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1 An Analogue to the Basel Problem

This section, based on work from 12.12.2021, explores a function analogous to the sinc function
used in the resolution of the Basel problem:.
Let us define the function f(z) as the infinite product:
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Using the roots of unity, where w = eXp( %), this can be factored as:
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Expanding this product into a power series gives a representation in terms of generalized ele-
mentary symmetric polynomials:
[e.e]
= G(3)a™
k=0

where we define: 5
1
GB) = Y <mn2...nk)
1<ni<na < -<ng

with Co(?)) =1 and C1(3) = C(?))
Inspired by the Euler reflection formula for the sinc function, we conjecture a similar identity

for f(z).
Conjecture 1.1. The function f(x) satisfies the reflection-type formula:
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A series expansion of the right-hand side of the conjecture using SageMath yields coefficients
that relate (x(3) to powers of m and values of the Riemann zeta function.
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From these identities, one could potentially solve for {(3). For instance, from the coefficient of

(L‘G:
/1890 (2(3) + 7
)= \/ 945

This raises several questions:

1. Is the conjectured "reflection" equality true?



2. Is there a "closed formula" for the (x(3) coefficients, or are they related to known numbers
in a systematic way?
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3. Can this procedure be generalized to products of the form [[(1 —

4. Is there established literature on the function f(z)?

Proof of the Reflection Formula

As noted by Terry Tao in a related context, we can use the Weierstrass factorization of the

Gamma function:
G_WEZ

I'(z) = p, ﬁ <1+£>_lez/k
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Applying this for z = 2, wx,w?2 and multiplying the three results, the exponential terms cancel
because 1 + w + w? = 0. This gives:
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and therefore
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Using the functional equation I'(1 4 z) = 2I'(z) for z = z,wz,w*z, we have:
I(14 2)T(1 + wz)L(1 + w?z) = (2T(z)) (w2l (wz)) (w?al (w?z)) = 2°T(2)T(wz)T (W)

Combining these two results confirms the conjecture:
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This procedure generalizes directly to fi(z) = [[o,(1 + (z/n)!) for [ > 2.

An Identity for > 1/(n® +1)

Let’s analyze the sum ) n%ﬂ
form of f(z):

cof:;ﬂ:) — f(a) = ﬁ <1+zz>

n=1

Consider the function co(z) = zf(%). Using the product

Taking the logarithmic derivative with respect to x:
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Dividing by 3 and setting x = 1, we find:
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To evaluate the left-hand side, we use the Gamma function representation of co(z):
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Its logarithmic derivative is:
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where ¢ (z) = I"(2)/T'(2) is the digamma function. Evaluating at x = :

Substituting this into our expression for the sum gives:
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Using 1(2) =1 — vg and 1 = —w — w?, we get:
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This expression can be further manipulated, providing a closed-form representation for the sum
in terms of special functions.

2 Functions for the Cyclic Group Cj

This section (from 20.12.2021) develops function analogues of sinh, cosh, sin, cos for the cyclic
group Cs.
Define the functions ¢x(x) for £ =0,1,2:

oo
$3n+k

() = = (3n+k)!

These functions are the components of the exponential function projected onto the eigenspaces
of the C3 action. They are related via the character table of C3, where w = exp(2mi/3):

exp(gj) 1 1 1 to(.’L‘)
explwr) | =1 w ?|- |ti(2)
exp(w?x) 1 w? w to(x)

From this relationship, one can derive the following addition theorem, where the matrix is
circulant:

to(z +y) to(x) to(x) ti(w) to(y)
ti(x+y) | = [ti(z) to(z) ta(w) |- | t:(y)
ta(z +y) ta(z) ti(z) to(x) ta2(y)

The determinant of this circulant matrix gives a fundamental identity, analogous to cosh? (z) —
sinh?(z) = 1:
to(x)3 + 11 (l‘)s + tg(l‘)s — 3t0($)t1($)t2(1‘) =1, VzeC

We can also define trigonometric analogues. Let v = exp(22%). Set:
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o so(x) := Sto(72)
o 52(7) == sp(x) = ta(yz)
o s1(z) := shy(z) = vt1(yx)

From the derivative relations t}) = to, th = t1, t| = to, it follows that s}(x) = v%so(z). These

functions satisfy their own addition theorem and a determinant identity analogous to sin?(z) +
2

cos”(x) = 1:

3s0(z)3 + sa(z)3 + 81’(;:)3 —3sp(z)s1(x)s2(x) =1

3 Generalization to Finite Groups

This section (based on notes from 23.10.2021) generalizes the previous construction from C3 to
any finite group G.
For a finite group G, we seek functions t4(x) for g € G that satisfy the convolution-style

addition formula:
.%' + y Z tgh 1
hedG

This can be written as t;4y(g9) = (tz * ty)(g), where t, is the function g — t4(z) and = is the
group convolution.

