
Application of Balance Matrices to the

Interpretation of Negative Probabilities (working

draft)

Orges Leka

February 15, 2025

Abstract

In this paper, we introduce a novel framework for interpreting negative
probabilities through the use of balance matrices and apply it to an urn
model with negative sampling. By decomposing a quasi-probability ma-
trix into a standard joint probability matrix and a balance matrix—whose
row and column sums vanish—we are able to preserve marginal distribu-
tions while isolating non-classical (negative) contributions. Our approach
leverages iterative proportional fitting to achieve this decomposition. We
then demonstrate how this framework can be applied to simulate transi-
tions in an urn model where simultaneous removals and additions occur,
a scenario common in inventory management, population dynamics, and
other practical settings. This work not only provides a rigorous algebraic
foundation but also paves the way for practical applications in systems
that require modeling of both positive and negative contributions.
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1 Introduction

Classical probability theory assumes that all probabilities are nonnegative. How-
ever, in several practical and theoretical contexts—such as quantum mechanics,
financial risk management, and inventory control—one encounters quantities
that behave like probabilities but may assume negative values. These so-called
negative probabilities pose interpretational challenges and necessitate a new
perspective.

In this paper, we propose a framework based on balance matrices to reinter-
pret negative probabilities. By expressing a quasi-probability matrix Q as

Q = P +B,

where P is a conventional probability matrix and B is a balance matrix (i.e.,
a matrix with zero row and column sums), we can preserve the observable
marginals while isolating the non-classical contributions represented by negative
entries.

A key application of our method is in an urn model that employs negative
sampling. Here, an urn representing, for example, stock levels or population
subgroups undergoes a transition from an initial distribution to a target distri-
bution. Negative sampling is used to model the removal of items, while positive
sampling represents the addition. This dual process enables the simulation of
complex systems where simultaneous increases and decreases occur without al-
tering the overall marginal proportions.

Our framework is supported by an in-depth exploration of the algebraic prop-
erties of balance matrices, iterative proportional fitting (IPF), and methods for
ensuring a unique decomposition of quasi-probability matrices. The versatility
of this approach opens up numerous applications across disciplines, offering a
mathematically sound way to incorporate negative contributions in probabilistic
models.

2 Definitions

In this section we summarize the key definitions introduced throughout the
paper. For clarity, we list them here:

1. Joint Probability Matrix. Let X and Y be discrete random variables
with outcome spaces

{x1, x2, . . . , xm} and {y1, y2, . . . , yn},

respectively. The joint probability matrix P (X,Y ) is defined by

P (X,Y ) =


P (x1, y1) P (x1, y2) · · · P (x1, yn)

P (x2, y1) P (x2, y2) · · · P (x2, yn)

...
...

. . .
...

P (xm, y1) P (xm, y2) · · · P (xm, yn)

 .

Each entry represents the probability that X = xi and Y = yj .
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2. Normalization. A probability matrix is normalized if the sum of all its
entries equals one:

m∑
i=1

n∑
j=1

P (xi, yj) = 1.

3. Non-Negativity. A probability matrix satisfies non-negativity if every
entry is greater than or equal to zero:

P (xi, yj) ≥ 0 for all i, j.

4. Marginal Distributions. The marginal distribution of X (or Y ) is
obtained by summing the joint probabilities over the outcomes of Y (or
X):

P (X = xi) =

n∑
j=1

P (xi, yj) and P (Y = yj) =

m∑
i=1

P (xi, yj).

5. Conditional Distributions. Given P (X = xi) > 0, the conditional
probability of Y given X = xi is defined by

P (Y = yj | X = xi) =
P (xi, yj)

P (X = xi)
.

6. Independence. Two random variables X and Y are independent if

P (xi, yj) = P (X = xi)P (Y = yj) for all i, j.

7. Balance Matrix. A balance matrixB is a matrix (not necessarily square)
whose rows and columns each sum to zero:∑

j

Bij = 0 and
∑
i

Bij = 0.

8. Joint Quasi-Probability Matrix. Given a balance matrix B and a
joint probability matrix P , the joint quasi-probability matrix Q is defined
as

Q = P +B.

Unlike P , the entries of Q may fall outside the interval [0, 1] while still
summing to one.

9. Iterative Proportional Fitting (IPF). IPF is an algorithm used to
adjust the entries of a matrix so that its row and column sums match
given target margins. In our context, it is applied to scale an initial
matrix to have the same marginals as a given quasi-probability matrix.

10. Semantic Space. A semantic space is defined on a finite set Ω together
with a kernel

k : Ω× Ω→ [−1, 1],

which is positive semidefinite, satisfies k(α, α) = 1 for all α ∈ Ω, and has
the property that k(α, β) = 1 if and only if α = β.
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11. Balance Space. A balance space is a triple (Ω,Σ, B) where:

� Ω is an outcome set.

� Σ is a σ-algebra over Ω.

� B : Σ→ R is a σ-additive function with B(Ω) = 0.

12. Moore-Penrose Inverse. Given a matrix (or operator) X, its Moore-
Penrose inverse X+ is the unique matrix satisfying the four Penrose condi-
tions. In our work, it is used to define pseudoinverses for balance matrices.

13. Quasi-Probability. A quasi-probability is a generalization of a prob-
ability distribution that allows for negative values. The decomposition
Q = P + B serves to separate the classical (probability) part P from the
non-classical (balance) part B.

14. Cholesky Decomposition. For a positive semidefinite matrix, the Cholesky
decomposition factors it as a product of a lower triangular matrix and its
transpose. This technique is used to obtain the mapping ϕ in the con-
struction of a semantic space.

3 Joint Quasi-Probability Matrix

Suppose we have a balance matrix B, which is a matrix (not necessarily square)
whose row sums and column sums are all zero, i.e.,∑

j

Bij = 0 for all i,
∑
i

Bij = 0 for all j.

Let P be a joint probability matrix, so that∑
i,j

Pij = 1 and Pij ≥ 0 for all i, j.

We then define the joint quasi-probability matrix Q by

Q = B + P.

The matrix Q exhibits the following properties:

1. Normalization: Since B has zero sum over all its entries (because its
rows and columns sum to zero), the total sum of Q is preserved:∑

i,j

Qij = 1.

2. Marginal Preservation: The marginal distributions of Q are identical
to those of P , since for any fixed row or column the contribution from B
is zero.

3. Quasi-Probability Nature: Although every entry of P is nonnegative
and bounded between 0 and 1, the balance matrix B may include negative
values or values exceeding 1. Thus, some entries of Q may lie outside the
interval [0, 1], justifying the designation as a quasi-probability matrix.

4. Dimensional Flexibility: Neither B nor P need be square; accordingly,
Q may be rectangular, accommodating random variables with differing
numbers of outcomes.
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4 Balance Matrices and Their Properties

In this section we summarize the key theorems and properties for matrices
whose row and column sums are zero (i.e., balance matrices), covering both the
square and rectangular cases. For brevity, only the statements are given. The
interested reader can find the original proofs and statements in [1], from which
we have copied the theorems here:

4.1 Square Balance Matrices

Theorem 4.1 (Bijection). There exists a bijection

ϕ : Mn → Sn+1, X 7→ J∗
nXJn,

where
Jn = [ In | − 1 ],

and Sn+1 denotes the set of (n+ 1)× (n+ 1) matrices with all row and column
sums equal to zero.

Corollary 4.2 (Rank Preservation). If X̃ = J∗
nXJn, then X̃ and X have the

same rank.

Corollary 4.3 (Self-Adjointness Preservation). We have X̃ = X̃∗ if and only
if X = X∗.

Theorem 4.4 (Ring Isomorphism). Let × denote standard matrix multiplica-
tion and define the twisted product ◦ on Mn by

X ◦ Y = XKnY, with Kn = JnJ
∗
n.

Then ϕ is an isomorphism between the rings (Sn+1,+,×) and (Mn,+, ◦).

Theorem 4.5 (Identity Element). The ring (Sn+1,+,×) has a unique multi-
plicative identity given by

ϕ(K−1
n ) = J∗

nK
−1
n Jn = In+1 −

1

n+ 1
1(n+1)×(n+1),

where 1(n+1)×(n+1) denotes the (n+ 1)× (n+ 1) matrix of all ones.

Theorem 4.6 (Moore-Penrose Inverse for Full-Rank Square Balance Matrices).
For any rank n matrix X̃ ∈ Sn+1 with X̃ = J∗

nXJn, the unique Moore-Penrose
inverse of X̃ is

X̃+ = J∗
nK

−1
n X−1K−1

n Jn.

Corollary 4.7. For any rank n matrix X̃ ∈ Sn+1,

X̃X̃+ = X̃+X̃ = J∗
nK

−1
n Jn = In+1 −

1

n+ 1
1(n+1)×(n+1).
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4.2 Rectangular Balance Matrices

For matrices with zero row and column sums that are not necessarily square,
one may represent them as

X̃ = J∗
mXJn,

where X is an m× n matrix.

Theorem 4.8 (Moore-Penrose Inverse for Rectangular Balance Matrices). For
X̃ = J∗

mXJn, the Moore-Penrose inverse is given by

X̃+ = J∗
n(k

−1
n )∗(k∗mXkn)

+k−1
m Jm,

where Km = JmJ∗
m = kmk∗m and Kn = JnJ

∗
n = knk

∗
n.

Theorem 4.9 (Row-Only and Column-Only Zero Sum Cases). 1. If X̃ = XJn
with X left-invertible, then

X̃+ = J∗
nK

−1
n X+.

2. If X̃ = J∗
nX with X right-invertible, then

X̃+ = X+K−1
n Jn.

