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1 An Analogue to the Basel Problem

This section, based on work from 12.12.2021, explores a function analogous to the sinc function
used in the resolution of the Basel problem.

Let us de�ne the function f(x) as the in�nite product:

f(x) =
∞∏
n=1

(
1 +

x3

n3

)

Using the roots of unity, where ω = exp(2πi3 ), this can be factored as:

f(x) =
∞∏
n=1

(
1 +

x

n

)(
1 +

x

n
ω
)(

1 +
x

n
ω2
)

Expanding this product into a power series gives a representation in terms of generalized ele-

mentary symmetric polynomials:

f(x) =
∞∑
k=0

ζk(3)x
3k

where we de�ne:

ζk(3) =
∑

1≤n1<n2<···<nk

(
1

n1n2 · · ·nk

)3

with ζ0(3) = 1 and ζ1(3) = ζ(3).
Inspired by the Euler re�ection formula for the sinc function, we conjecture a similar identity

for f(x).

Conjecture 1.1. The function f(x) satis�es the re�ection-type formula:

f(x) =
1

Γ(1 + x)Γ(1 + ωx)Γ(1 + ω2x)

A series expansion of the right-hand side of the conjecture using SageMath yields coe�cients

that relate ζk(3) to powers of π and values of the Riemann zeta function.

ζ1(3)x
3 = ζ(3)x3

ζ2(3)x
6 =

(
− π6

1890
+

1

2
ζ(3)2

)
x6 = − 1

1890

(
π6 − 945 ζ(3)2

)
x6

ζ3(3)x
9 =

(
−π

6ζ(3)

1890
+

1

6
ζ(3)3 +

1

3
ζ(9)

)
x9 = − 1

1890

(
π6ζ(3)− 315 ζ(3)3 − 630 ζ(9)

)
x9

ζ4(3)x
12 = − 1

5108103000

(
667π12 + 1351350π6ζ(3)2 − 212837625 ζ(3)4 − 1702701000 ζ(9)ζ(3)

)
x12

ζ5(3)x
15 = − 1

5108103000

(
667π12ζ(3) + 450450π6ζ(3)3 + 900900π6ζ(9)

−42567525ζ(3)5 − 851350500ζ(9)ζ(3)2 − 1021620600ζ(15)
)
x15

From these identities, one could potentially solve for ζ(3). For instance, from the coe�cient of

x6:

ζ(3) =

√
1890 ζ2(3) + π6

945

This raises several questions:

1. Is the conjectured "re�ection" equality true?
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2. Is there a "closed formula" for the ζk(3) coe�cients, or are they related to known numbers

in a systematic way?

3. Can this procedure be generalized to products of the form
∏
(1− xl

nl )?

4. Is there established literature on the function f(x)?

Proof of the Re�ection Formula

As noted by Terry Tao in a related context, we can use the Weierstrass factorization of the

Gamma function:

Γ(z) =
e−γEz

z

∞∏
k=1

(
1 +

z

k

)−1
ez/k

Applying this for z = x, ωx, ω2x and multiplying the three results, the exponential terms cancel

because 1 + ω + ω2 = 0. This gives:

Γ(x)Γ(ωx)Γ(ω2x) =
e−γEx(1+ω+ω2)

x · ωx · ω2x

∞∏
k=1

((
1 +

x

k

)(
1 +

ωx

k

)(
1 +

ω2x

k

))−1

ex(1+ω+ω2)/k

=
1

x3

∞∏
k=1

(
1 +

x3

k3

)−1

and therefore
∞∏
k=1

(
1 +

x3

k3

)
=

1

x3Γ(x)Γ(ωx)Γ(ω2x)

Using the functional equation Γ(1 + z) = zΓ(z) for z = x, ωx, ω2x, we have:

Γ(1 + x)Γ(1 + ωx)Γ(1 + ω2x) = (xΓ(x))(ωxΓ(ωx))(ω2xΓ(ω2x)) = x3Γ(x)Γ(ωx)Γ(ω2x)

Combining these two results con�rms the conjecture:

f(x) =

∞∏
k=1

(
1 +

x3

k3

)
=

1

Γ(1 + x)Γ(1 + ωx)Γ(1 + ω2x)

This procedure generalizes directly to fl(x) =
∏∞

n=1(1 + (x/n)l) for l ≥ 2.