The Fourier transform of a convolution is the product of the Fourier transforms. Let p be
an irreducible representation of G. The Fourier transform of ¢, is:

The addition formula is satisfied if t;r\y(p) = t.(p)ty(p). This is a homomorphism property,
satisfied by an exponential function.

Let S = {s1,..., S} be a generating set for G with 1 ¢ S. Let x = (zs,)s,es be a vector of
variables. We can define the functions ¢, via their Fourier transform:

t(p) —exp< > Xols) >1d,,

P ses

where d, is the dimension of p, X, is its character, and 14, is the identity matrix. This definition

immediately ensures that t;r\y(p) = 1.(p)t, (p).
Applying the inverse Fourier transform, we obtain an explicit formula for the functions:

Z dp Tr _l)tA Z dpXp(g 1 exp( ZXp >
p irred. p irred. P ses

From this formula, we see that t4(x) depends only on the conjugacy class of g.
Furthermore, the determinant of the group matrix T = (t,,-1(2))g,nec can be evaluated



using the Frobenius determinant formula:
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The inner sum »_ d,X,(s) is the value of the regular character on s. For any s # 1, this sum is
zero. Since we chose 1 ¢ S, we have:

det(Tg) = exp(0) =1
Example: The Symmetric Group Ss3

For G = S5, with generating set S = {(1,2), (2,3)} and variables xg, z1, the functions are:

e For g € {e,(123),(132)} (conjugacy class of the identity and 3-cycles):

1 1 2
t6($07$1) = 66I0+x1 + 66—300—&11 + g
1 1 1
t123) (w0, 21) = t(132) (w0, 1) = gexﬁxl + ge_xo_ml -3

e TFor g € {(12),(13),(23)} (conjugacy class of transpositions):

1 1
ty(zo, 1) = Z€™0FT" — P07 M

6 6

SageMath Implementation

Listing 1: SageMath code to compute ¢4(z) for S3

SymmetricGroup (3)

= [G[3], G[5]] # Corresponds to § = {(1,2),(2,3)}

[1ist(G) [-3]1,1ist(G)[-1]1] # 4 more robust way to select generators
var ([("x"+str(i)) for i in range(len(S))])

LS 2K " !
[N

# Define irreducible representations for S§3

trivial = G.irreducible_characters () [0].to_representation ()
sign = G.irreducible_characters() [1].to_representation ()
standard = G.irreducible_characters () [2].to_representation()
irredPerms = [trivial, sign, standard]

def log_inverse_Fourier(rep, X_vars):
m = sum([rep(S[i]).trace() * X_vars[i] for i in range(len(S))])

return m

def tau(perm, X_vars):




s =0
for rho in irredPerms:
em = exp(log_inverse_Fourier (rho, X_vars))
s += rho(Permutation([1,2,3])).degree() * (rho(perm.inverse())
* em) .trace ()
return 1/G.order () * s

# Verify the addition theorem

var ("a0,al,b0,bl")

X_val = [a0, all

Y_val [bO, b1i]

Z_val [X_val[i] + Y_val[i] for i in range(2)]

for g in G:
lhs = tau(g, Z_val)
rhs = sum([tau(g*h.inverse(), Y_val) * tau(h, X_val) for h in GI)
print (f"Permutationygu=,{g}t")
# The symbolic werification can be slow/complex
# print ("Adddition theorem satisfied:", bool (expand(lhs - vrhs) == 0)
)
print(f"t_g(a_0,a_1),=y{factor (tau(g,X_val))}\n")

4 Associated Partial Differential Equations

For a finite abelian group G (written additively for this section), the formulas from Section 3
simplify. The representations are 1-dimensional characters, so d, =1 and x,(g9) = p(g).

ty(z) = yla| > p(=g)exp (ZP(S)%>

p irred. s€S

Let us differentiate with respect to a variable x4, for so € S:

Oty(x 1
= X s s e (Y pls)es
|G‘ p irred. s€S
= tgfso (:U)

By induction, for any h =), e;s; € G, we can define a higher-order partial derivative:

Otg(x) O Terty(x)
= =1,
oh oxs; - - 0wy g-(2)

