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1. The lexicographic order on prime factorizations

Write every positive integer in its prime-factor list form

m = p1 p2 · · · pr, 1 < p1 ≤ p2 ≤ · · · ≤ pr,

and similarly
n = q1 q2 · · · qs, 1 < q1 ≤ q2 ≤ · · · ≤ qs.

Then de�ne
m ⊴ n ⇐⇒ (p1, . . . , pr) ≤lex (q1, . . . , qs),

where �≤lex� is the standard lexicographic order on �nite tuples.
Here are as an example the �rst 100 natural numbers sorted by ⊴:

1, 2, 4, 8, 16, 32, 64, 96, 48, 80, 24, 72, 40, 56, 88, 12, 36, 60, 84, 20, 100, 28, 44, 52, 68,

76, 92, 6, 18, 54, 90, 30, 42, 66, 78, 10, 50, 70, 14, 98, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86,

94, 3, 9, 27, 81, 45, 63, 99, 15, 75, 21, 33, 39, 51, 57, 69, 87, 93, 5, 25, 35, 55, 65, 85, 95, 7,

49, 77, 91, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

2. The �gcd� matrix and its embedding

1. Function. For any a, b ∈ {1, 2, . . . , N}, set

k(a, b) =

{
1, gcd(a, b) > 1,

0, gcd(a, b) = 1.

2. Sorted list. Let {s1, . . . , sN} be the numbers 1, . . . , N arranged in
increasing order under ⊴.
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3. Matrix. Form the N ×N binary matrix

MN (i, j) = k(si, sj).

4. Fractal picture. Plot the points {(i/N, j/N) |MN (i, j) = 1} in blue.
As N →∞, this set visually converges to a self-similar fractal:

1 Transition from Fn to Fn+1

Informal description

We start with the unit square [0, 1]2 subdivided into an n × n grid of little
squares

Fn =
n⋃

i,j=1

S
(n)
i,j ,

where each
S
(n)
i,j =

[
i−1
n , i

n

]
×
[
j−1
n , j

n

]
.
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These squares are arranged in prime-factor lex order : we list 1, . . . , n as

s1 ⪯ s2 ⪯ · · · ⪯ sn,

and set
rank(i, n) = position of i in {s1, . . . , sn}.

Each square S
(n)
i,j is then positioned at(

rank(i,n)−1
n , rank(j,n)−1

n

)
and colored by

κ(i, j) =

{
1, gcd(i, j) > 1 (black),

0, gcd(i, j) = 1 (white).

To obtain Fn+1:

1. Scale down each original cell by

Tn(x, y) =
(

n
n+1x,

n
n+1y

)
,

so the original cell preserves its color κ(i, j).

2. Insert n new thin vertical strips at columns
(
rank(i, n+1)−1

)
/(n+1)

for i = 1, . . . , n, and n new thin horizontal strips at rows
(
rank(j, n+

1)−1
)
/(n+1) for j = 1, . . . , n. Each new strip corresponding to index

i is colored black if gcd(i, n+ 1) > 1, white otherwise.

3. Place the single new cell B
(n+1)
n+1,n+1 at( rank(n+1,n+1)−1

n+1 , rank(n+1,n+1)−1
n+1

)
,

which by lex order usually lies centrally. It is always black since gcd(n+
1, n+ 1) > 1.

Exact mathematical formulation

(1) De�ne the ordered list s1 ⪯ s2 ⪯ · · · ⪯ sn+1 of {1, . . . , n + 1} under
prime-factor lex order, and set

rank(i, n+ 1) = index k with sk = i.

(2) For each 1 ≤ i, j ≤ n+ 1 de�ne the color-indicator

κ(i, j) =

{
1, gcd(i, j) > 1,

0, gcd(i, j) = 1.
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Figure 1: Left: Fn in lex-order ranking, colored by κ(i, j). Right: Fn+1

obtained by scaling, inserting new strips, and adding the central cell.

(3) In [0, 1]2 set

B
(n+1)
i,j =

[
i−1
n+1 ,

i
n+1

]
×
[
j−1
n+1 ,

j
n+1

]
, i, j = 1, . . . , n+ 1.

