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1. The lexicographic order on prime factorizations
Write every positive integer in its prime-factor list form

m=pip2-pr, 1<pr<p2<---<pp

and similarly
n=qqq, 1<qa<q<--<gs

Then define
m<dn <= (p1,---,Pr) <tex (q1,---,s),

”

where “<jo,” is the standard lexicographic order on finite tuples.
Here are as an example the first 100 natural numbers sorted by <:

1,2,4,8,16,32, 64,96, 48, 80, 24, 72, 40, 56, 88, 12, 36, 60, 84, 20, 100, 28, 44, 52, 68,

76,92, 6, 18, 54,90, 30, 42, 66, 78, 10, 50, 70, 14, 98, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86,
94,3,9,27,81,45,63,99, 15, 75, 21, 33, 39, 51, 57, 69, 87, 93, 5, 25, 35, 55, 65, 85, 95, 7,
49,77,91,11,13,17,19, 23,29, 31, 37, 41,43, 47,53, 59, 61, 67, 71, 73, 79, 83, 89, 97

2. The “gcd” matrix and its embedding

1. Function. For any a,b € {1,2,..., N}, set

k(a.b) 1, ged(a,b) > 1,
a,b) =
0, gecd(a,b) =1.

2. Sorted list. Let {s1,...,sy} be the numbers 1,..., N arranged in
increasing order under <.



3. Matrix. Form the N x N binary matrix
MN(Z’]) = k(3i7 S,])

4. Fractal picture. Plot the points {(i/N,j/N) | My(i,j) = 1} in blue.
As N — oo, this set visually converges to a self-similar fractal:
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1 Transition from F,, to F,

Informal description

We start with the unit square [0, 1]? subdivided into an n x n grid of little

squares
n

F, = |J s,

where each
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These squares are arranged in prime-factor lex order: we list 1,...

51 X8 =X X osp,

and set
rank(i,n) = position of 7 in {s1,...,s,}.

)

Each square Sl(? is then positioned at

(rank(i,n)—l rank(j,n)—l)

n ’ n

and colored by
o 1, gcd(i,5) > 1 (black),
K(i,J) = (. .) ( . )
0, ged(i,7) =1 (white).

To obtain Fj41:

1. Scale down each original cell by
Tu(z,y) = (72, 250):

so the original cell preserves its color x(i, j).

. Insert n new thin vertical strips at columns (rank(i,n+1)—1)/(n+1)
for i =1,...,n, and n new thin horizontal strips at rows (rank(j, n—+
1)— 1)/(nqL 1) for j =1,...,n. Each new strip corresponding to index
i is colored black if ged(i,n 4+ 1) > 1, white otherwise.

(n+1)

n+1,n+1 at

. Place the single new cell B

(rank(n+1,n+1)fl rank(n+1,n+1)—1 )
n+1 ) n+1 ’

which by lex order usually lies centrally. It is always black since ged(n+
IL,n+1)>1.

Exact mathematical formulation

(1) Define the ordered list s; < s =< -++ =< sp41 of {1,...,n + 1} under

prime-factor lex order, and set

rank(i,n + 1) = index k with s = 1.

(2) For each 1 <14, <n+ 1 define the color-indicator

(i) 1, ged(i,j) > 1,
k(1,7) =
7700, ged(i,g) = 1.



F,: divided in nx n blocks Fp41:dividedin (n+1) x(n+1) blocks

Figure 1: Left: F,, in lex-order ranking, colored by r(i,7). Right:
obtained by scaling, inserting new strips, and adding the central cell.

(3) In [0, 1]? set

gt _ izl i j=1 _—
7] o ey o ERl Bews el ,5=1,...,n+ 1.

Then

n+1)
Fosy = U B;
4,j=1

(n+1)

where each Bi’ j is placed at

rank(i,n+1)—1 rank(j,n+1)—1
n+1 ’ n+1

and colored black if x(7, 7) = 1, white if x(¢,j) = 0.

(4) Equivalently,
" B
n+1 n+1 n+1
FnJrl - U 3 n+1 U U Bn+1 7 n+1,n+17

where:

— T,(F,) is the scaled-down copy of F,,

Fn+1

— each new strip B; p41 or Bp41; has color k(i,n+1) or k(n+1, j),
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— and B,(ZTLI% 41 1s always black.