An Identity for
∑

1/(n3 + 1)

Let's analyze the sum
∑∞

n=1
1

n3+1
. Consider the function c0(x) = xf(xπ ). Using the product

form of f(x):

c0(πx)

πx
= f(x) =

∞∏
n=1

(
1 +

x3

n3

)
Taking the logarithmic derivative with respect to x:

d

dx
log

(
c0(πx)

πx

)
=
πc′0(πx)

c0(πx)
− 1

x
=

∞∑
n=1

3x2

n3 + x3

Dividing by 3 and setting x = 1, we �nd:

πc′0(π)

3c0(π)
− 1

3
=

∞∑
n=1

1

n3 + 1
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To evaluate the left-hand side, we use the Gamma function representation of c0(x):

c0(x) =
x

Γ(1 + x
π )Γ(1 + ω x

π )Γ(1 + ω2 x
π )

Its logarithmic derivative is:

c′0(x)

c0(x)
=

1

x
− 1

π
ψ
(
1 +

x

π

)
− ω

π
ψ
(
1 + ω

x

π

)
− ω2

π
ψ
(
1 + ω2 x

π

)
where ψ(z) = Γ′(z)/Γ(z) is the digamma function. Evaluating at x = π:

c′0(π)

c0(π)
=

1

π
− 1

π
ψ(2)− ω

π
ψ(1 + ω)− ω2

π
ψ(1 + ω2)

Substituting this into our expression for the sum gives:

∞∑
n=1

1

n3 + 1
=
π

3

(
1

π
− ψ(2)

π
− ωψ(1 + ω)

π
− ω2ψ(1 + ω2)

π

)
− 1

3

=
1

3

(
1− ψ(2)− ωψ(1 + ω)− ω2ψ(1 + ω2)

)
Using ψ(2) = 1− γE and 1 = −ω − ω2, we get:

∞∑
n=1

1

n3 + 1
=

1

3

(
γE − ωψ(1 + ω)− ω2ψ(1 + ω2)

)
This expression can be further manipulated, providing a closed-form representation for the sum

in terms of special functions.

2 Functions for the Cyclic Group C3

This section (from 20.12.2021) develops function analogues of sinh, cosh, sin, cos for the cyclic

group C3.

De�ne the functions tk(x) for k = 0, 1, 2:

tk(x) =
∞∑
n=0

x3n+k

(3n+ k)!

These functions are the components of the exponential function projected onto the eigenspaces

of the C3 action. They are related via the character table of C3, where ω = exp(2πi/3): exp(x)
exp(ωx)
exp(ω2x)

 =

1 1 1
1 ω ω2

1 ω2 ω

 ·

t0(x)t1(x)
t2(x)


From this relationship, one can derive the following addition theorem, where the matrix is

circulant: t0(x+ y)
t1(x+ y)
t2(x+ y)

 =

t0(x) t2(x) t1(x)
t1(x) t0(x) t2(x)
t2(x) t1(x) t0(x)

 ·

t0(y)t1(y)
t2(y)


The determinant of this circulant matrix gives a fundamental identity, analogous to cosh2(x)−
sinh2(x) = 1:

t0(x)
3 + t1(x)

3 + t2(x)
3 − 3t0(x)t1(x)t2(x) = 1, ∀x ∈ C

We can also de�ne trigonometric analogues. Let γ = exp(2πi9 ). Set:
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� s0(x) :=
1
γ t0(γx)

� s2(x) := s′0(x) = t2(γx)

� s1(x) := s′2(x) = γt1(γx)