Then

Fn+1 =

n+1⋃
i,j=1

B
(n+1)
i,j ,

where each B
(n+1)
i,j is placed at(

rank(i,n+1)−1
n+1 , rank(j,n+1)−1

n+1

)
and colored black if κ(i, j) = 1, white if κ(i, j) = 0.

(4) Equivalently,

Fn+1 = Tn(Fn) ∪
n⋃

i=1

B
(n+1)
i,n+1 ∪

n⋃
j=1

B
(n+1)
n+1,j ∪ B

(n+1)
n+1,n+1,

where:

� Tn(Fn) is the scaled-down copy of Fn,

� each new strip Bi,n+1 or Bn+1,j has color κ(i, n+1) or κ(n+1, j),
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� and B
(n+1)
n+1,n+1 is always black.

2 Area of the fractal

In the limit as N → ∞, the proportion of black squares in FN equals the
probability that two integers 1 ≤ m,n ≤ N are not coprime, i.e. gcd(m,n) >
1. To see this, set

S(N) =
∑

1≤m,n≤N
gcd(m,n)=1

1.

By Möbius inversion,

S(N) =
∑

m,n≤N

∑
d|gcd(m,n)

µ(d) =
∑
d≤N

µ(d)
⌊
N
d

⌋2
.
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Dividing by N2 and letting N →∞ gives

lim
N→∞

S(N)

N2
=

∞∑
d=1

µ(d)

d2
=

1

ζ(2)
=

6

π2
,

in agreement with the classical result that two random integers are coprime
with probability 6/π2[2]. Hence the complementary proportion

1− 6

π2

is the area of the black (non-coprime) fractal set in the unit square.

3 Asymptotic Density of Numbers by Minimal Prime

Divisor

Let aq(n) = an,q denote the number of integers 1 ≤ k ≤ n whose minimal
prime divisor is q. We claim that

lim
n→∞

ap(n)

n
=

1

p

∏
q<p

q prime

(
1− 1

q

)
. (1)

Proof via the Chinese Remainder Theorem. An integer k has minimal prime
divisor p precisely when

� k ≡ 0 (mod p), and

� k ̸≡ 0 (mod q) for every prime q < p.

There are
p
∏
q<p

q

total residue classes modulo p
∏

q<p q, of which exactly

1×
∏
q<p

(q − 1) =
∏
q<p

(q − 1)

are admissible (zero mod p, nonzero mod each q < p). We obtain (1) by
dividing the number of admissible classes by the total number of classes:∏

q<p(q − 1)

p
∏

q<p q
=

1

p

∏
q<p

(q − 1)

q
=

1

p

∏
q<p

(1− 1

q
)

6



Moreover, since every integer in {1, 2, . . . , n} has a unique minimal prime
divisor (or else is 1), we have

1 = lim
n→∞

(
1
n +

∑
p≤n

ap(n)

n

)
,

and hence in the limit

1 =
∑

p prime

1

p

∏
q<p

q prime

(
1− 1

q

)
.

Writing the primes in ascending order p1 = 2, p2 = 3, . . . , this becomes

1 =

∞∑
n=1

1

pn

∏
q<pn

(
1− 1

q

)
. (2)

Equivalently, one may �unfold� this into the nested form

1 =
1

2
+

(
1− 1

2

)(1
3

+
(
1− 1

3

)(1
5

+
(
1− 1

5

)(
· · ·

)))
,

and so on through all primes 2, 3, 5, 7, . . ..

4 Prime-Based Series Representation of Real Num-

bers in [0, 1]

We shall show that for every real number x ∈ [0, 1] there exists a (�nite or
in�nite) strictly increasing sequence of primes

q1 < q2 < q3 < · · ·

such that

x =

∞∑
n=1

1

qn

n−1∏
m=1

(
1− 1

qm

)
.

The proof proceeds by exhibiting two algorithms: one that computes the
partial sums given a prime sequence, and one greedy procedure that, given
x, constructs the required prime sequence.

1. From a Prime Sequence to the Value

De�ne

xfrom_seq(q1, q2, . . . , qN ) =
N∑

n=1

1

qn

n−1∏
m=1

(
1− 1

qm

)
.

