I.
17: for all edges (i, j) ∈ E(Gf) do
18: Compute kij = KintChord(i, j) (or retrieve if stored)
19: if kij > εq then
20: Add edge (i, j) to G.
21: return G.

5 Connected Components

Compute the set of connected components C = {C1, . . . , CM} of the pruned interval
graph G using standard algorithms like Breadth-First Search (BFS) or Depth-First Search

4

(DFS). Each component Ck, which is a list of interval nodes {i1, . . . , imk
}, represents

a structurally and temporally related group of musical events. These components are
treated as the fundamental musical units for analysis and generation. The components
are typically sorted based on their earliest start time or index for consistent processing.

6 Kernel PCA via Nyström Approximation

Direct KernelPCA on the M×M Gram matrix Kij = Kcc(Ci, Cj) can be computationally
expensive (O(M3) for eigendecomposition). We use the Nyström method combined with
standard PCA to approximate the Kernel PCA mapping Φ : C → RD e�ciently. The
kernel between two components C1, C2 is de�ned as:

Kcc(C1, C2) =
1

min(|C1|, |C2|)

min(|C1|,|C2|)−1∑
m=0

KintChord(C1[m], C2[m]), (6)

assuming an internal ordering (e.g., temporal) within the component lists C1, C2.

Algorithm 3 Approximate Kernel PCA embedding Φ(Ck) ∈ RD

Require: Components {Ck}Mk=1, component kernel Kcc, target dimension D, landmarks
L≪M .

1: Select L landmark indices {i1, . . . , iL} uniformly at random from {1, . . . ,M}.
2: Compute W ∈ RL×L with Wab = Kcc(Cia , Cib).
3: Compute A ∈ RM×L with Aka = Kcc(Ck, Cia).
4: Compute W †1/2, the pseudo-inverse square root of W (e.g., via SVD or regularized

Cholesky).

5: Φ̃← AW †1/2 ∈ RM×L. This is the Nyström approximation.
6: Perform standard linear PCA on the columns of Φ̃ to reduce dimension from L to D.

Let the projection matrix be P ∈ RL×D.
7: Compute the �nal embeddings Φ← Φ̃P ∈ RM×D.
8: return Rows Φk as embeddings of Ck.

The resulting matrix Φ (denoted XNotes in code) contains the D-dimensional Eu-
clidean embeddings of the musical units.

7 Trajectory Planning with Bezier Curves

We generate smooth trajectories through theD-dimensional embedding space using Bezier
curves. The embeddings {Φk}Mk=1 of the connected components, potentially ordered (e.g.,
by time or index), serve as the control points Pk = Φk. Given a user-supplied sequence
of normalized parameters ss = {st}Tt=1 where st ∈ [0, 1] (derived from normalizing the
numberInput sequence), we evaluate points along the Bezier curve B(s):

Qt = B(st) =
M∑
k=1

(
M − 1

k − 1

)
(1− st)

M−ksk−1
t Φk.

5

The sequence {Qt}Tt=1 represents the generated musical trajectory in the feature space.
Di�erent input sequences ss, potentially derived from functions like cosine or Weierstrass
(funcType), yield varied musical outputs.

8 Nearest-Neighbor Reconstruction

To translate the trajectory {Qt} back into music, we map each point Qt to the most
similar original musical unit (connected component Ck). This is done using k-Nearest
Neighbors (k-NN) in the embedding space RD.

� k-NN Model Fitting: Fit a k-NN search structure (e.g., Ball Tree or KD Tree
via sklearn.neighbors.NearestNeighbors) on the embedding vectors {Φk}Mk=1.

� Mapping: For each trajectory point Qt, �nd the index kt of the nearest neighbor
among the component embeddings:

kt = argmin
k∈{1,...,M}

∥Qt −Φk∥2.

The implementation (findBestMatches) typically uses k = 1 neighbor.

� Sequence Reconstruction: The �nal musical output is generated by concatenat-
ing the sequences of notes contained within the selected components {Ckt}Tt=1. The
function writeM21Lists handles the assembly into music21 streams and saving to
MIDI or MusicXML format, preserving the voice structure based on the original
voice index stored in the interval tuples.

