A Method for Orchestrating from Piano Pieces

Orges Leka

September 24, 2025

Overview

We describe a simple, reproducible procedure that converts a piano score into an orchestration for a "space-like synth" or any chosen ensemble. The method preserves the global duration and structural pacing while imposing a binary, bucketed texture across the ensemble.

Assumptions and Notation

- Let the input be a monophonic or polyphonic *piano* score with absolute onset times and durations.
- Every notated duration is an integer multiple of a smallest unit $\delta > 0$ (the smallest note value occurring in the piece).
- Pitch classes are taken modulo 12. For a MIDI pitch $p \in \mathbb{Z}$, its pitch class is $[p] \in \mathbb{Z}/12\mathbb{Z}$.
- Let the target ensemble have $V \ge 2$ instruments (voices) indexed by v = 1, ..., V. Each instrument v has a playable MIDI range $I_v = \{p \in \mathbb{Z} \mid p_{\min}(v) \le p \le p_{\max}(v)\}$.

Algorithm

Step 1: Choose the ensemble (with $V \geq 2$ instruments).

• Example: General MIDI pads/FX, strings, winds, or any custom set. Record each instrument's playable range I_v .

Step 2: Copy the piano voices cyclically to the ensemble instruments.

- Split the piano texture into *voices* in any consistent way (e.g. top line, inner lines, bass).
- Assign voice j to instrument $v = (j \mod V) + 1$ in a repeating cycle.

Step 3: Replace chords by their lowest pitch (smallest MIDI number).

• For any simultaneity $\{p_1, \ldots, p_k\}$ at a given onset, keep only $\min\{p_1, \ldots, p_k\}$.

Step 4: Map pitches to each instrument's range by octave, preserving pitch class.

- For a note with pitch p and target instrument v, choose an octave shift 12m so that $p' = p + 12m \in I_v$ and $|p' c_v|$ is minimized for some center $c_v \in I_v$.
- This keeps the pitch class [p'] = [p] unchanged while moving to the nearest playable octave.

Step 5: Divide the entire piece into buckets of size δ .

- Let the piece span time [0,T). Partition into $r = \lceil T/\delta \rceil$ buckets b_1, \ldots, b_r , where $b_i = \lceil (i-1)\delta, i\delta \rangle$.
- By assumption, every note's start/end align with bucket boundaries or their integer multiples.

Step 6: Label each bucket by a binary code padded to V bits.

• For bucket index $i \in \{1, ..., r\}$, write i in binary and left-pad with zeros to V bits:

$$i \mapsto (\beta_{i,1}, \beta_{i,2}, \dots, \beta_{i,V}) \in \{0, 1\}^V,$$

where $\beta_{i,1}$ is the most significant bit. Bit $\beta_{i,v}$ controls instrument v in bucket b_i .

Step 7: For each note, count zeros z and ones o over its covered buckets.

• For a note assigned to instrument v spanning buckets b_{i_s}, \ldots, b_{i_e} , define

$$z = \#\{i \in [i_s, i_e] \mid \beta_{i,v} = 0\}, \qquad o = \#\{i \in [i_s, i_e] \mid \beta_{i,v} = 1\}.$$

• Thus $z + o = i_e - i_s + 1$ (the number of buckets covered by the note).

Step 8: Choose a mute rule based on (z, o) and apply it.

• Examples of rules:

$$z>0$$
: mute if $z>0$; $z>0$: mute if $z>0$; $o=0$: mute if $o=0$.

• If the rule triggers, silence the note (e.g. velocity $\rightarrow 0$); otherwise keep it.

Result. After these steps, the piano piece is orchestrated for the chosen ensemble. The total duration and high-level structure (entries, rests, phrase lengths) are preserved; the binary bucket mask imposes a repeatable textural logic across parts.

Remarks and Practical Tips

- **Generalization:** This method generalizes to pieces other than for piano, for instance for several voices and a larger ensemble.
- Range mapping: If I_v is narrow, prefer the octave closest to the instrument's tessitura to avoid excessive jumps.
- Rule flavor: o=0 preserves notes only when all covered buckets are "1" for that voice (sparse, gated feel). z>o keeps notes in majority-1 regions (balanced). z>o is the most aggressive muter.
- **Determinism:** The mapping is fully deterministic once the ensemble, ranges, bucket size, and rule are fixed.

Minimal Pseudocode

```
for each piano onset time t with chord C: keep p = \min C; assign to voice j; map to instrument v = (j \mod V) + 1; choose octave m so p' = p + 12m \in I_v and closest to c_v; determine bucket indices [i_s, i_e] covered by the note; compute (z, o) from bits (\beta_{i,v})_{i=i_s}^{i_e}; if \operatorname{rule}(z, o) then mute else keep.
```

Done! The piece is now orchestrated to the new ensemble while preserving overall duration and structure.