In Python-style pseudocode:
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def x_from_seq(pp):

x = 0

for n in range(len(pp)):

pn = pp[n]

pr = 1

for q in pp[:n]:

pr *= (1 - 1/q)

x += 1/pn * pr

return x

First observe that if S = P is the full sequence of all primes, then∑
p∈P

p− 1

p

∏
q<p

(
1− 1

q

)
= 1,

since this has been shown previously. Now let S ⊂ P be any (�nite or in�nite)
subsequence. The same telescoping argument shows∑

p∈S

p− 1

p

∏
q<p
q∈S

(
1− 1

q

)
≤

∑
p∈P

p− 1

p

∏
q<p

(
1− 1

q

)
= 1.

Hence the series converges absolutely and its sum x =
∑
p∈S

p− 1

p

∏
q<p,q∈S

(1− 1
q )

satis�es 0 ≤ x ≤ 1.

2. Greedy Construction of the Prime Sequence

Given x ∈ [0, 1], we construct a sequence (qn) by the following greedy algo-
rithm: at step k we have a residual xk = x− xfrom_seq(q1, . . . , qk−1), and we
choose the smallest prime p for which

1

p

k−1∏
m=1

(
1− 1

qm

)
≤ xk.

In Python-style pseudocode:

def seq_from_x(x, eps=1e-12, verbose=False):

pp = []

pr = 1 # product of (1 - 1/q_i) so far

xk = x # current residual

k = 0

while xk > eps:

k += 1

pk = nth_prime(k)

term = 1/pk * pr
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if xk >= term:

pp.append(pk)

xk -= term

pr *= (1 - 1/pk)

if verbose:

print("residual:", xk, "sequence:", pp)

# otherwise skip pk and try next

return pp

3. Proof of Correctness

1. Termination or In�nite Continuation. At each step the residual xk

decreases by at least
1

qk

∏
m<k

(1 − 1
qm

), so {xk} is a nonincreasing non-

negative sequence. If it ever falls below the chosen tolerance ε, the
algorithm may terminate with a �nite prime list; otherwise it produces
an in�nite strictly increasing sequence of primes.

2. Exactness of the Sum. By construction,

x =
N∑

n=1

1

qn

n−1∏
m=1

(
1− 1

qm

)
+ xN+1.

In the in�nite-sequence case, monotone convergence gives limN→∞ xN+1 =
0, whence the series sums exactly to x. In the �nite-sequence case, one
may check that the terminal residual xN+1 < ε can be made arbitrarily
small by choosing ε→ 0.

3. Uniqueness of the Greedy Choice. At each step k, the requirement that
1

p

∏
m<k

(1− 1
qm

) ≤ xk determines uniquely the next prime qk as the least

prime satisfying the inequality. This enforces strict increase.

Conclusion

Thus every x ∈ [0, 1] admits the desired expansion in terms of a (possibly
�nite) increasing sequence of primes. The function x_from_seq computes
the value from the sequence, while seq_from_x recovers the sequence from
the value via a greedy algorithm, completing the proof.

5 Boolean Operations on Primes and the Unit In-

terval

We identify
0 ↔ ∅, 1 ↔ {all primes},
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and for x, y ∈ [0, 1] set
¬x := 1− x,

x ∧ y := x_from_seq
(
Sx ∩ Sy

)
,

x ∨ y := x_from_seq
(
Sx ∪ Sy

)
.

Theorem 5.1. These operations on [0, 1] satisfy the axioms of a Boolean

algebra, and in particular obey De Morgan's laws

¬
(
x ∧ y

)
= ¬x ∨ ¬y, ¬

(
x ∨ y

)
= ¬x ∧ ¬y.

Proof. Under the bijection x↔ Sx ⊂ {primes}, addition of sets corresponds
to union, multiplication to intersection, and set-complement to 1− x. Since
℘({primes}) is a Boolean algebra under ∪,∩, \, the transported operations
on [0, 1] satisfy all Boolean identities, including De Morgan's laws.

6 Binary prime-digits

Let pn denote the n-th prime, and let x ∈ [0, 1]. Recall that the �prime-digit�
expansion of x is given by a (possibly in�nite) sequence of primes

[q1, q2, . . . , qn, . . . ]

such that

x =
∞∑
k=1

1

qk

k−1∏
m=1

(
1− 1

qm

)
.