4.3 Balance Matrices with Extra Zero Rows or Columns

Let a be a fixed index set (with m entries, m < n) specifying the positions
where rows and/or columns are identically zero. Denote by Sa

n+1 the set of
(n+1)× (n+1) matrices with all row and column sums zero and with zeros in
the rows and columns indexed by a.

Theorem 4.10 (Isomorphism for Matrices with Extra Zeros). There exists an
isomorphism

ϕ : (Mn−m,+, ◦)→ (Sa
n+1,+,×), X 7→ J∗

m,aXJm,a,

where Jm,a is defined by inserting zero columns (and rows) at the positions
indicated by a, and the product ◦ is defined by X ◦ Y = XKmY with Km =
Jm,aJ

∗
m,a.

Theorem 4.11 (Moore-Penrose Inverse for Matrices with Extra Zeros). For a
matrix X̃ = J∗

m,bXJm,a of rank m, the Moore-Penrose inverse is

X̃+ = J∗
m,aK

−1
m X−1K−1

m Jm,b.

Theorem 4.12 (Projection Property). For X̃ = J∗
m,bXJm,a of rank m,

X̃+X̃ = J∗
m,aK

−1
m Jm,a.

Theorem 4.13 (Invariance under Projection). Let M be any matrix with m
rows, and let X̃ = J∗

m,bXJm,a be a rank m square matrix. If M̃ = J∗
m,aM , then

X̃+X̃M̃ = M̃.

Theorem 4.14 (Range of the Projection Operator). The vectors of the form
M̃ = Jm,aM constitute an m-dimensional subspace that spans the range of the

projection operator X̃+X̃.
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5 Iterative Proportional Fitting and Quasi-Probability
Matrices

In this section we describe the iterative proportional fitting (IPF) algorithm and
its role in decomposing a quasi-probability matrix Q into a joint probability
matrix P and a balance matrix B such that

Q = P +B.

The balance matrix B has the property that all its row and column sums are
zero, ensuring that the marginal distributions of Q are identical to those of P .

5.1 Iterative Proportional Fitting (IPF)

Iterative proportional fitting is an algorithm used to adjust the entries of an
m × n matrix so that its row and column sums match given target margins.
Suppose we are given an initial matrix

A = (aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and target row sums R1, . . . , Rm and column sums C1, . . . , Cn. The IPF algo-
rithm proceeds as follows:

1. Initialization: Choose a starting matrix A(0) (typically with all positive
entries).

2. Row Adjustment: For each row i, compute the current row sum

S
(k)
i =

n∑
j=1

a
(k)
ij ,

and update every entry in that row by multiplying by Ri

S
(k)
i

:

a
(k+1/2)
ij = a

(k)
ij

Ri

S
(k)
i

.

3. Column Adjustment: For each column j, compute the new column sum

T
(k+1/2)
j =

m∑
i=1

a
(k+1/2)
ij ,

and update every entry in that column by multiplying by
Cj

T
(k+1/2)
j

:

a
(k+1)
ij = a

(k+1/2)
ij

Cj

T
(k+1/2)
j

.

4. Iteration: Repeat the row and column adjustments until the row and
column sums converge to the targets.
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Example: Let

A(0) =

[
1 1
1 1

]
,

with desired row sums R1 = 4 and R2 = 6 and desired column sums C1 = C2 =
5.

Row adjustment:

� Row 1 sum = 1 + 1 = 2. Multiply row 1 by 4
2 = 2 to obtain [2, 2].

� Row 2 sum = 1 + 1 = 2. Multiply row 2 by 6
2 = 3 to obtain [3, 3].

Thus, the intermediate matrix is

A(1/2) =

[
2 2
3 3

]
.

Column adjustment: Both columns already sum to 2 + 3 = 5, so no further
scaling is required. The resulting matrix satisfies the desired margins:

A(1) =

[
2 2
3 3

]
.

5.2 Decomposition of Quasi-Probability Matrices

A matrix Q is called a quasi-probability matrix if:

1.

m∑
i=1

n∑
j=1

Qij = 1,

2. 0 ≤
m∑
i=1

Qij ≤ 1 for every column j,

3. 0 ≤
n∑

j=1

Qij ≤ 1 for every row i.

Given such a Q, we wish to decompose it as

Q = P +B,

where P is a joint probability matrix (with nonnegative entries summing to 1)
and B is a balance matrix (with zero row and column sums).

One approach is as follows:

1. Let
M = max

i,j
|qij |.

Define the matrix

A = (aij) with aij =
|qij |
M

,

so that aij ∈ [0, 1].
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2. Apply the IPF algorithm to A using the target row and column sums
taken from Q. Let the resulting matrix be Â and set

P := Â.

3. Define the balance matrix as

B := Q− P.

Since the balance matrix B satisfies∑
j

Bij =
∑
j

(qij − pij) = (row sum of Q)− (row sum of P ) = 0,

(and similarly for column sums), the decomposition is valid.
Below is some SageMath code that implements the above method:� �

1 # Define the iterative proportional fitting (IPF) algorithm.

2 def ipf(A, row_targets , col_targets , tol=1e-6, max_iter =1000):

3 A = matrix(RR, A) # ensure we work with real numbers

4 m, n = A.nrows(), A.ncols()

5 for it in range(max_iter):

6 # Row adjustment

7 for i in range(m):

8 current_row_sum = sum(A[i,j] for j in range(n))

9 if current_row_sum != 0:

10 factor = row_targets[i] / current_row_sum

11 else:

12 factor = 1

13 for j in range(n):

14 A[i,j] *= factor

15 # Column adjustment

16 for j in range(n):

17 current_col_sum = sum(A[i,j] for i in range(m))

18 if current_col_sum != 0:

19 factor = col_targets[j] / current_col_sum

20 else:

21 factor = 1

22 for i in range(m):

23 A[i,j] *= factor

24 # Check convergence

25 row_diffs = [abs(sum(A[i,j] for j in range(n)) -

row_targets[i]) for i in range(m)]

26 col_diffs = [abs(sum(A[i,j] for i in range(m)) -

col_targets[j]) for j in range(n)]

27 if max(row_diffs + col_diffs) < tol:

28 break

29 return A

30

31 # Function to decompose a quasi - probability matrix Q into a joint

probability matrix P and a balance matrix B.

32 def decompose_qpm(Q, tol=1e-6, max_iter =1000):

33 Q = matrix(RR, Q)

34 m, n = Q.nrows(), Q.ncols()

35 # Compute target row and column sums from Q.

36 row_targets = [sum(Q[i,j] for j in range(n)) for i in range(m)]

37 col_targets = [sum(Q[i,j] for i in range(m)) for j in range(n)]

38 # Check normalization .

39 total = sum(row_targets)

40 if abs(total - 1) > tol:
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41 print("Warning: Q is not normalized; total sum =", total)

42 # Determine the maximum absolute entry in Q.

43 M = max(abs(Q[i,j]) for i in range(m) for j in range(n))

44 if M == 0:

45 raise ValueError("Matrix Q is zero!")

46 # Construct matrix A with entries a_ij = |q_ij |/M.

47 A = Q.apply_map(lambda x: abs(x)/M)

48 # Apply IPF to A with targets from Q.

49 P = ipf(A, row_targets , col_targets , tol=tol , max_iter=max_iter

)

50 # Define the balance matrix B = Q - P.

51 B = Q - P

52 return P, B

53

54 # Example usage:

55 # Define a quasi - probability matrix Q.

56 Q = matrix(RR, [[0.2 , 0.1],

57 [-0.1, 0.8]])

58 print("Quasi -Probability Matrix Q:")

59 print(Q)

60

61 # Decompose Q into P (joint probability matrix) and B (balance

matrix).

62 P, B = decompose_qpm(Q)

63 print("Joint Probability Matrix P:")

64 print(P)

65 print("Balance Matrix B:")

66 print(B)

67

68 # Verify that Q = P + B.

69 print("Verification (P + B):")

70 print(P + B)� �
The above code first defines the IPF procedure, then uses it to adjust the

absolute value matrix derived from Q so that the resulting matrix P has the
same row and column sums as Q. Finally, the balance matrix B = Q−P is com-
puted. Note that the decomposition is not unique; alternative decompositions
may exist.

6 Half-Coin Example of G. Székely

Let

qn = (−1)n−1
√
2
Cn−1

4n
, n = 0, 1, 2, . . . ,

where

Cn =

(
2n
n

)
n+ 1

, n = 0, 1, 2, . . . , and C−1 = −1

2
.

Then, as has been shown in [2], we have∑
n≥0

qn = 1 and
∑
n≥0

|qn| =
√
2.

Define

pn :=
|qn|√
2
.
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Then, we have

0 ≤ pn ≤ 1 and
∑
n≥0

pn = 1.

Now, set
bn := qn − pn.

Then, the balance property holds:∑
n≥0

bn =
∑
n≥0

qn −
∑
n≥0

pn = 1− 1 = 0.

7 Balance Spaces

In the previous example, set

B :=
(
Ω = {0, 1, 2, . . .}, Σ = 2Ω, B

)
,

with
B(A) :=

∑
n∈A

bn for A ∈ Σ.

This gives rise to a balance space defined by:

� Σ is a σ-algebra over Ω.

� B is a σ-additive function, i.e., B : Σ→ R.

� B(Ω) = 0.

A quasi-probability space Q is defined as

Q = (Ω,Σ, Q)

such that:

� Σ is a σ-algebra over Ω.

� Q is a σ-additive function Q : Σ→ R.

� Q(Ω) = 1.