F,:- divided in nx n blocks Fry1:divided in (n+ 1) x (n+ 1) blocks

|

Fo:x19n +14x; Far1:X19n + 14ax;

ged(n +1,3:) >71

(%2, x1) (X2, x2) (¥2,x1) (%2, %2)
— ) >
gedix,n+1)="1 gedlin+1,n+1)>1 gedig, n+1)>"1
(x1, x1) (x1,%3) (x1,x1) (x1,x2)

ged(n+1,0) =71

2 Area of the fractal

In the limit as N — oo, the proportion of black squares in Fy equals the
probability that two integers 1 < m,n < N are not coprime, i.e. ged(m,n) >
1. To see this, set

By Moébius inversion,

s= Y Y =Y @]y

m,n<N d|ged(m,n) d<N



Dividing by N? and letting N — oo gives

i SO st 1

N—o0 ]\[2

6

in agreement with the classical result that two random integers are coprime
with probability 6/72[2]. Hence the complementary proportion

6
1— —
2

is the area of the black (non-coprime) fractal set in the unit square.

3 Asymptotic Density of Numbers by Minimal Prime
Divisor

Let aq(n) = an,4 denote the number of integers 1 < k < n whose minimal
prime divisor is ¢. We claim that

lim 2 _ 1 I1 (1—1). (1)

n—oo N
p q<p

q prime

Proof via the Chinese Remainder Theorem. An integer k has minimal prime
divisor p precisely when

e k=0 (mod p), and

e k£ # 0 (mod q) for every prime ¢q < p.

p ]«

There are

a<p
total residue classes modulo qu <p 3, of which exactly
Ix[[e-1 = [Je—1)
a<p q<p

are admissible (zero mod p, nonzero mod each ¢ < p). We obtain by
dividing the number of admissible classes by the total number of classes:

CREINNES T

q P 4

Hq<p(q_1) _1
7_]31_[

p HQ<P q q<p



Moreover, since every integer in {1,2,...,n} has a unique minimal prime
divisor (or else is 1), we have

— e (1 M)
AT D
p<n

and hence in the limit

YR G

prime q<p
q prime
Writing the primes in ascending order p; = 2,p2 = 3,..., this becomes
=1
_ 1
t=> - II0-3) @
n=1"" q<pn

Equivalently, one may “unfold” this into the nested form

=g+ (-G 0-DG+ (-1)6)

and so on through all primes 2,3,5,7,....

4 Prime-Based Series Representation of Real Num-
bers in [0, 1]

We shall show that for every real number x € [0, 1] there exists a (finite or
infinite) strictly increasing sequence of primes

G <gq2<qgz<---

such that

The proof proceeds by exhibiting two algorithms: one that computes the
partial sums given a prime sequence, and one greedy procedure that, given
x, constructs the required prime sequence.

1. From a Prime Sequence to the Value

Define
N 1 n—1 1
xfrom_seq(QhQ%-'wQN) = Z* H (1 — 7)
1 dn ) dm
n m

In Python-style pseudocode:



def x_from_seq(pp):

x =0

for n in range(len(pp)):
pn = ppln]
pr =1

for q in ppl:n]:
pr *= (1 - 1/q)
X += 1/pn * pr
return x

First observe that if S = IP is the full sequence of all primes, then
-1 1
S0 -
peP p q<p 4

since this has been shown previously. Now let S C P be any (finite or infinite)
subsequence. The same telescoping argument shows

-1 1 -1 1
ZPT H(“g) = ZPT H(l‘g)zl'
peES Zég pGIP’ q<p

-1
Hence the series converges absolutely and its sum = Z —— H (1-1)

pES P q<p,qeS

satisfies 0 < x < 1.

2. Greedy Construction of the Prime Sequence

Given z € [0, 1], we construct a sequence (g,) by the following greedy algo-
rithm: at step k we have a residual ox = 2 — Zfrom_seq(q15 - - - > @r—1), and we
choose the smallest prime p for which

In Python-style pseudocode:

def seq_from_x(x, eps=le-12, verbose=False):

pp = [I
pr =1 # product of (1 - 1/q_i) so far
xk = x # current residual
k =0
while xk > eps:
k+=1

pk = nth_prime (k)
term = 1/pk * pr



if xk >= term:
pp - append (pk)
xk -= term
pr *= (1 - 1/pk)
if verbose:
print ("residual:", xk, "sequence:", pp)
# otherwise skip pk and try next
return pp

3. Proof of Correctness

1. Termination or Infinite Continuation. At each step the residual x

1
decreases by at least — H (1-— qi), so {xy} is a nonincreasing non-
qk m
m<k

negative sequence. If it ever falls below the chosen tolerance e, the
algorithm may terminate with a finite prime list; otherwise it produces
an infinite strictly increasing sequence of primes.