From the derivative relations t′0 = t2, t
′
2 = t1, t

′
1 = t0, it follows that s

′
1(x) = γ2s0(x). These

functions satisfy their own addition theorem and a determinant identity analogous to sin2(x) +
cos2(x) = 1:

γ3s0(x)
3 + s2(x)

3 +
s1(x)

3

γ3
− 3s0(x)s1(x)s2(x) = 1

3 Generalization to Finite Groups

This section (based on notes from 23.10.2021) generalizes the previous construction from C3 to

any �nite group G.
For a �nite group G, we seek functions tg(x) for g ∈ G that satisfy the convolution-style

addition formula:

tg(x+ y) =
∑
h∈G

tgh−1(x)th(y)

This can be written as tx+y(g) = (tx ∗ ty)(g), where tx is the function g 7→ tg(x) and ∗ is the

group convolution.

The Fourier transform of a convolution is the product of the Fourier transforms. Let ρ be

an irreducible representation of G. The Fourier transform of tx is:

t̂x(ρ) =
∑
g∈G

tg(x)ρ(g)

The addition formula is satis�ed if t̂x+y(ρ) = t̂x(ρ)t̂y(ρ). This is a homomorphism property,

satis�ed by an exponential function.

Let S = {s1, . . . , sr} be a generating set for G with 1 /∈ S. Let x = (xsi)si∈S be a vector of

variables. We can de�ne the functions tg via their Fourier transform:

t̂x(ρ) := exp

(
1

dρ

∑
s∈S

χρ(s)xs

)
1dρ

where dρ is the dimension of ρ, χρ is its character, and 1dρ is the identity matrix. This de�nition

immediately ensures that t̂x+y(ρ) = t̂x(ρ)t̂y(ρ).
Applying the inverse Fourier transform, we obtain an explicit formula for the functions:

tg(x) =
1

|G|
∑

ρ irred.

dρTr
(
ρ(g−1)t̂x(ρ)

)
=

1

|G|
∑

ρ irred.

dρχρ(g
−1) exp

(
1

dρ

∑
s∈S

χρ(s)xs

)

From this formula, we see that tg(x) depends only on the conjugacy class of g.
Furthermore, the determinant of the group matrix TG = (tgh−1(x))g,h∈G can be evaluated
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using the Frobenius determinant formula:

det(TG) =
∏

ρ irred.

det

∑
g∈G

tg(x)ρ(g)

dρ

=
∏

ρ irred.

det(t̂x(ρ))
dρ

=
∏

ρ irred.

det

(
1dρ exp

(
1

dρ

∑
s∈S

χρ(s)xs

))dρ

=
∏

ρ irred.

(
exp

(
1

dρ

∑
s∈S

χρ(s)xs

))d2ρ

= exp

 ∑
ρ irred.

dρ
∑
s∈S

χρ(s)xs


= exp

(∑
s∈S

xs

(∑
ρ

dρχρ(s)

))

The inner sum
∑

ρ dρχρ(s) is the value of the regular character on s. For any s ̸= 1, this sum is

zero. Since we chose 1 /∈ S, we have:

det(TG) = exp(0) = 1

Example: The Symmetric Group S3

For G = S3, with generating set S = {(1, 2), (2, 3)} and variables x0, x1, the functions are:

� For g ∈ {e, (123), (132)} (conjugacy class of the identity and 3-cycles):

te(x0, x1) =
1

6
ex0+x1 +

1

6
e−x0−x1 +

2

3

t(123)(x0, x1) = t(132)(x0, x1) =
1

6
ex0+x1 +

1

6
e−x0−x1 − 1

3

� For g ∈ {(12), (13), (23)} (conjugacy class of transpositions):

tg(x0, x1) =
1

6
ex0+x1 − 1

6
e−x0−x1

SageMath Implementation

Listing 1: SageMath code to compute tg(x) for S3

G = SymmetricGroup (3)

# S = [G[3], G[5]] # Corresponds to S = {(1 ,2) ,(2,3)}

S = [list(G)[-3],list(G)[-1]] # A more robust way to select generators

X = var([("x"+str(i)) for i in range(len(S))])