De�ne, for each n ∈ N, the indicator

εn(x) :=

{
1, if pn appears among the qk,

0, otherwise.

We claim that this induces the alternative expansion

x =
∞∑
n=1

εn(x)

pn

n−1∏
m=1

(
1− 1

pm

)εm(x)
,

so that the sequence
(
εn(x)

)
n≥1

is precisely the �binary prime-digit� expan-
sion of x.

Proof. By de�nition, each prime pn can appear at most once in the list (qk).
If pn does appear, let k(n) be the unique index with qk(n) = pn; if it does not
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appear, set k(n) = ∞. Then the original expansion of x may be regrouped
by collecting the single term corresponding to each prime:

x =
∞∑
k=1

1

qk

k−1∏
m=1

(
1− 1

qm

)
=

∞∑
n=1


1

pn

k(n)−1∏
m=1

(
1− 1

qm

)
, k(n) <∞,

0, k(n) =∞.

But by construction, the set { q1, . . . , qk(n)−1} is exactly the set of those
primes pm for which m < n and εm(x) = 1. Hence

k(n)−1∏
m=1

(
1− 1

qm

)
=

∏
1≤m<n
εm(x)=1

(
1− 1

pm

)
=

n−1∏
m=1

(
1− 1

pm

)εm(x)
.

Inserting this into the regrouped sum gives exactly

x =
∞∑
n=1

εn(x)

pn

n−1∏
m=1

(
1− 1

pm

)εm(x)
,

completing the proof.

3. The factorization tree Tn

De�ne the in�nite rooted, ordered tree T by growing one integer at a time:

� Root: the node 1.

� Suppose you've built Tn containing nodes 1, 2, . . . , n. To insert n+ 1,
factor it as n+ 1 = p1 · · · pr. Let

P1(m) =

{
1, m = 1,

max{q : q | m, q prime}, m > 1,

and attach n + 1 as a child of the unique node m ∈ Tn satisfying
P1(m) ≤ p1 and mp1 · · · pr ≤ n+1, in the position preserving preorder.

Equivalently, for each 1 ≤ m ≤ n, de�ne Tn,m whose root is m, and
whose children are all mp with p prime, P1(m) ≤ p, and mp ≤ n. Then
Tn = Tn,1.

When you list the vertices of Tn in preorder, you recover exactly the
lex-order ⊴ on {1, . . . , n}.
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4. Example of Tn

For n = 10, 25 the trees look like:

n = 10

n = 25

7 Encoding and Decoding of Factorizations Using

Only Primality Tests

We store the entire factorization tree Tn of the integers {1, 2, . . . , n} as a
plane rooted tree and encode its shape in a 2n-bit balanced-parentheses (BP)
string.

Tree Construction

� Build Tn incrementally: start at the root 1, and for each m = 2, . . . , n
attach m as a child of the unique node u whose path from 1 reproduces
the prime-factor list of m.

� Each node stores its prime factor p so that the ordered list of children
at u corresponds to primes ≥ P1(u).
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Balanced-Parentheses Encoding

1. Perform a preorder traversal of Tn.

2. On entering a node emit � 1�; on leaving emit � 0�.

Since there are exactly n enters and n leaves, the result is a 2n-bit string w.

Decoding Algorithm

Given w ∈ {0, 1}2n:

1. Reconstruct the tree shape from the BP-string via the standard stack-
based method.

2. Precompute all primes up to n by any primality sieve.

3. Traverse the rebuilt tree in preorder, keeping track of the minimal
descendant prime P1(u). For the k-th child of u, select the k-th prime
≥ P1(u) as the factor.

4. The product along the path to a node yields its valuem, thus recovering
all factorizations.

This procedure uses only primality testing (for the sieve) plus simple BP
parsing, and achieves

{all factorizations of 1, . . . , n} ←→ {0, 1}2n.
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Example codings for 1 ≤ m ≤ 19

1 7→ 10,

2 7→ 1100,

3 7→ 110100,

4 7→ 11100100,

5 7→ 1110010100,

6 7→ 111010010100,

7 7→ 11101001010100,

8 7→ 1111001001010100,

9 7→ 111100100110010100,

10 7→ 11110010100110010100,

11 7→ 1111001010011001010100,

12 7→ 111101001010011001010100,

13 7→ 11110100101001100101010100,

14 7→ 1111010010101001100101010100,

15 7→ 111101001010100110100101010100,

16 7→ 11111001001010100110100101010100,

17 7→ 1111100100101010011010010101010100,

18 7→ 111110010011001010011010010101010100,

19 7→ 11111001001100101001101001010101010100.