Hence, in the previous example we have shown how to decompose the quasi-
probability function defined by qn into a balance function and a probability
function:

B({n}) := bn = qn − pn = Q({n})− P ({n}),

with all three functions Q, B, and P defined on the same (Ω,Σ) tuple. It
would be interesting to see if this decomposition can be done for a general
quasi-probability space, analogous to the decomposition discussed in the matrix
section.
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8 Applications in Slot Game Design

The decomposition Q = B + P offers a useful tool for game design in slot
games. A game designer, who may not be a mathematician, might devise a
mechanism in which the advertised “probabilities” qij sum to 1 yet sometimes
take on negative values, hence the usual theorems of probability theory can not
be applied in this setting and the game rules must be changed.

For the mathematician responsible for the probabilistic analysis, the ap-
proach is to decompose Q via iterative proportional fitting into a balance ma-
trix B and a true probability matrix P (i.e., Q = B+P ). The resulting matrix
P = [pij ] is then proposed as the “corrected probabilities” for the game. This
method ensures that Q and P have the same row and column sums, preserving
the marginal distributions while providing a mathematically consistent set of
probabilities for the game design.

8.1 Example: Decomposition in Game Design

Below is an example illustrating the method.
Consider the following 2× 2 quasi-probability matrix Q:

Q =

(
0.3000 0.1000

−0.0500 0.6500

)
.

The row sums of Q are:

0.3000 + 0.1000 = 0.4000, and − 0.0500 + 0.6500 = 0.6000.

The column sums of Q are:

0.3000 + (−0.0500) = 0.2500, and 0.1000 + 0.6500 = 0.7500.

The maximum absolute value in Q is

M = 0.6500.

We then construct a matrix A by scaling the absolute values of Q by M :

A =

(
|qij |
M

)
=

(
0.4615 0.1538

0.0769 1.0000

)
.

The target marginals (row and column sums) are the same as those of Q:

� Row targets: [0.4000, 0.6000]

� Column targets: [0.2500, 0.7500]

By applying the iterative proportional fitting (IPF) algorithm to A with
these targets, we obtain the corrected probability matrix P :

P =

(
0.2299 0.1701

0.0201 0.5799

)
.

13



The row sums of P are approximately:

0.2299 + 0.1701 ≈ 0.4000, and 0.0201 + 0.5799 ≈ 0.6000,

and the column sums of P are:

0.2299 + 0.0201 = 0.2500, and 0.1701 + 0.5799 = 0.7500.

Finally, the balance matrix B is computed as:

B = Q−P =

(
0.3000− 0.2299 0.1000− 0.1701

−0.0500− 0.0201 0.6500− 0.5799

)
=

(
0.0701 −0.0701
−0.0701 0.0701

)
.

The row sums and column sums of B are essentially zero (up to numerical
rounding), confirming that B is indeed a balance matrix.

Explanation of the Method:

1. Initial Quasi-Probability Matrix Q: The matrix Q is specified with
entries that sum to 1 but may include negative values.

2. Scaling to Form Matrix A: We compute the maximum absolute value

M = 0.65 in Q and form the matrix A whose entries are given by
|qij |
M .

This scales all entries into the interval [0, 1].

3. Setting Target Marginals: The target row and column sums (i.e.,
0.4000 and 0.6000 for rows; 0.2500 and 0.7500 for columns) are determined
from Q. These marginals remain preserved throughout the decomposition.

4. Iterative Proportional Fitting (IPF): The IPF algorithm is applied
to A to adjust its entries until the resulting matrix P matches the target
marginals. This yields a corrected probability matrix P with all nonneg-
ative entries.

5. Computing the Balance Matrix B: Finally, the balance matrix is
obtained as B = Q − P . By construction, B has row and column sums
equal to zero, capturing the hidden bias inherent in the original quasi-
probability matrix Q.

This decomposition Q = B + P is particularly useful in game design. For
example, a slot game designer may initially specify a quasi-probability matrix Q
that appears to offer fair odds (since the marginals match expected values), even
though some entries are negative. The IPF-based decomposition then produces
a corrected probability matrix P that can be used for rigorous analysis, while the
balance matrix B reveals the underlying bias ensuring the game’s profitability.

9 Uniqueness of the Decomposition

One natural way to achieve a unique decomposition of a quasi-probability matrix
Q into a proper probability matrix P and a balance matrix B (i.e., Q = P +B)
is to select P as the unique solution of the following optimization problem:

min
P∈P
∥P −Q∥F ,
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where ∥ · ∥F denotes the Frobenius norm and P is the set of all joint probability
matrices having the same row and column sums as Q. In other words, P is the
transportation polytope defined by the constraints∑

j

pij = ri for each row i, and
∑
i

pij = cj for each column j,

with
ri =

∑
j

qij and cj =
∑
i

qij .

Since the function

f(P ) = ∥P −Q∥2F =
∑
i,j

(pij − qij)
2

is strictly convex on Rm×n (its Hessian is 2I), its restriction to the convex set P
remains strictly convex. Consequently, there is a unique minimizer P ∗ of f(P )
over P. Once this unique probability matrix P ∗ is obtained, the balance matrix
is given by

B = Q− P ∗.

This construction ensures that B automatically has zero row and column
sums (since Q and P ∗ share the same marginals), and the decomposition Q =
B + P ∗ is unique.

Thus, minimizing the Frobenius norm ∥P − Q∥F subject to P having the
same row and column sums as Q and nonnegative entries indeed ensures a
unique decomposition.

9.1 Theoretical Method and Python Implementation for
Unique Decomposition

One natural way to achieve a unique decomposition of a quasi-probability matrix
Q into a proper probability matrix P and a balance matrix B (i.e. Q = P +B)
is to choose P as the unique solution to the following optimization problem:

min
P∈P
∥P −Q∥2F ,

where ∥ · ∥F denotes the Frobenius norm and

P =

P ∈ Rm×n : Pij ≥ 0,
∑
j

pij = ri,
∑
i

pij = cj


is the transportation polytope defined by the constraints

ri =
∑
j

qij for each row i, and cj =
∑
i

qij for each column j.

Since the objective function

f(P ) = ∥P −Q∥2F =
∑
i,j

(pij − qij)
2
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is strictly convex, its restriction to the convex set P is strictly convex. Therefore,
there exists a unique minimizer P ∗ that we denote by P ∗. The balance matrix
is then given by

B = Q− P ∗.

This choice of P ∗ ensures that B automatically satisfies the zero-sum conditions
on its rows and columns.

A practical way to compute P ∗ is by using quadratic programming. Below
is an example implementation in Python using the cvxpy library.

Python Code Implementation:� �
1 import cvxpy as cp

2 import numpy as np

3

4 # Define the quasi - probability matrix Q

5 Q = np.array ([[0.3 , 0.1],

6 [-0.05, 0.65]])

7

8 m, n = Q.shape

9

10 # Compute the target marginals from Q

11 r = Q.sum(axis =1) # row sums: [0.4 , 0.6]

12 c = Q.sum(axis =0) # column sums: [0.25 , 0.75]

13

14 # Define the variable P (the corrected probability matrix)

15 P = cp.Variable ((m, n))

16

17 # Define the objective: minimize the Frobenius norm squared of (P -

Q)

18 objective = cp.Minimize(cp.sum_squares(P - Q))

19

20 # Define the constraints : nonnegativity and prescribed row/column

sums

21 constraints = [P >= 0,

22 cp.sum(P, axis =1) == r,

23 cp.sum(P, axis =0) == c]

24

25 # Formulate and solve the problem

26 prob = cp.Problem(objective , constraints)

27 prob.solve()

28

29 # Extract the unique corrected probability matrix P*

30 P_star = P.value

31 B = Q - P_star # the balance matrix

32

33 print("Corrected Probability Matrix P*:")

34 print(P_star)

35 print("Balance Matrix B:")

36 print(B)� �
Explanation:

1. We start with the quasi-probability matrix Q, whose entries sum to 1 but
may include negative values.

2. The target row sums ri and column sums cj are computed directly from
Q.
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3. The optimization problem is set up to minimize the Frobenius norm ∥P −
Q∥2F subject to P being a joint probability matrix—that is, P must be
nonnegative and have the same row and column sums as Q.

4. Since the problem is strictly convex, the solver finds the unique minimizer
P ∗ (denoted here as P star).

5. Finally, the balance matrix B is calculated as the difference Q− P ∗.

This approach guarantees a unique decomposition Q = B + P ∗ and can be
a valuable tool in applications such as game design, where one might need to
correct quasi-probabilities into a proper probability distribution.

10 Semantic spaces on the same sample set

The goal of this section is given a finite probability space to construct a semantic
space on the same set.

Let (Ω,Σ, P ) be a probability space. For γ ∈ Ω with pγ := P ({γ}) ̸= 0, we
define the random variable

X∗
γ (ω) =

{
1, if ω = γ,

0, otherwise.

Then, since these random variables are Bernoulli distributed, we have

E(X∗
γ ) = pγ and Var(X∗

γ ) = pγ(1− pγ).

We standardize this random variable by setting

Xγ =
X∗

γ − E(X∗
γ )√

Var(X∗
γ )

=
X∗

γ − pγ√
pγ(1− pγ)

.

For α, β ∈ Ω, we define the function

k(α, β) := E
(
XαXβ

)
.

10.1 Calculation of E(XαXβ)

First, we write

Xα(ω) =
1{α}(ω)− pα√
pα(1− pα)

, Xβ(ω) =
1{β}(ω)− pβ√
pβ(1− pβ)

,

thus obtaining:

E(XαXβ) = E

((
1{α} − pα

)(
1{β} − pβ

)√
pα(1− pα)pβ(1− pβ)

)
.