This means the group G acts on the set of functions {t,(x)} via differentiation. Since t;,_(z) =
tig—nye-1() = tgp-1(7) in multiplicative notation, and we proved that det(ty,-1(z)) = 1, we
arrive at a remarkable PDE satisfied by the vector of functions T'(z) = (t4(x))g4ec:

(M) )-




5 Monge—Ampére Equation, 04.01.2022

Let G be a finite abelian group (written additively) and let X = (z4)4eq be the corresponding
vector of variables. For each g € GG, define

1
W) = 1o 2 xl-9) exp( 3 wols) 7).

p irred. seG
where the sum runs over all irreducible characters p of G. Then one checks immediately that

0

aixh Tg(X) = Tg_h(X).

Set
u(X) = 7(X).

Its Hessian matrix is

Hy(X) = (04,04, u(X)]gthG = [T_(g+h) (X)]MGG.
Hence the “discrete Monge—Ampére equation” becomes

det Hy(X) = det(7_(g41)(X)) = + det(74-n(X))

gthG g,hEG’

where the sign + arises from the permutation g — —g on the rows. The determinant det(Tg,h)
is exactly the classical group determinant det|ay,-1]gneq With ay = 7,(X), which by Frobenius’s

theorem factors as di
imp
det(Tg,h) = H det(z Tg(X)p(g)) )
p irred. geG

Thus imposing
det H,(X) = f(X)

amounts to finding the vector (Tg(X )) whose group determinant matches the prescribed function
f(X) — in other words, to solving a Monge-Ampére-type equation in the discrete variables {z4}.

6 Speculations on the Navier-Stokes Equations

This final section (from 30.12.2021) explores a potential connection between the functions de-
veloped above and the Navier-Stokes equations for incompressible fluid flow.

Let G be a finite abelian group and X = (z4)4ec be a vector of variables, one for each group
element. Define the functions:

1
78(X) = 1 > p(=g)exp (Z p(S)%)
p irred. seG
These functions satisfy the simple differentiation rule:

O74(X)
oxy,

= Tg—h(X)

Now consider the advection term in the Navier-Stokes equations, which has the form (u - V)u.
In our discrete setting, this corresponds to a sum:

Z uh(X)6Ug<X>

ox
heG h




If we set uy = 74, we find a convolution identity:

5 70 28 S (X7 () = (rx w7 (9) = 75(2)

heG h heG

This structural similarity suggests that these functions might be useful building blocks for solu-
tions.
Let us attempt to construct a solution to the sourceless Navier-Stokes equations in R™ x
[0, 00):
ou

E—yAu%—(u Vu+Vp=0 and V-u=0

Let G = C, be a cyclic group of odd order n. Let the spatial variables be X = (x4)geq. We
propose a velocity field u(t, X) = (ug(t, X))geq and pressure p(t, X).
Let ay(X) :=14(—X) — 79—1(—X). This combination has zero divergence:

Vo= 30 20y (8798(;)‘) - 879?;;‘)”) = S g (X)) = 3 (- X) 7 (- X)) -
g g

geG g geG geG geG

Since n is odd, h — 2h is a permutation of G, so Aag = >, ag_on = > o = 0. So a is
harmonic.

Let’s propose a solution of the form ugy(t,X) := tay(X) 4+ u)(X), where u® is a given
divergence-free initial condition at ¢ = 0.

1. Initial Condition: u(0, X) = u%(X). This is satisfied by construction.
2. Incompressibility: V-u =V - (ta +u’) =t(V-a) + (V-u®) =0+ 0 = 0. This holds.
Substituting into the momentum equation:

8ug Op.
—uA =
It + Z uh o vAug + ﬁxg =0

8U0 8p

0 g _
ag + Eh (tap, + up) (tag—p + 8—%) —vA(tag+u ) + P 0
0
ag + 1 (ax )y +t(a* 8u2)g + (- V)ay + (u° - V)u - Z/Au + @fg =0

Using Aa = 0 and the initial condition (u" - V)ug — VAUS + V4p° = 0, this simplifies. The
construction raises several difficult questions:

Question 6.1. Does the vector field ay(X) satisfy the Euler equations (the NS equations with
v =0) for some pressure function po? That is, can we find po such that Vyp, = —(av*x a)y?

Question 6.2. Can one find a pressure p(t, X) that absorbs all the gradient terms arising from
the expansion?

This approach recasts the non-linear advection term as a structured convolution, which may
offer a new perspective, but its ultimate utility in solving this notoriously difficult problem
remains an open question.
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