8 A Probabilistic Interpretation of the Prime-Divisibility

Identity

Let X be a �randomly chosen� positive integer, in the sense that we consider
the natural density over {1, 2, . . . , N} and let N → ∞. For each prime pk
we ask for the event

Ek =
{
X is divisible by pk but by no smaller prime q < pk

}
.

Since every integer n > 1 has a unique smallest prime divisor, the events
E1, E2, . . . form a partition of {2, 3, 4, . . . }. (We may assign the value k = 0
to n = 1, if desired.)

For a �xed prime pk, the probability that a random integer is divisible
by pk is

P
(
pk | X

)
= lim

N→∞

⌊N/pk⌋
N

=
1

pk
.
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Similarly, the probability that X is not divisible by any smaller prime q < pk
is ∏

q<pk

(
1− P

(
q | X

))
=

∏
q<pk

(
1− 1

q

)
.

By independence of divisibility by distinct primes in the natural-density
sense, the probability of the event Ek is therefore

P (Ek) =
1

pk

∏
q<pk

(
1− 1

q

)
.

On the other hand, since the events {Ek : k ≥ 1} exhaust all integers ≥ 2
(up to the negligible singleton {1}), we have

∞∑
k=1

P (Ek) = lim
N→∞

N − 1

N
= 1.

Hence the identity
∞∑
k=1

1

pk

∏
q<pk

(
1− 1

q

)
= 1

shows at once that

P (X = k) :=
1

pk

∏
q<pk

(
1− 1

q

)
de�nes a valid probability mass function on the indices k = 1, 2, . . ..

9 Rank Invariance under Diagonal Normalization

of Gram Matrices

Proposition 9.1. Let x1, . . . , xn ̸= 0 be vectors in a Hilbert space H, and
de�ne

G =
(
⟨xi, xj⟩

)n
i,j=1

, H =
( ⟨xi, xj⟩
∥xi∥ ∥xj∥

)n

i,j=1
.

Then

rank(G) = rank(H).

Proof. Set

D = diag
(
∥x1∥2, . . . , ∥xn∥2

)
, D1/2 = diag

(
∥x1∥, . . . , ∥xn∥

)
.

Since each ∥xi∥ > 0, the diagonal matrix D is invertible. A direct computa-
tion shows (

D−1/2GD−1/2
)
ij
=

1

∥xi∥
⟨xi, xj⟩

1

∥xj∥
= Hij .
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Hence
H = D−1/2GD−1/2.

Multiplying a matrix by an invertible matrix on the left or right does not
change its rank. Therefore

rank(H) = rank
(
D−1/2GD−1/2

)
= rank(G),

as claimed.

10 Application: The ω(gcd)�Kernel and Its Rank

Let ω(n) =
∣∣{p | n : p prime}

∣∣ denote the number of distinct prime divisors
of n. For 2 ≤ a, b ≤ N de�ne the kernel

k(a, b) = ω
(
gcd(a, b)

)
.

Proposition 10.1. The matrix

GN =
[
k(a, b)

]N
a,b=2

is positive semide�nite, and its rank is

rank(GN ) = π(N),

where π(N) = #{p ≤ N : p prime}.

Proof. For each prime p ≤ N de�ne the feature function

φp(a) =

{
1, p | a,
0, otherwise,

a = 2, . . . , N.

Then the vector
Φ(a) =

(
φp(a)

)
p≤N

∈ {0, 1}π(N)

satis�es

⟨Φ(a), Φ(b)⟩ =
∑
p≤N

φp(a)φp(b) =
∣∣{ p ≤ N : p | a and p | b}

∣∣ = ω
(
gcd(a, b)

)
.