By expanding the numerator, we have:

E(XαXβ) =
E
(
1{α}1{β}

)
− pαE

(
1{β}

)
− pβE

(
1{α}

)
+ pαpβ√

pα(1− pα)pβ(1− pβ)
.
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Since

E
(
1{α}1{β}

)
= P

(
{α} ∩ {β}

)
=

{
pα, if α = β,

0, if α ̸= β,

and E
(
1{α}

)
= pα as well as E

(
1{β}

)
= pβ , the numerator simplifies to

δα,β pα − pαpβ − pαpβ + pαpβ = δα,β pα − pαpβ ,

where δα,β denotes the Kronecker delta (i.e., δα,β = 1 when α = β and 0
otherwise).

Thus, we obtain

E(XαXβ) =
δα,β pα − pαpβ√

pα(1− pα)pβ(1− pβ)
.

10.2 Piecewise Representation

This corresponds to the following case distinction:

E(XαXβ) =


pα − p2α√

pα(1− pα)pα(1− pα)
=

pα(1− pα)

pα(1− pα)
= 1, if α = β,

−pαpβ√
pα(1− pα)pβ(1− pβ)

, if α ̸= β.

10.3 Summary

For α, β ∈ Ω, we have:

E(XαXβ) =
δα,β pα − pαpβ√

pα(1− pα)pβ(1− pβ)
.

This is a formula in which only pα and pβ appear on the right-hand side.

10.4 Proof that (Ω, k) is a Semantic Space

We define for α, β ∈ Ω
k(α, β) = E(XαXβ),

where for each γ ∈ Ω the random variable

Xγ =
1{γ} − pγ√
pγ(1− pγ)

is defined, with pγ = P ({γ}) ̸= 0. Note that Xγ has been standardized, i.e., we
have

E(Xγ) = 0 and ∥Xγ∥ =
√

E(X2
γ) = 1.

We now show the three required properties.
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10.4.1 k is Positive Semidefinite

Let α1, . . . , αn be a finite subset of Ω and let c1, . . . , cn ∈ R be arbitrary coeffi-
cients. Then,

n∑
i,j=1

cicj k(αi, αj) =

n∑
i,j=1

cicj ⟨Xαi
, Xαj

⟩.

Since the inner product is linear and symmetric, we can write:

n∑
i,j=1

cicj ⟨Xαi , Xαj ⟩ =

〈
n∑

i=1

ciXαi ,

n∑
j=1

cjXαj

〉
=

∥∥∥∥∥
n∑

i=1

ciXαi

∥∥∥∥∥
2

≥ 0.

Thus, k is positive semidefinite.

10.4.2 −1 ≤ k(α, β) ≤ 1

Since Xα and Xβ are normalized (∥Xα∥ = ∥Xβ∥ = 1), it follows from the
Cauchy–Schwarz inequality that

|k(α, β)| = |⟨Xα, Xβ⟩| ≤ ∥Xα∥∥Xβ∥ = 1.

Therefore, for all α, β ∈ Ω

−1 ≤ k(α, β) ≤ 1.

10.4.3 Characterization: k(α, β) = 1 ⇐⇒ α = β

First, note that for each α ∈ Ω

k(α, α) = E(X2
α) = ∥Xα∥2 = 1.

Now, let α and β be two distinct elements of Ω, i.e., α ̸= β. Since Xα and
Xβ are defined as

Xα =
1{α} − pα√
pα(1− pα)

, Xβ =
1{β} − pβ√
pβ(1− pβ)

,

we observe that the indicator functions 1{α}(ω) and 1{β}(ω) never simulta-
neously take the value 1 when α ̸= β; that is, 1{α}1{β} = 0 almost surely.
Consequently,

E
(
1{α} 1{β}

)
= P ({α} ∩ {β}) = 0.

Furthermore, E
(
1{α}

)
= pα and E

(
1{β}

)
= pβ . Thus, by expanding the numer-

ator we obtain:

E
[
(1{α} − pα)(1{β} − pβ)

]
= 0− pαpβ − pαpβ + pαpβ = −pαpβ .

Hence,

k(α, β) =
−pαpβ√

pα(1− pα)pβ(1− pβ)
.

Since pα, pβ > 0 and pα, pβ < 1, the fraction is strictly less than 1 (indeed, it is
negative). Therefore,

k(α, β) = 1 ⇐⇒ α = β.

This shows that k(α, β) = 1 occurs if and only if α = β.
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10.4.4 Conclusion

We have shown:

� k is positive semidefinite,

� −1 ≤ k(α, β) ≤ 1 for all α, β ∈ Ω,

� k(α, β) = 1 if and only if α = β.

Hence, (Ω, k) is a semantic space.

10.5 Example: Binomial Distribution with n = 5 and p = 1
2

We consider the probability space given by the binomial distribution with pa-
rameters n = 5 and p = 1

2 . The probabilities for the individual outcomes
k = 0, 1, 2, 3, 4, 5 are

p list =

[
1

32
,
5

32
,
5

16
,
5

16
,
5

32
,
1

32

]
.

For this space, we construct the semantic space by considering, for each
γ ∈ {0, 1, 2, 3, 4, 5}, the standardized Bernoulli random variable

Xγ =
1{γ} − pγ√
pγ(1− pγ)

,

and by defining the function

k(α, β) = E (XαXβ) =
δα,β pα − pαpβ√

pα(1− pα)pβ(1− pβ)
,

where δα,β denotes the Kronecker delta.
The corresponding Gram matrix K is then given by:

K =



1 − 1
279

√
465 − 1

341

√
1705 − 1

341

√
1705 − 1

279

√
465 − 1

31

− 1
279

√
465 1 − 5

99

√
33 − 5

99

√
33 − 5

27 − 1
279

√
465

− 1
341

√
1705 − 5

99

√
33 1 − 5

11 − 5
99

√
33 − 1

341

√
1705

− 1
341

√
1705 − 5

99

√
33 − 5

11 1 − 5
99

√
33 − 1

341

√
1705

− 1
279

√
465 − 5

27 − 5
99

√
33 − 5

99

√
33 1 − 1

279

√
465

− 1
31 − 1

279

√
465 − 1

341

√
1705 − 1

341

√
1705 − 1

279

√
465 1


.

This matrix gives the inner products k(α, β) = E(XαXβ) in the semantic space.

11 Balanced extension of a finite semantic space

A finite semantic space (Ω, k) is called balanced if the corresponding Gram
matrix is a balance matrix, that is, if one of the following equivalent conditions
holds:

(1)
∑
a,b∈Ω

k(a, b) = 0,
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(2) ∀ a ∈ Ω :
∑
b∈Ω

k(a, b) = 0.

Let (Ω, k) be a finite semantic space, i.e., k : Ω × Ω → [−1, 1] is a positive
semidefinite kernel with

k(a, a) = 1 and k(a, b) = 1 ⇐⇒ a = b, ∀ a, b ∈ Ω.

Since the Gram matrix is positive semidefinite, one may apply the Cholesky
decomposition to obtain an injective mapping

ϕ : Ω→ Rm

such that
k(a, b) = ⟨ϕ(a), ϕ(b)⟩, ∀ a, b ∈ Ω.

We now distinguish two cases.

Case A:
∑
a,b∈Ω

k(a, b) = 0

Define
w :=

∑
a∈Ω

ϕ(a).

Then it follows that

0 =
∑
a,b∈Ω

k(a, b) =
〈∑
a∈Ω

ϕ(a),
∑
b∈Ω

ϕ(b)
〉
= ⟨w,w⟩ = ∥w∥2.

Hence, w = 0 (the zero vector). In particular, for every a ∈ Ω we have∑
b∈Ω

k(a, b) = ⟨ϕ(a), w⟩ = 0.

Thus, the matrix
B := (k(a, b))a,b∈Ω

is a balance matrix.
We now define, according to Born’s rule, the joint probabilities by

P (x, y) :=
k(x, y)2∑

a,b∈Ω

k(a, b)2
.

Then, P is a joint-probability matrix and it follows that

Q := B + P

is a quasi-probability matrix.
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Case B: w ̸= 0

Suppose that

w :=
∑
a∈Ω

ϕ(a) ̸= 0.

In order to enforce balance, we extend the original space as follows. First, define

∆ := { a ∈ Ω | ∃ exactly one b ∈ Ω such that − ϕ(a) = ϕ(b) }.

Clearly, ∆ must be a proper subset of Ω, since otherwise for every a ∈ Ω we
would have −ϕ(a) = ϕ(b) for some b ∈ Ω, which would imply

w =
∑
a∈Ω

ϕ(a) = 0,

contradicting the assumption w ̸= 0.
Now set

M := Ω \∆.

For each a ∈M , define a new element a∗ and set

M∗ := { a∗ | a ∈M }.

We then define the extended space as the disjoint union

Ω∗ := Ω ∪̇M∗.

On Ω∗ we define the mapping ϕ∗ : Ω∗ → Rm by

ϕ∗(x) :=


ϕ(x), x ∈ ∆,

ϕ(x), x ∈M,

−ϕ(a), x = a∗ ∈M∗, where a ∈M.

Since for every a ∈M both ϕ(a) and −ϕ(a) occur in Ω∗, it immediately follows
that ∑

x∈M∪M∗

ϕ∗(x) =
∑
a∈M

[
ϕ(a)− ϕ(a)

]
= 0.

Furthermore, one sees that ∑
x∈∆

ϕ∗(x) = 0.

It then follows that∑
x∈Ω∗

ϕ∗(x) =
∑
x∈∆

ϕ∗(x) +
∑

x∈M∪M∗

ϕ∗(x) = 0.

We define the extended kernel k∗ on Ω∗ by

k∗(x, y) := ⟨ϕ∗(x), ϕ∗(y)⟩, ∀x, y ∈ Ω∗.