# Define irreducible representations for S3

trivial = G.irreducible_characters ()[0]. to_representation ()

sign = G.irreducible_characters ()[1]. to_representation ()

standard = G.irreducible_characters ()[2]. to_representation ()

irredPerms = [trivial , sign , standard]

def log_inverse_Fourier(rep , X_vars):

m = sum([rep(S[i]).trace () * X_vars[i] for i in range(len(S))])

return m

def tau(perm , X_vars):
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s = 0

for rho in irredPerms:

em = exp(log_inverse_Fourier(rho , X_vars))

s += rho(Permutation ([1 ,2 ,3])).degree () * (rho(perm.inverse ())

* em).trace ()

return 1/G.order() * s

# Verify the addition theorem

var("a0 ,a1,b0,b1")

X_val = [a0 , a1]

Y_val = [b0 , b1]

Z_val = [X_val[i] + Y_val[i] for i in range (2)]

for g in G:

lhs = tau(g, Z_val)

rhs = sum([tau(g*h.inverse (), Y_val) * tau(h, X_val) for h in G])

print(f"Permutation g = {g}")

# The symbolic verification can be slow/complex

# print (" Addition theorem satisfied:", bool(expand(lhs - rhs) == 0)

)

print(f"t_g(a_0 ,a_1) = {factor(tau(g,X_val))}\n")

4 Associated Partial Di�erential Equations

For a �nite abelian group G (written additively for this section), the formulas from Section 3

simplify. The representations are 1-dimensional characters, so dρ = 1 and χρ(g) = ρ(g).

tg(x) =
1

|G|
∑

ρ irred.

ρ(−g) exp

(∑
s∈S

ρ(s)xs

)

Let us di�erentiate with respect to a variable xs0 for s0 ∈ S:

∂tg(x)

∂xs0
=

1

|G|
∑

ρ irred.

ρ(−g)ρ(s0) exp

(∑
s∈S

ρ(s)xs

)

=
1

|G|
∑

ρ irred.

ρ(−(g − s0)) exp

(∑
s∈S

ρ(s)xs

)
= tg−s0(x)

By induction, for any h =
∑r

i=1 eisi ∈ G, we can de�ne a higher-order partial derivative:

∂tg(x)

∂h
:=

∂e1+···+er tg(x)

∂xe1s1 · · · ∂xersr
= tg−h(x)

This means the group G acts on the set of functions {tg(x)} via di�erentiation. Since tg−h(x) =
t(g−h)e−1(x) = tgh−1(x) in multiplicative notation, and we proved that det(tgh−1(x)) = 1, we
arrive at a remarkable PDE satis�ed by the vector of functions T (x) = (tg(x))g∈G:

det

((
∂tg(x)

∂h

)
g,h∈G

)
= 1
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5 Monge�Ampère Equation, 04.01.2022

Let G be a �nite abelian group (written additively) and let X = (xg)g∈G be the corresponding

vector of variables. For each g ∈ G, de�ne

τg(X) :=
1

|G|
∑

ρ irred.

χρ(−g) exp
(∑
s∈G

χρ(s)xs

)
,

where the sum runs over all irreducible characters ρ of G. Then one checks immediately that

∂

∂xh
τg(X) = τ g−h(X).

Set

u(X) := τ0(X).

Its Hessian matrix is

Hu(X) =
[
∂xg∂xh

u(X)
]
g,h∈G =

[
τ−(g+h)(X)

]
g,h∈G.

Hence the �discrete Monge�Ampère equation� becomes

detHu(X) = det
(
τ−(g+h)(X)

)
g,h∈G = ± det

(
τ g−h(X)

)
g,h∈G,

where the sign ± arises from the permutation g 7→ −g on the rows. The determinant det
(
τg−h

)
is exactly the classical group determinant det[agh−1 ]g,h∈G with ag = τg(X), which by Frobenius's

theorem factors as

det
(
τg−h

)
=

∏
ρ irred.

det
(∑
g∈G

τg(X) ρ(g)
)dim ρ

.