Thus GN is a Gram matrix of the vectors Φ(a), hence positive semide�-
nite. Moreover, since each prime p ≤ N appears as a coordinate in some
Φ(a), these π(N) coordinates are linearly independent over {a = 2, . . . , N}.
Therefore

rank(GN ) = dim
(
span{Φ(2), . . . ,Φ(N)}

)
= π(N).
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As an immediate corollary of the diagonal�normalization invariance (see
Proposition 2.1), the entrywise�normalized kernel

h(a, b) =
ω
(
gcd(a, b)

)√
ω(a)ω(b)

,

with matrix
HN =

[
h(a, b)

]N
a,b=2

,

satis�es
rank(HN ) = rank(GN ) = π(N).

Thus both the raw and the diagonally normalized ω(gcd)�kernels yield �nite
adjacency (Gram) matrices of rank exactly π(N).

Equivalence of the shifted kernel KN and HN

Recall that for N ≥ 2 we de�ned the (N − 1)× (N − 1) matrix

HN =
[
h(a, b)

]N
a,b=2

, h(a, b) =
ω
(
gcd(a, b)

)√
ω(a)ω(b)

.
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Now introduce the shifted kernel

KN =
[
k(a, b)

]N−1

a,b=1
, k(a, b) =

ω
(
gcd(a+ 1, b+ 1)

)√
ω(a+ 1)ω(b+ 1)

.

Observe that the map a 7→ a+ 1 is a bijection from {1, . . . , N − 1} onto
{2, . . . , N}. Hence for all 1 ≤ a, b ≤ N − 1 we have

k(a, b) =
ω
(
gcd(a+ 1, b+ 1)

)√
ω(a+ 1)ω(b+ 1)

= h
(
a+ 1, b+ 1

)
.

In other words,
KN (a, b) = HN

(
a+ 1, b+ 1

)
,

so KN coincides exactly with the submatrix of HN obtained by reindexing
rows and columns 2, . . . , N as 1, . . . , N −1. Therefore the two matrices have
identical entries (up to relabeling) and hence the same rank:

rank(KN ) = rank(HN ) = π(N).

11 Rank Relation between the Non-Coprimality and

Coprimality Matrices

De�nitions

1. For each n ≥ 1, de�ne the non-coprimality matrix

(Mn)i,j =

{
1, gcd(i, j) > 1,

0, gcd(i, j) = 1,
1 ≤ i, j ≤ n.

2. De�ne the coprimality matrix

(An)i,j =

{
1, gcd(i, j) = 1,

0, gcd(i, j) > 1,
1 ≤ i, j ≤ n.

3. Let a(m) be the integer sequence A013928 from OEIS, which satis�es

a(m) =
∣∣{ k ≤ m : k is squarefree}

∣∣.
Equivalently, a(n+1) is the number of squarefree integers in {1, . . . , n}.

Main Theorem

Theorem 11.1. For every n ≥ 1,

rank
(
Mn

)
= a(n+ 1) − 1.

Proof.
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(1) Relation between An and Mn. Observe that the all-ones matrix Jn
satis�es

An + Mn = Jn.

(2) Column spaces and ranks. Let u = (1, 1, . . . , 1)T ∈ Rn. The �rst
column of An is

An(:, 1) = u,

so u ∈ Col(An). On the other hand, the �rst column of Mn is

Mn(:, 1) =
[
1gcd(i,1)>1

]n
i=1

= 0,

so u ̸∈ Col(Mn).
From Jn = An +Mn we get

Col(Jn) ⊆ Col(An) + Col(Mn).

But Col(Jn) = span{u} ⊂ Col(An), hence Col(Jn) + Col(Mn) = Col(An).
Conversely, Col(An) = Col(Jn) + Col(Mn) ⊆ Col(An) + Col(Mn), so

Col(An) = Col(Jn) + Col(Mn) = Col(An).

It follows that
Col(An) = Col(Mn)⊕ span{u},

a direct sum because u /∈ Col(Mn). Therefore

rank(An) = dimCol(An) = dimCol(Mn) + 1 = rank(Mn) + 1,

i.e.
rank(Mn) = rank(An) − 1.

(3) Rank of the coprimality matrix An. By standard Möbius-inversion
arguments (or OEIS A013928), one shows

rank(An) = #{ d ≤ n : d is squarefree} = a(n+ 1).

(4) Conclusion. Combining the above,

rank(Mn) = rank(An)− 1 = a(n+ 1)− 1,

as claimed.
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