Then, for all x, y ∈ Ω∗ = ∆∪M ∪M∗, the extended kernel k∗(x, y) is given
by

k∗(x, y) =


k(x, y), if x, y ∈ ∆ ∪M,

−k(x, y), if x ∈ ∆ ∪M and y ∈M∗,

k(x, y), if x, y ∈M∗.
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Here, k(x, y) is the original kernel on Ω.
This formulation allows one to compute k∗(x, y) directly in terms of k(x, y)

without the need for performing a Cholesky decomposition—a practical advan-
tage in applications.

It is clear that (Ω∗, k∗) is a semantic space, and for x, y ∈ Ω ⊂ Ω∗ we already
have

k∗(x, y)2 = k(x, y)2.

We can now, analogously to Case A, apply Born’s rule by defining, for x, y ∈ Ω∗,
the probabilities

P (x, y) :=
k∗(x, y)2∑

a,b∈Ω∗

k∗(a, b)2
,

and setting
B := K∗, Q := B + P.

11.1 Summary

We have shown that for every finite semantic space (Ω, k) there exists an bal-
anced semantic space (Ω∗, k∗) with the properties:

1. Ω ⊆ Ω∗,

2. k∗(x, y)2 = k(x, y)2 for all x, y ∈ Ω,

3.
∑

x,y∈Ω∗

k∗(x, y) = 0.

12 Extension of a finite semantic space via a new
element

Let (Ω, P ) be a finite probability space with P (ω) > 0 for all ω ∈ Ω. For subsets
A,B ⊆ Ω, define

k(A,B) :=
P (A ∩B)

P (A ∪B)
,

i.e. the Jaccard kernel, which is known to be positive semidefinite. Hence,

k : 2Ω × 2Ω → [0, 1].

Moreover, we have

k(A,B) = 1 if and only if A = B,

since P (ω) > 0 for all ω ∈ Ω. Thus, (2Ω, k) forms a semantic space (with the
subsets of Ω as the objects) that is not balanced.

We now extend this space by adding a new element {t} to Ω, i.e.,

Ω∗ = Ω ∪ {t}.
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Define the mapping ϕ∗ on subsets A∗ ⊆ Ω∗ by setting

ϕ∗(A∗) =

{
ϕ(A∗) if t /∈ A∗,

−ϕ(A) if A∗ = A ∪ {t}.

Then we define
k∗(A∗, B∗) := ⟨ϕ∗(A∗), ϕ∗(B∗)⟩.

It follows that (2Ω
∗
, k∗) is a balanced semantic space.

Another way to perform this construction is by using the balanced matrix

B =

(
1 −1
−1 1

)
and the Kronecker product ⊗. Define

K∗ := B ⊗K,

i.e. the block matrix

K∗ =

(
K −K
−K K

)
,

where K is the Gram matrix of k(A,B). Here the elements of 2Ω
∗
are arranged

so that first all subsets A ⊆ Ω appear, and then, in the same order, all sets of
the form A ∪ {t}.

This extension from (2Ω, k) to (2Ω
∗
, k∗) satisfies:

1. For all A,B ∈ 2Ω, we have k∗(A,B)2 = k(A,B)2,

2.
∑

A,B∈2Ω∗

k∗(A,B) = 0, and

3. The original σ-algebra Σ := 2Ω is a subset of the extended σ-algebra
Σ∗ := 2Ω

∗
.

12.1 Connection to ”Negative Probabilities”

We can recover the probabilities from the modified kernel k∗ defined above on
the extended space as follows. For any subset A∗ ⊆ Ω∗, define

B(A∗) := k∗(A∗,Ω).

In particular, for subsets that originally belonged to Ω, i.e. if A∗ = A ⊆ Ω, we
have

B(A∗) = k∗(A,Ω) = k(A,Ω) = P (A),

and for subsets of the form A∗ = A ∪ {t} we have

B(A∗) = − k(A,Ω) = −P (A).

For any subcollection S ⊆ Σ∗ = 2Ω
∗
, define

B(S) :=
∑
A∗∈S

B(A∗).

Then it holds that
B(Σ∗) =

∑
A∗∈Σ∗

B(A∗) = 0.

Thus, (Σ∗, 2Σ
∗
, B) forms a balance space with the following properties:
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1. Σ ⊆ Σ∗,

2. For every A ∈ Σ, B(A) = P (A).

13 The Dedekind-Frobenius matrix

Let (Ω, 2Ω, f) be a finite balanced space such that Ω = G is a finite group.
Let G = {g1, . . . , gn} be a finite group, and let

f : G → R

be a real-valued zero-sum function on G, i.e.∑
g∈G

f(g) = 0.

Then we will show, how to construct a balance matrix from this space:
(Remark: In the literature, the ”balance” property seems to be called ”zero-

sum function”. Examples of such functions are non-trivial real-valued characters
χ of finite abelian groups G.)

We define the Dedekind–Frobenius f -valued matrix

Mf =
(
mi,j

)
1≤i,j≤n

,

by the rule
mi,j = f

(
gi g

−1
j

)
.

We wish to prove that Mf is balanced, meaning that the sum of its entries in
each row and in each column is zero.

13.1 Row Sums

Fix an index j. Then the sum of the entries in the j-th column is

n∑
i=1

mi,j =
n∑

i=1

f
(
gi g

−1
j

)
.

Because the map g 7→ g g−1
j is a bijection (permutation) on G, the set { gi g−1

j :
i = 1, . . . , n } is simply a re-labeling of all elements of G. Hence

n∑
i=1

f
(
gi g

−1
j

)
=
∑
h∈G

f(h) = 0,

since f is a zero-sum function on G. This shows that each column of Mf sums
to zero.

13.2 Column Sums

A similar argument applies when we fix an index i and sum down the i-th row.
Specifically,

n∑
j=1

mi,j =

n∑
j=1

f
(
gi g

−1
j

)
.
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Again, as gj runs through all elements of G, g−1
j also runs through all elements

of G (just in a different order), so { gi g−1
j : j = 1, . . . , n } = G. Thus

n∑
j=1

f
(
gi g

−1
j

)
=
∑
h∈G

f(h) = 0.

Therefore, each row of Mf also sums to zero.

13.3 Remark

Since both the row sums and the column sums of Mf vanish, Mf is a balanced
matrix. In symbols:

n∑
i=1

mi,j = 0 and

n∑
j=1

mi,j = 0, for all i, j.

Hence Mf belongs to the class of matrices whose row and column sums are all
zero.

14 Example of ”negative probabilities”: Coin
Transitions in a Wallet

In a wallet U1, there are four coin types:

� 1 cent and 2 cent coins,

� 1 euro and 2 euro coins.

Their distribution is as follows:

U1 =

1 2 Total
Cent 1 5 6
Euro 5 25 30
Total 6 30 36

We simultaneously remove (–) and add (+) the following number of coins
from U1:

dU =

1 2 Total
Cent −1 2 1
Euro 2 3 5
Total 1 5 6

Thus, the wallet U2 contains the following number of coins:

U2 =

1 2 Total
Cent 0 7 7
Euro 7 28 35
Total 7 35 42

The probabilities of drawing a specific coin type (with replacement) are given
by:
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In U1:

P1 =

1 2 Total
Cent 1

36
5
36

1
6

Euro 5
36

25
36

5
6

Total 1
6

5
6 1

During the removal and addition process:

dP =

1 2 Total
Cent − 1

6
2
6

1
6

Euro 2
6

3
6

5
6

Total 1
6

5
6 1

In U2:

P2 =

1 2 Total
Cent 0 7

42
1
6

Euro 7
42

28
42

5
6

Total 1
6

5
6 1

It holds that

U1 + dU = U2 or equivalently dU = U2 − U1.

Here, P1 and P2 are standard probability matrices, whereas dP is a quasi-
probability matrix. So we see here in this example how ”negative probabilities”
can occur naturally although the marginals probabilities are ≥ 0.

14.1 Discussion and Interpretation of the Example

Below is an informal, step-by-step interpretation of the coin-wallet example and
why it illustrates “negative probabilities” (or quasi-probabilities) in a simple
setting.

Overview of the Example We have a wallet U1 containing four types of
coins:

� Cent coins: 1 cent and 2 cent.

� Euro coins: 1 euro and 2 euro.

Their initial distribution (i.e., how many of each coin type the wallet holds)
is given by a 2× 2 table, broken down by “Cent” vs. “Euro” along one axis and
“1” vs. “2” along the other:

U1 =

1 2 Total
Cent 1 5 6
Euro 5 25 30

Total 6 30 36

� Row-wise, we see 6 cent coins total (1 + 5 = 6) and 30 euro coins total
(5 + 25 = 30).

� Column-wise, we see 6 coins of denomination “1” (1 cent+5 euro = 6) and
30 coins of denomination “2” (5 cent + 25 euro = 30).
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� In total, there are 36 coins in U1.

Next, we simultaneously remove some coins from U1 (these will appear as
negative entries) and add other coins to U1 (these appear as positive entries).
This is shown in a change matrix dU :

dU =

1 2 Total
Cent −1 2 1
Euro 2 3 5

Total 1 5 6

� For the cent coins in the “1” column, −1 means we remove one 1-cent
coin.

� For the cent coins in the “2” column, +2 means we add two 2-cent coins.

� Similarly, we add two 1-euro coins and three 2-euro coins.

After this simultaneous removal and addition, the new wallet is denoted U2.
It is simply given by U2 = U1 + dU :

U2 =

1 2 Total
Cent 0 7 7
Euro 7 28 35

Total 7 35 42

� For instance, 1 + (−1) = 0 cent coins of type “1” remain.

� 25 + 3 = 28 euro coins of type “2,” etc.