2. Ezxactness of the Sum. By construction,

N 1 n—1 1
== TI(-=) + av.
e In dm

m=1
In the infinite-sequence case, monotone convergence gives limy 0o Tn+1 =
0, whence the series sums exactly to z. In the finite-sequence case, one
may check that the terminal residual 41 < € can be made arbitrarily
small by choosing € — 0.

3. Uniqueness of the Greedy Choice. At each step k, the requirement that

- H (1— q%) < xj, determines uniquely the next prime ¢, as the least

m<k
prime satisfying the inequality. This enforces strict increase.

Conclusion

Thus every xz € [0, 1] admits the desired expansion in terms of a (possibly
finite) increasing sequence of primes. The function x_from_seq computes
the value from the sequence, while seq_from_x recovers the sequence from
the value via a greedy algorithm, completing the proof.

5 Boolean Operations on Primes and the Unit In-
terval

We identify
0 < o, 1 + {all primes},



and for x,y € [0, 1] set
—r = 1—ux,

TNy = x_from_seq( Se NSy ),

xVy = X_from_seq( Sz U Sy )
Theorem 5.1. These operations on [0,1] satisfy the azioms of a Boolean
algebra, and in particular obey De Morgan’s laws

—\(J:/\y) =z V 7y, —\(:U\/y) =z A Y.

Proof. Under the bijection z <+ S, C {primes}, addition of sets corresponds
to union, multiplication to intersection, and set-complement to 1 — z. Since
p({primes}) is a Boolean algebra under U,N,\, the transported operations
on [0, 1] satisfy all Boolean identities, including De Morgan’s laws. O

6 Binary prime-digits

Let p,, denote the n-th prime, and let z € [0, 1]. Recall that the “prime-digit”
expansion of x is given by a (possibly infinite) sequence of primes

[Q17q27"'7qnu"']
such that
[e's] 1 k—1
TP | ()
k:lqk m=1

Define, for each n € N, the indicator

(z) 1, if p, appears among the ¢z,
en(x) =
" 0, otherwise.

We claim that this induces the alternative expansion

. isn(x) ﬁ( _Iiym(w)’
n=1 "

p m=1

so that the sequence (an(a:))n>1 is precisely the “binary prime-digit” expan-
sion of x. a

Proof. By definition, each prime p,, can appear at most once in the list (qx).
If p,, does appear, let k(n) be the unique index with Qk(n) = Pn; if it does not

10



appear, set k(n) = co. Then the original expansion of z may be regrouped
by collecting the single term corresponding to each prime:

qm

k=1 m=1 , k(n) = oc.

SN | ((EES I 3 il | M O DRSS
n=1 0

But by construction, the set {qi,... >qk(n)—1} is exactly the set of those
primes p, for which m < n and &,,(z) = 1. Hence

k(n)—1 n—1

[T (=)= I (=) = T0-5)""
e

Inserting this into the regrouped sum gives exactly

v i en(x)

ne1 Pn

n—1

H (1 B %)M(m),

m=1

completing the proof. O

3. The factorization tree 7,

Define the infinite rooted, ordered tree T' by growing one integer at a time:
e Root: the node 1.

e Suppose you’ve built T, containing nodes 1,2,...,n. To insert n + 1,
factor it asn+1=py---p,-. Let

Py(m) 1, m =1,
m) =
! max{q: q | m, ¢ prime}, m > 1,

and attach n + 1 as a child of the unique node m € T, satisfying
Pi(m) < p; and mpy - - - p, < n+1, in the position preserving preorder.

Equivalently, for each 1 < m < n, define Tj, ,,, whose root is m, and
whose children are all mp with p prime, P;(m) < p, and mp < n. Then
T, = n,l-

When you list the vertices of T, in preorder, you recover exactly the
lex-order < on {1,...,n}.

11



4. Example of T,

For n = 10, 25 the trees look like:
n =10

7 Encoding and Decoding of Factorizations Using
Only Primality Tests
We store the entire factorization tree T,, of the integers {1,2,...,n} as a

plane rooted tree and encode its shape in a 2n-bit balanced-parentheses (BP)
string.