Thus imposing

detHu(X) = f(X)

amounts to �nding the vector
(
τg(X)

)
whose group determinant matches the prescribed function

f(X)� in other words, to solving a Monge�Ampère�type equation in the discrete variables {xg}.

6 Speculations on the Navier-Stokes Equations

This �nal section (from 30.12.2021) explores a potential connection between the functions de-

veloped above and the Navier-Stokes equations for incompressible �uid �ow.

Let G be a �nite abelian group and X = (xg)g∈G be a vector of variables, one for each group

element. De�ne the functions:

τg(X) :=
1

|G|
∑

ρ irred.

ρ(−g) exp

(∑
s∈G

ρ(s)xs

)

These functions satisfy the simple di�erentiation rule:

∂τg(X)

∂xh
= τg−h(X)

Now consider the advection term in the Navier-Stokes equations, which has the form (u · ∇)u.
In our discrete setting, this corresponds to a sum:∑

h∈G
uh(X)

∂ug(X)

∂xh
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If we set ug = τg, we �nd a convolution identity:

∑
h∈G

τh(X)
∂τg(X)

∂xh
=
∑
h∈G

τh(X)τg−h(X) = (τX ∗ τX)(g) = τg(2X)

This structural similarity suggests that these functions might be useful building blocks for solu-

tions.

Let us attempt to construct a solution to the sourceless Navier-Stokes equations in Rn ×
[0,∞):

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = 0 and ∇ · u = 0

Let G = Cn be a cyclic group of odd order n. Let the spatial variables be X = (xg)g∈G. We

propose a velocity �eld u(t,X) = (ug(t,X))g∈G and pressure p(t,X).
Let αg(X) := τg(−X)− τg−1(−X). This combination has zero divergence:

∇·α =
∑
g∈G

∂αg

∂xg
=
∑
g∈G

(
∂τg(−X)

∂xg
− ∂τg−1(−X)

∂xg

)
=
∑
g∈G

(τg−g(−X)−τg−1−g(−X)) =
∑
g∈G

(τ0(−X)−τ−1(−X)) = 0

Since n is odd, h 7→ 2h is a permutation of G, so ∆αg =
∑

h αg−2h =
∑

k αk = 0. So α is

harmonic.

Let's propose a solution of the form ug(t,X) := tαg(X) + u0g(X), where u0 is a given

divergence-free initial condition at t = 0.

1. Initial Condition: u(0, X) = u0(X). This is satis�ed by construction.

2. Incompressibility: ∇ · u = ∇ · (tα+ u0) = t(∇ · α) + (∇ · u0) = 0 + 0 = 0. This holds.

Substituting into the momentum equation:

∂ug
∂t

+
∑
h∈G

uh
∂ug
∂xh

− ν∆ug +
∂p

∂xg
= 0

αg +
∑
h

(tαh + u0h)(tαg−h +
∂u0g
∂xh

)− ν∆(tαg + u0g) +
∂p

∂xg
= 0

αg + t2(α ∗ α)g + t(α ∗ ∂u0g)g + t(u0 · ∇)αg + (u0 · ∇)u0g − ν∆u0g +
∂p

∂xg
= 0

Using ∆α = 0 and the initial condition (u0 · ∇)u0g − ν∆u0g + ∇gp
0 = 0, this simpli�es. The

construction raises several di�cult questions:

Question 6.1. Does the vector �eld αg(X) satisfy the Euler equations (the NS equations with

ν = 0) for some pressure function pα? That is, can we �nd pα such that ∇gpα = −(α ∗ α)g?

Question 6.2. Can one �nd a pressure p(t,X) that absorbs all the gradient terms arising from

the expansion?

This approach recasts the non-linear advection term as a structured convolution, which may

o�er a new perspective, but its ultimate utility in solving this notoriously di�cult problem

remains an open question.
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