Probabilities of Drawing Each Coin Type In U1:
Since U1 has 36 coins total, the probability matrix P1 indicates the chance of
drawing each type if we pick a coin at random:

P1 =

1 2 Total
Cent 1

36
5
36

1
6

Euro 5
36

25
36

5
6

Total 1
6

5
6 1

� The “Cent” row sums to 1
6 (i.e., 6

36 ).

� The “Euro” row sums to 5
6 (i.e., 30

36 ).

� The column sums 1
6 and 5

6 reflect the distribution of coins with denomi-
nations “1” and “2.”

During the Removal and Addition (dP ):
While we move from U1 to U2, we can consider a “difference” in probabilities:

dP =

1 2 Total
Cent − 1

6
2
6

1
6

Euro 2
6

3
6

5
6

Total 1
6

5
6 1
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Notice that the upper-left entry is− 1
6 . This negative value is not interpretable as

a probability in the classical sense; instead, it represents a quasi-probability—an
intermediate value that captures the process of removing probability mass from
that category.

In U2:
The final probability matrix P2 (for the 42 coins in U2) is:

P2 =

1 2 Total
Cent 0 7

42
1
6

Euro 7
42

28
42

5
6

Total 1
6

5
6 1

The fractions reflect the new composition of coin types in U2 while maintaining
consistent marginal totals.

Bottom Line

� Before the change: We have a valid probability matrix P1.

� After the change: We have another valid probability matrix P2.

� During Transaction: The matrix dP can be viewed as a quasi-probability
matrix. Although it may contain negative entries, its row and column sums
are balanced so that the transition from P1 to P2 is correctly captured.

This coin-wallet example thus provides a tangible illustration of how negative
or quasi-probabilities can naturally appear when modeling a transition (such as
removing and adding coins) via a single matrix operation, even though the initial
and final distributions are valid (nonnegative) probability distributions.

14.1.1 Intermediate Wallet Interpretation

Suppose you had a second wallet V . If you put the coins from the first wallet
U1 into the second wallet (Addition only state), or if you put the coins from the
second wallet into the first wallet U1 (Removal only state), then these represent
”pure states”. Alternatively, you could have a ”mixed state” where you add
some and remove some disjoint objects simultaneously.

Now suppose that you have a third imaginary wallet W , where all coins that
are moved are first placed in this imaginary wallet W before being transferred
to the second wallet V or to the first wallet U1.

- In the pure states (Addition only or Removal only), the relative values
in this intermediate wallet W can be interpreted as probabilities of sampling
with replacement from W because ”relative value” = (negative)/(negative) =
(positive)/(positive) = positive. - However, in the mixed state, some of these
relative values can become negative. To define this formally, one might say:

� 1. A quasi-random matrix corresponds to ”observable/interpretable case”
∀i, j : Qij ≥ 0 and

∑
ij Qij = 1.

� 2. A quasi-random matrix corresponds to ”unobservable/uninterpretable
case” if at least one (i, j) has Qij < 0 and

∑
ij Qij = 1.
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Notice that the second case cannot physically be observed in the intermediate
wallet W , because it would correspond to a negative number of objects being
present in the wallet. (Technically, the removal-only process also cannot be
observed directly, but since all values, let us call them for a moment Wij < 0,
one might put |Wij | ≥ 0 coins in this wallet and thereby make it physically
possible to observe the negative quantities and sample from it. While writing
this, it occurs to me that a mixed state might also be made ”observable” by
using colored coins: black for ”+ coins” and red for ”- coins”.)

Nevertheless, Qij can be interpreted as the probability of drawing with re-
placement from the intermediate wallet W .

� If ”observable/interpretable”: it is a normal probability.

� If ”unobservable/uninterpretable”: it is a quasi-probability.

14.2 Extended Polya urn model

In the extended Pólya urn model the urn (analogous to the wallet) contains
objects that can be classified by two attributes—say, color (with m distinct
colors) and size (with n distinct sizes). The initial composition of the urn is
given by the matrix

U1 =
(
uij

)
1≤i≤m, 1≤j≤n

,

with total number of objects

T1 =

m∑
i=1

n∑
j=1

uij .

Thus, the probability of drawing an object of color i and size j is

P1(i, j) =
uij

T1
.

Simultaneous Addition and Removal:
We now allow for the possibility of simultaneously removing some objects (repre-
sented by negative entries) and adding others (positive entries). Let the change
be represented by the delta matrix

dU =
(
dij
)
1≤i≤m, 1≤j≤n

.

The new composition is then

U2 = U1 + dU,

with total number of objects

T2 =

m∑
i=1

n∑
j=1

(uij + dij).

The updated probability of drawing an object from category (i, j) is

P2(i, j) =
uij + dij

T2
.
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Preservation of Marginal Probabilities:
To ensure that the marginal probabilities (for example, the overall probability
for each color or for each size) remain the same after the transition, the change
matrix dU must be chosen so that the net effect on the row and column sums
of U1 is proportional. Let

ri =

n∑
j=1

uij and cj =

m∑
i=1

uij

be the row and column totals of U1. After the change, if the new row and
column totals are

r′i =

n∑
j=1

(uij + dij) and c′j =

m∑
i=1

(uij + dij),

then to preserve the marginal probabilities it is sufficient to have

r′i
T2

=
ri
T1

for each i,

and similarly for the column sums.

14.2.1 Conditions for the Appearance of Negative Probabilities

If we only add objects (Addition), then dij > 0 and consequently dPij > 0,
meaning that the probability of drawing objects from those categories increases.

If we only remove objects (Removal), then dij < 0, but the total number
of objects also decreases, meaning T < 0. As a result, the probability change is
given by

dPij =
dij
T

,

which remains positive (dPij > 0) because both dij and T are negative, leading
to an overall increase in relative probability.

The effect of negative probabilities only arises when we simultaneously
remove and add objects. In this case:

� Some entries of dij will be negative (representing removed objects),

� But hopefully, the total sum T remains positive, ensuring that the quasi-
probability matrix dP contains some negative entries (dPij < 0 in some
places).

This observation aligns with the phenomenon seen in quantum mechanics
(QM), where a state that involves both ”removal” and ”addition” is a mixture
of the ”pure states” of only adding and only removing. In QM, negative
probability-like effects emerge in interference phenomena, where the transition
between states involves both positive and negative contributions to probability
amplitudes. Similarly, in our model, negative quasi-probabilities appear when
an intermediate state is formed by a combination of adding and re-
moving objects, rather than from pure addition or pure removal alone.
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14.2.2 Possible applications of the extended Pólya urn model

The extended Pólya urn model generalizes the classical urn model by allowing
simultaneous addition and removal of objects while preserving the marginal
probabilities of the original urn distribution. This framework could have several
practical applications in areas where the overall relative proportions of categories
must be preserved despite fluctuations in absolute counts. For example:

� Inventory Management: In retail, products are sold (removed) and
restocked (added) simultaneously. Using an extended Pólya urn model
ensures that the product mix (marginal probabilities) remains constant
even as absolute quantities vary.

� Population Dynamics: In biological systems, individuals in different
subpopulations (e.g., age groups or species) may be born and die concur-
rently, but the overall structure (relative proportions) is maintained.

� Evolutionary Game Theory: Agents might switch strategies (moving
from one category to another) while the overall distribution of strategies
remains in equilibrium.

� Marketing and Consumer Behavior: Consumers may shift prefer-
ences among products without altering the overall market share distribu-
tion.

Discussion of Applications: These examples illustrate how the extended
Pólya urn model can be applied to systems in which objects (or agents) are si-
multaneously added and removed while maintaining fixed marginal proportions.
Such scenarios are prevalent in:

� Inventory Management: Stock levels are adjusted by simultaneously
selling (removing) and restocking (adding) items while preserving the
product mix.

� Population Dynamics: In ecosystems or cell populations, births and
deaths occur concurrently, yet the relative proportions of subpopulations
remain stable.

� Evolutionary Game Theory: Agents may switch strategies (i.e., move
from one category to another) in a manner that keeps the overall distri-
bution of strategies unchanged.

� Consumer Behavior: Shifts in consumer preferences can be modeled by
simultaneous transitions between product categories, while overall market
shares are maintained.

In each case, the extended Pólya urn model provides a framework for under-
standing how internal changes (captured by the quasi-joint-probability matrix
dP ) can occur without affecting the observable marginal distributions. This
insight could be helpful for both theoretical analyses and practical applications
where the maintenance of certain proportions is important.

In summary, the extended Pólya urn model offers a powerful tool for modeling
systems with simultaneous additions and removals, ensuring that key marginal
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probabilities are preserved. This characteristic makes it highly relevant in di-
verse fields ranging from inventory control and biological population studies to
economic and social systems.

15 Urn model

Let U be a urn containing

si black balls of size i, 1 ≤ i ≤ n,

and
ri red balls of size i, 1 ≤ i ≤ n.

Define

S :=

n∑
i=1

si (the total number of black balls in the urn),

R :=

n∑
i=1

ri (the total number of red balls in the urn).

Hence S +R is the total number of balls in the urn.
We can interpret

pS :=
S

S +R

as the probability of drawing a black ball with replacement from the urn, and
analogously

pR :=
R

S +R
= 1− pS

as the probability of drawing a red ball.
Moreover, let

pi :=
si + ri
S +R

,

which can be interpreted as the probability of drawing a ball of size i (regardless
of color) with replacement.

Consider

di := si − ri and D :=

n∑
i=1

di = S −R.

Suppose that D ̸= 0. We ask how to interpret

qi :=
di
D

=
si − ri
S −R

as the probability of “drawing something”.
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Interpretation

Remove from the urn all pairs of balls of same size but different color. Under
this procedure, the quantity

qi = di/D

can be viewed in three cases:

� ∀i : di > 0, then qi > 0 is the probability of drawing a black ball with
replacement from the urn U (→ interpretable case).