Algorithm 4 End-to-end music generation pipeline

Require: Input MIDI/MusicXML �le infile, parameters τ,D, L, {st}Tt=1.
1: Parse infile into voices {scorev} and compute list of intervals I.
2: Build pruned interval graph G using I and quantile threshold τ (Algorithm 2).
3: Extract connected components {Ck}Mk=1 from G.
4: Embed components {Ck} into RD via Nyström-KPCA using L landmarks, yielding
{Φk}Mk=1 (Algorithm 3).

5: Bezier Curve: De�ne B(s) using {Φk} as control points.
6: k-NN Model: Fit NearestNeighbors model on {Φk}.
7: Initialize output voices output_voices.
8: for t = 1 to T do
9: Compute trajectory point Qt = B(st).

10: Find index kt of nearest neighbor to Qt in {Φk}.
11: Retrieve intervals in component Ckt .
12: Append notes from intervals in Ckt to the appropriate output_voices based on

voice index.
13: Write output_voices to a new MIDI/MusicXML �le using music21.

9 Implementation Details

� Language: Python 3.

6

� Core Libraries: music21, portion, networkx, numpy, scikit-learn (for Ker-
nelPCA, Nystroem, PCA, NearestNeighbors, StandardScaler), bezier.

� Web Interface: Flask (main.py) handles �le upload, parameter input (tempo, ϵ,
sequence `numbers`, PCA dimensions `title`/`author` used as L/D), and download
of results.

� Key Modules:

1. connected_components.py: Contains kernel de�nitions (kernNote, kernIntChord,
etc.), parsing (parse_file), interval graph construction (interval_graph_0),
component extraction (implicitly via nx.connected_components), KPCA em-
bedding (getCoordinatesOf), k-NN �tting/querying (get_knn_model, findBestMatches),
and reconstruction (processFile, writeM21Lists).

2. main.py: Flask web application.

� Performance: The Nyström method signi�cantly reduces the complexity of Kernel
PCA from O(M3) to approximately O(ML2 + MD2), where M is the number of
components, L is the number of landmarks, and D is the target dimension, making
the approach feasible for reasonably complex input �les.

10 Conclusion

We have detailed a complete pipeline to generate new symbolic piano music from a sin-
gle input �le, harnessing kernel methods, graph theory, dimensionality reduction, and
geometric curve modeling. This approach, based on a comprehensive similarity measure
informed by music theory and structural analysis via interval graphs, e�ectively models
units of the input music and generates new, coherent, and aesthetically pleasing sequences
by navigating trajectories in a reduced feature space. The integration of these mathemat-
ical tools facilitates the creation of musically interesting variations derived from the input
�le's characteristics. The user interface further enables creative exploration by allowing
user control over the generative trajectory via numerical sequences. This work high-
lights the potential of combining kernel methods, graph theory, and geometric modeling
for tasks in computational creativity and music generation, particularly in single-instance
learning scenarios. Future work may explore alternative kernels, dynamic graph weighting
schemes, adaptive Bezier curve degrees, or incorporating user feedback into the trajectory
planning.

References

[1] P. E. Bézier, Numerical Control�Mathematics and Applications, Wiley, 1972.

[2] Interactive platform for music generation: https://musescore1983.

pythonanywhere.com/ (Accessed Nov 2024).

[3] B. Schölkopf, A. J. Smola, K.-R. Müller, Nonlinear Component Analysis as a Kernel

Eigenvalue Problem, Neural Computation, 10(5):1299�1319, 1998.

[4] Examples for Piano solo generated with the method above, SoundCloud. Retrieved
from https://soundcloud.com/user-919775337/sets/waves-experiment.

7

https://musescore1983.pythonanywhere.com/
https://musescore1983.pythonanywhere.com/
https://soundcloud.com/user-919775337/sets/waves-experiment

[5] �Interval Graph,� Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/
wiki/Interval_graph (Accessed Nov 2024).

[6] �Twelfth root of two,� Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/wiki/Twelfth_root_of_two (Accessed Nov 2024).

8

https://en.wikipedia.org/wiki/Interval_graph
https://en.wikipedia.org/wiki/Interval_graph
https://en.wikipedia.org/wiki/Twelfth_root_of_two
https://en.wikipedia.org/wiki/Twelfth_root_of_two

	Introduction
	Mathematical Preliminaries
	Positive Definite Kernels
	Bezier Curves

	Note Similarity Kernel
	Interval Graph Construction
	Connected Components
	Kernel PCA via Nyström Approximation
	Trajectory Planning with Bezier Curves
	Nearest‐Neighbor Reconstruction
	Implementation Details
	Conclusion