Tree Construction

e Build 7}, incrementally: start at the root 1, and for each m =2,...,n
attach m as a child of the unique node u whose path from 1 reproduces
the prime-factor list of m.

e Each node stores its prime factor p so that the ordered list of children
at u corresponds to primes > Pj(u).

12



Balanced-Parentheses Encoding

1. Perform a preorder traversal of T,,.

2. On entering a node emit “ 17; on leaving emit “ 0”.

Since there are exactly n enters and n leaves, the result is a 2n-bit string w.

Decoding Algorithm
Given w € {0, 1}

1. Reconstruct the tree shape from the BP-string via the standard stack-
based method.

2. Precompute all primes up to n by any primality sieve.

3. Traverse the rebuilt tree in preorder, keeping track of the minimal
descendant prime Pj(u). For the k-th child of u, select the k-th prime
> Pi(u) as the factor.

4. The product along the path to a node yields its value m, thus recovering
all factorizations.

This procedure uses only primality testing (for the sieve) plus simple BP
parsing, and achieves

{all factorizations of 1,...,n} <— {0,1}*".

13



Example codings for 1 <m <19

10,
1100,

110100,

11100100,

1110010100,

111010010100,

11101001010100,

1111001001010100,

111100100110010100,
11110010100110010100,
1111001010011001010100,
111101001010011001010100,
11110100101001100101010100,
1111010010101001100101010100,
111101001010100110100101010100,
11111001001010100110100101010100,
1111100100101010011010010101010100,
111110010011001010011010010101010100,
11111001001100101001101001010101010100.

© 0 N O Ot = W N

R N SR R e
1111317711111 111T1T1T1T11

8 A Probabilistic Interpretation of the Prime-Divisibility
Identity

Let X be a “randomly chosen” positive integer, in the sense that we consider
the natural density over {1,2,..., N} and let N — oo. For each prime py
we ask for the event

E = {X is divisible by pg but by no smaller prime ¢ < pk}.

Since every integer n > 1 has a unique smallest prime divisor, the events
Eq, Es, ... form a partition of {2,3,4,...}. (We may assign the value k =0
to n =1, if desired.)

For a fixed prime py, the probability that a random integer is divisible

by py. is
LTI
N—o0 N Pk

P(pr | X)

14



Similarly, the probability that X is not divisible by any smaller prime g < pg

i (- rai0)=TI(0-2).

q<Pk q<pr

By independence of divisibility by distinct primes in the natural-density
sense, the probability of the event E} is therefore

P(Ey) :plk I1 (1— %).

q<pk

On the other hand, since the events {Ej : k > 1} exhaust all integers > 2
(up to the negligible singleton {1}), we have

o
N —
P(Ey) = lim &~ =1.
Z (Eg) = lim ~ 1
k=1

N—oo

Hence the identity
=1
S L I(-1) -
=1 Pk q<p

shows at once that

defines a valid probability mass function on the indices £k =1,2,....

9 Rank Invariance under Diagonal Normalization
of Gram Matrices

Proposition 9.1. Let x1,...,z, # 0 be vectors in a Hilbert space H, and
define

G=((wi,2));,_,, H= (M)”

il flsll/ag=1
Then
rank(G) = rank(H).

Proof. Set
D = diag(Jar]% ., [aal2), D2 = ding(lle1 ] ... [l

Since each ||z;|| > 0, the diagonal matrix D is invertible. A direct computa-
tion shows

1
D_I/QGD_1/2 —7<ZE1,$>7: i
( )i = g 0830 g = Ho

15



Hence
H=DY2Gg D12

Multiplying a matrix by an invertible matrix on the left or right does not
change its rank. Therefore

rank(H) = mnk(D_l/2 GD_I/Z) = rank(G),

as claimed. ]

10 Application: The w(gced)—Kernel and Its Rank

Let w(n) = }{p | n: p prime}| denote the number of distinct prime divisors
of n. For 2 < a,b < N define the kernel

k(a,b) = w(ged(a,b)).

Proposition 10.1. The matriz

N
a,b=2

Gn = [k(a,b)]
1s positive semidefinite, and its rank is

rank(Gy) = w(N),
where m(N) = #{p < N : p prime}.