� ∀i : di < 0, then D < 0 and qi > 0 is the probability of drawing a red ball
with replacement from the urn U (→ interpretable case).

� ∃i : di > 0 and ∃j : dj < 0, then qi, qj have different signs and cannot
be directly interpreted as a probability of drawing something. (→ unin-
terpretable case, in the sense, that we can not interpret qk directly as as
probability of drawing something.)

16 Circulant matrices and negative probabili-
ties

Let
X := {(a, b) ∈ R2 | a+ b = 1}.

We turn X into an abelian group by defining the operation

(a, b) ◦ (c, d) := (ac+ bd, ad+ bc),

which corresponds to multiplying the 2× 2 matrix(
a b
b a

)
with the column vector (

c
d

)
.

Since circulant matrices form a ring, the operation ◦ is associative. The
identity element of this group is (1, 0).

The inverse of (a, b) (assuming a ̸= b) is calculated using the matrix inverse:

(a, b)−1 =

(
a

a− b
, − b

a− b

)
.

Now, consider a two-stage experiment represented by the following tree di-
agram:

(Y=0)

/ c

(X=0)

/ a \ d

* (Y=1)

\
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\ b (Y=0)

\ / c

(X=1)

\ d

(Y=1)

In this experiment, we define

Q(X = Y ) = ac+ bd and Q(X ̸= Y ) = ad+ bc,

as well as

Q(X = 0) = a, Q(X = 1) = b, Q(Y = 0) = c, Q(Y = 1) = d.

Thus, we can interpret the product ◦ in terms of column vectors:(
Q(X = 0)
Q(X = 1)

)
◦
(
Q(Y = 0)
Q(Y = 1)

)
=

(
Q(X = Y )
Q(X ̸= Y )

)
.

From this we observe:

1. If Q(X = 0) and Q(X = 1) are both > 0 and Q(Y = 0), Q(Y = 1) are also
both > 0, then both Q(X = Y ) > 0 and Q(X ̸= Y ) > 0 (since ac+ bd > 0
and ad+ bc > 0).

2. If Q(X = Y ) = 1, so that Q(X ̸= Y ) = 0, then

Q(Y = 0) =
Q(X = 0)

Q(X = 0)−Q(X = 1)
and Q(Y = 1) = − Q(X = 1)

Q(X = 0)−Q(X = 1)
.

In this case, one of the quantitiesQ(Y = 0) orQ(Y = 1) becomes negative.

3. For example, consider a Bernoulli experiment with p = 1
5 so that Q(X =

0) = 1
5 and Q(X = 1) = 4

5 . If we now wish to design a second experiment
such that Q(X = Y ) = 1 (a certain event) and hence Q(X ̸= Y ) = 0,
then formally we must have

Q(Y = 0) = −1

3
and Q(Y = 1) =

4

3
.

That is, negative probabilities appear when we attempt to repeat a gen-
uinely random experiment.

16.1 Sampling from a negative quasi-probability

To answer the question of what it means for an event X = 0 to have probability
− 1

10 , consider the following reasoning. First, we start by assuming that the
quasi-probability distribution for the event is given by(

− 1

10
,
11

10

)
,

so that the total is

− 1

10
+

11

10
= 1.
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Next, we invert these quasi-probabilities to obtain a standard (nonnegative)
probability distribution. In our framework, we define the inverse of a circulant
vector as (

− 1

10
,
11

10

)−1

=

(
1

12
,
11

12

)
.

Thus, we sample with replacement from the probability distribution
(

1
12 ,

11
12

)
to

generate outcomes for X. Let N0 be the number of times X = 0 occurs and N1

be the number of times X = 1 occurs (with N0 +N1 = N). Then, in the long
run (N →∞), we expect that

− 1

10
=

N0

N0 −N1
and

11

10
= − N1

N0 −N1
.

In other words, an event has a negative quasi-probability − 1
10 if you first sample

from the standard distribution
(

1
12 ,

11
12

)
and then, by “copying” (or propagating)

that outcome through a second experiment whose sampling is governed by the
inverse, you obtain a negative weight in the effective quasi-probability.

Below is some SageMath code that illustrates this sampling procedure:� �
1 def circ(ll):

2 return matrix.circulant(ll)

3

4 def inv(ll):

5 return circ(ll).inverse ()

6

7 def sample_pairs_negative_quasiprob(Q, n=1000):

8 """

9 Sample outcomes from a negative quasi - probability distribution .

10 For a quasi - probability vector Q, we compute its inverse ,

11 and then sample from the resulting probability distribution .

12 If Q contains only positive entries , we simply sample from Q.

13 """

14 import numpy as np

15 import random

16 outcomes = [0, 1]

17 quasiprobabilities = Q

18 # Compute inverse of the quasi - probabilities

19 probs = list(inv(quasiprobabilities).rows()[0])

20 # If all entries in Q are positive , sample directly.

21 if all([q > 0 for q in Q]):

22 samples = random.choices(outcomes , weights=Q, k=n)

23 freq = {x: samples.count(x) for x in outcomes}

24 frequencies = {}

25 frequencies [0] = freq [0] / (freq [0] + freq [1])

26 frequencies [1] = freq [1] / (freq [0] + freq [1])

27 return samples , frequencies

28 else:

29 # Sample from the inverted probability vector

30 samples = random.choices(outcomes , weights=probs , k=n)

31 # Calculate frequencies from the samples

32 freq = {x: samples.count(x) for x in outcomes}

33 frequencies = {}

34 frequencies [0] = freq [0] / (freq [0] - freq [1])

35 frequencies [1] = -freq [1] / (freq [0] - freq [1])

36 return samples , frequencies

37

38 # Test the sampling with quasi - probability vector ( -1/10, 11/10)

39 for n in [1000]:
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40 samples , frequencies = sample_pairs_negative_quasiprob ([-1/10,

11/10] , n=n)

41 print(n, frequencies)

42

43 print("Inverse of [-1/10, 11/10]:")

44 print(inv([-1/10, 11/10]))� �
In the above code, the function inv computes the inverse of a circulant

vector (using the circulant matrix inverse), so that the quasi-probability vector
(− 1

10 ,
11
10 ) is inverted to ( 1

12 ,
11
12 ). Then, the function sample pairs negative quasiprob

uses these probabilities to sample outcomes. Finally, the relative frequencies are
recomputed by adjusting for the fact that the original quasi-probabilities satisfy

− 1

10
=

N0

N0 −N1
and

11

10
= − N1

N0 −N1
.

Thus, the idea is: an event has a negative quasi-probability − 1
10 if you

sample from ( 1
12 ,

11
12 ) (the inverse), and then “copy” the outcome so that in the

effective, overall process the outcome X = 0 is assigned a negative weight.
This approach illustrates how negative quasi-probabilities can be interpreted

algebraically by inverting the sampling process. Although the procedure is for-
mal and does not correspond to a conventional probability measure (since prob-
abilities are required to be nonnegative), it provides insight into how negative
weights might be manipulated and “sampled” in a quasi-probabilistic frame-
work.

16.2 Urn simulation via negative quasi-probabilities

In this simulation, we address the problem of transforming the composition of
an urn from an initial distribution of red and blue balls to a target distribution.
The method leverages the idea of negative quasi-probabilities.

Suppose the urn initially contains

(R0, B0) = (initial red, initial blue)

red and blue balls, respectively, and we wish to reach the target state

(Rt, Bt) = (target red, target blue).

Define the differences:

∆R = target red− initial red, ∆B = target blue− initial blue.

A necessary condition for employing a negative quasi-probability is that

∆R

∆B
< 0,

i.e., one of the differences must be negative.
The method inverts these differences to obtain a positive sampling distribu-

tion. The inverse probabilities are defined as

P0 =
∆R

∆R−∆B
, P1 =

−∆B

∆R−∆B
,
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which are then used to randomly decide whether to modify the urn by removing
a red ball (when a 0 is drawn) or by adding a blue ball (when a 1 is drawn).

A normalization factor is computed by

δ =
∆B −∆R

gcd(∆R, ∆B)
,

and the total number of simulation steps is given by

num steps = dt× δ,

where dt is a time-scaling parameter.
During the simulation, the fraction of red balls is updated at each step:

fR =
number of red balls

total number of balls
.

The simulation uses batch counters to determine when to perform an update
(removal or addition), ensuring that the transformation occurs gradually. Over
the course of the simulation, the composition of the urn evolves towards the
target distribution.

The complete Python code implementing this procedure is provided below.� �
1 import random

2 from math import gcd , floor

3

4 # Initial state and target state:

5 # initial_red , initial_blue represent the initial number of red

and blue balls.

6 # target_red , target_blue represent the target number of red and

blue balls.

7 initial_red , initial_blue = 1000, 900

8 target_red , target_blue = 8, 1100

9

10 # Compute differences :

11 # dR = target_red - initial_red , e.g., dR = 8 - 1000

12 # dB = target_blue - initial_blue , e.g., dB = 1100 - 900

13 diff_red = target_red - initial_red

14 diff_blue = target_blue - initial_blue

15

16 # Check for negative quasi - probability :

17 # We require diff_red/diff_blue < 0, meaning one difference is

negative.