Proof. For each prime p < N define the feature function

1, pla,
a) = a=2,...,N.
#p(a) {0, otherwise,

Then the vector
(a) = (op(a)),_y € {0,137
satisfies

(@(a), 2(0) = Y @p(@) pp(b) = [{p < N :p| aand p | b}| = w(ged(a,b)).
p<N

Thus Gy is a Gram matrix of the vectors ®(a), hence positive semidefi-
nite. Moreover, since each prime p < N appears as a coordinate in some
®(a), these m(N) coordinates are linearly independent over {a = 2,..., N}.
Therefore

rank(Gy) = dim(span{®(2),..., ®(N)}) = «(N).

16
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As an immediate corollary of the diagonal-normalization invariance (see
Proposition 2.1), the entrywise-normalized kernel

~ w(ged(a, b))

h(a,b) = ,
w(a)w(d)
with matrix N
HN = [h(a’ b)]a,b=2’

satisfies
rank(Hy) = rank(Gy) = 7(N).

Thus both the raw and the diagonally normalized w(gcd)—kernels yield finite
adjacency (Gram) matrices of rank exactly 7(NN).

-

-

200 it
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Equivalence of the shifted kernel Ky and Hy
Recall that for N > 2 we defined the (N — 1) x (N — 1) matrix

N h(a,b) = w(gcd(a,b))

Hy = [h(aa b)]a,b:w w(a)w(b) .

17
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Now introduce the shifted kernel
- w(ged(a+1,b+ 1))
Vel Dwb+1)

Observe that the map a +— a + 1 is a bijection from {1,..., N — 1} onto
{2,...,N}. Hence for all 1 < a,b < N —1 we have

N-1

N Hab)

KN = [k(a, b)]

B w(ged(a+1,b+ 1))

B Vw(@+1)w(b+1) B h(a+1,b+1).

k(a,b)

In other words,
KN(a,b) = HN(CL-l- 1,b+ 1),

so K coincides exactly with the submatrix of Hy obtained by reindexing
rows and columns 2,..., N as 1,..., N — 1. Therefore the two matrices have
identical entries (up to relabeling) and hence the same rank:

rank(Ky) = rank(Hy) = 7(N).

11 Rank Relation between the Non-Coprimality and
Coprimality Matrices

Definitions

1. For each n > 1, define the non-coprimality matriz

1, d(z,7) > 1, o
(My)i; = 8¢ (Z Z) 1<4,5<n.
07 ng(/L’j) = 17

2. Define the coprimality matriz

1 d(i, i) =1
(An)iy =14 0 & (%’2) T 1<, j<n.
0, ged(i,j) >1,

3. Let a(m) be the integer sequence A013928 from OEIS, which satisfies
a(m) = !{ E<m:kis squarefree}!.

Equivalently, a(n+1) is the number of squarefree integers in {1,...,n}.

Main Theorem

Theorem 11.1. For everyn > 1,
rank(M,) = a(n+1) — 1.

Proof.

18



(1) Relation between A, and M,. Observe that the all-ones matrix J,
satisfies
A, + M, = J,.

(2) Column spaces and ranks. Let u = (1,1,...,1)7 € R®. The first
column of A, is

so u € Col(4,,). On the other hand, the first column of M, is

n

Ma (1) = [Lgeai>1]iy = 0,

so u ¢ Col(M,,).
From J, = A, + M,, we get

Col(J,) € Col(A,) + Col(M,,).

But Col(J,,) = span{u} C Col(4,,), hence Col(J,) + Col(M,,) = Col(4,).
Conversely, Col(A,) = Col(J,) + Col(M,,) C Col(4,) + Col(M,,), so

Col(A,,) = Col(J,,) + Col(M,,) = Col(A4,).

It follows that
Col(A,,) = Col(M,,) ® span{u},

a direct sum because u ¢ Col(M,,). Therefore
rank(A,) = dim Col(4,,) = dim Col(M,,) + 1 = rank(M,,) + 1,

l.e.

rank(M,,) = rank(A,) — 1.

(3) Rank of the coprimality matrix A,,. By standard Mobius-inversion
arguments (or OEIS A013928), one shows

rank(A,) = #{d < n:d is squarefree} = a(n + 1).

(4) Conclusion. Combining the above,
rank(M,,) = rank(A,) — 1 =a(n+1) — 1,

as claimed. ]
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