18 if not diff_red/diff_blue < 0:

19 print("ERROR: No negative quasi -probability")

20

21 # Compute inverse probabilities for the transformation :

22 # P0 = diff_red / (diff_red - diff_blue)

23 # P1 = -diff_blue / (diff_red - diff_blue)

24 inverse_probs = (diff_red / (diff_red - diff_blue), -diff_blue / (

diff_red - diff_blue))

25

26 # Compute normalization factor (delta normalization ):

27 # dd = (diff_blue - diff_red) / gcd(diff_red , diff_blue)

28 delta_norm = abs(( diff_blue - diff_red) / gcd(diff_red , diff_blue))

29 # N_diff is used as a threshold for batch updates:

30 N_diff = abs(diff_blue - diff_red)

31

32 # Simulation parameters :

33 # dt is a time scaling factor.
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34 # num_steps = dt x dd

35 dt = 40

36 num_steps = int(dt * delta_norm)

37

38 # History of fractions:

39 # Record the initial fraction of red and blue balls in the urn.

40 history_red_fraction = [(0, initial_red / (initial_red +

initial_blue))]

41 history_blue_fraction = [(0, initial_blue / (initial_red +

initial_blue))]

42

43 # Initialize the urn:

44 # urn_red contains red balls ( represented by 0).

45 # urn_blue contains blue balls ( represented by 1).

46 urn_red = [0] * initial_red

47 urn_blue = [1] * initial_blue

48

49 # Batch counters:

50 # These count the number of samples since the last update.

51 batch_counter_red = []

52 batch_counter_blue = []

53

54 # Draw random samples according to the inverse probabilities :

55 # Each sample is either 0 (red) or 1 (blue).

56 step_index = 0

57 samples = random.choices ([0, 1], weights=inverse_probs , k=num_steps

)

58

59 # Simulation loop:

60 for sample in samples:

61 step_index += 1

62 if sample == 0:

63 # When a "0" is drawn (red ball):

64 # If the batch counter reaches the threshold (floor(

num_steps /N_diff)),

65 # remove one red ball from the urn.

66 if len(batch_counter_red) == int(floor(num_steps / N_diff))

:

67 if 0 in urn_red and diff_red <0:

68 urn_red.remove (0)

69 elif diff_red > 0:

70 urn_red.append (0)

71 batch_counter_red = []

72 batch_counter_red.append (0)

73 elif sample == 1:

74 # When a "1" is drawn (blue ball):

75 # If the batch counter reaches the threshold , add one

blue ball to the urn.

76 if len(batch_counter_blue) == int(floor(num_steps / N_diff)

):

77 if diff_red < 0:

78 urn_blue.append (1)

79 elif 1 in urn_blue and diff_red >0:

80 urn_blue.remove (1)

81 batch_counter_blue = []

82 batch_counter_blue.append (1)

83

84 # Update and record the fraction of red and blue balls:

85 total_balls = len(urn_red) + len(urn_blue)

86 current_red_fraction = len(urn_red) / total_balls

87 current_blue_fraction = len(urn_blue) / total_balls

88 history_red_fraction.append (( step_index , current_red_fraction))
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89 history_blue_fraction.append ((step_index , current_blue_fraction

))

90

91 # Final results:

92 print("Final state of the urn:")

93 print("Red balls:", len(urn_red))

94 print("Blue balls:", len(urn_blue))

95 print("\nFinal fractions:")

96 print("Red fraction:", history_red_fraction [ -1][1]*1.0)

97 print("Blue fraction:", history_blue_fraction [ -1][1]*1.0)

98 print("\nTarget fractions:")

99 total_target = target_red + target_blue

100 print("Red target fraction:", target_red *1.0 / total_target)

101 print("Blue target fraction:", target_blue *1.0 / total_target)� �
Listing 1: Urn Simulation Using Negative Quasi-Probabilities
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16.3 Algorithmic pseudocode for the urn simulation using
negative quasi-probabilities

16.3.1 Part 1: Initialization and Setup

Algorithm 1 UrnSimulation Initialization

1: Input:

� initial red, initial blue – initial number of red and blue balls

� target red, target blue – target number of red and blue balls

� dt – time scaling factor

2: Output: Prepared state for simulation
3:

4: ∆R← target red− initial red

5: ∆B ← target blue− initial blue

6: if ∆R/∆B ≥ 0 then
7: print ”ERROR: Keine negative Quasi-Wahrscheinlichkeit”
8: exit
9: end if

10:

11: P0 ← ∆R/ (∆R−∆B) ▷ Inverse probability for red (0)
12: P1 ← −∆B / (∆R−∆B) ▷ Inverse probability for blue (1)
13:

14: δ ← |∆B −∆R| / gcd(∆R,∆B)
15: Ndiff ← |∆B −∆R|
16: num steps← dt× δ
17:

18: ▷ Initialize history with the initial fractions
19: history red[0]← initial red / (initial red+ initial blue)
20: history blue[0]← initial blue / (initial red+ initial blue)
21:

22: ▷ Initialize the urn: red balls are represented by 0, blue by 1
23: urn red← list of initial red red balls (0)
24: urn blue← list of initial blue blue balls (1)
25:

26: ▷ Initialize empty batch counters for red and blue updates
27: batch red← empty list
28: batch blue← empty list
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16.3.2 Part 2: Simulation Loop and Final Output

Algorithm 2 UrnSimulation Main Loop and Output

1: for i← 1 to num steps do
2: sample← random choice from {0, 1} with weights (P0, P1)
3: if sample = 0 then ▷ Red ball case
4: if size(batch red) equals ⌊num steps /Ndiff⌋ then
5: if ∆R < 0 and urn red is not empty then
6: Remove one red ball from urn red
7: else if ∆R > 0 then
8: Add one red ball (0) to urn red
9: end if

10: Clear batch red
11: end if
12: Append 0 to batch red
13: else if sample = 1 then ▷ Blue ball case
14: if size(batch blue) equals ⌊num steps /Ndiff⌋ then
15: if ∆R < 0 then
16: Add one blue ball (1) to urn blue
17: else if ∆R > 0 and urn blue is not empty then
18: Remove one blue ball from urn blue
19: end if
20: Clear batch blue
21: end if
22: Append 1 to batch blue
23: end if
24:

25: total← size(urn red) + size(urn blue)
26: current red← size(urn red) / total
27: current blue← size(urn blue) / total
28: Append (i, current red) to history red
29: Append (i, current blue) to history blue
30: end for
31:

32: print ”Final state of the urn:”
33: print ”Red balls:” size(urn red)
34: print ”Blue balls:” size(urn blue)
35:

36: print ”Final fractions:”
37: print ”Red fraction:” last value in history red
38: print ”Blue fraction:” last value in history blue
39:

40: total target← target red+ target blue

41: print ”Target red fraction:” target red/total target
42: print ”Target blue fraction:” target blue/total target
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16.4 Fourier analysis on finite groups and quasi-probabilities

We can extend the discussion above, which was done for the abelian group
G = C2 formally to any finite group G:

Let G be a finite group with an arbitrary ordering

g1 = e, g2, . . . , gn,

where e is the identity element of G. Let

q : G→ R

be a function. We write

q ∈ L2(G) := {q | q : G→ R}

and L2(G) can be made into a real Hilbert space by defining the inner product
as

⟨q, r⟩ :=
∑
g∈G

q(g) r(g).

Let q ∈ L2(G). We define the Dedekind matrix DG(q) by

Dij := q
(
gi · g−1

j

)
.

A function q ∈ L2(G) is called a quasi-probability if∑
g∈G

q(g) = 1.

We denote
Q(G) := {q ∈ L2(G) |

∑
g∈G

q(g) = 1}.

A quasi-probability q : G → R is called a probability if, for all g ∈ G, we have
q(g) ≥ 0. We write

P (G) := {p ∈ Q(G) | p(g) ≥ 0 for all g ∈ G}.

A function q ∈ L2(G) is called invertible if det
(
DG(q)

)
̸= 0. We denote

I(G) := {q ∈ L2(G) | det
(
DG(q)

)
̸= 0}.

Given q1, q2 ∈ L2(G), we define the convolution q1 ∗ q2 of q1 and q2 by

(q1 ∗ q2)(g) :=
∑
h∈G

q1(h) q2
(
h−1 · g

)
,

which yields a function (q1 ∗ q2) ∈ L2(G).
Theorem 1. For q1, q2 ∈ L2(G), it holds that

DG(q1) ·DG(q2) = DG(q1 ∗ q2).

Proof: We have

DG(q1) ·DG(q2) =
( n∑
k=1

q1
(
gi · g−1

k

)
q2
(
gk · g−1

j

))
1≤i,j≤n

.
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By a change of summation index (letting l = k) we can rewrite this as( n∑
l=1

q1
(
gl
)
q2
(
g−1
l · gi · g

−1
j

))
1≤i,j≤n

,

which equals (
(q1 ∗ q2)(gi · g−1

j )
)
1≤i,j≤n

= DG(q1 ∗ q2). □

Theorem 2. If q1, q2 ∈ I(G), then also q1 ∗ q2 ∈ I(G).
Proof: By Theorem 1,

det
(
DG(q1 ∗ q2)

)
= det

(
DG(q1) ·DG(q2)

)
= det

(
DG(q1)

)
· det

(
DG(q2)

)
̸= 0,

since q1, q2 ∈ I(G). □
Theorem 3. If q1, q2 ∈ Q(G), then also q1 ∗ q2 ∈ Q(G).
Proof: Let q12 := q1 ∗ q2. Then∑

g∈G

q12(g) =
∑
g∈G

∑
h∈G

q1(h) q2
(
h−1 · g

)
=
∑
h∈G

∑
g∈G

q1(h) q2
(
h−1 · g

)
.

Interchanging the order of summation yields∑
h∈G

q1(h)
(∑
g∈G

q2
(
h−1·g

))
=
∑
h∈G

q1(h)·1 (since q2 ∈ Q(G)) = 1, (since q1 ∈ Q(G)). □

17 Applications of the extension with a Balanced
Semantic Space

The extension of a finite semantic space to a balanced semantic space (i.e.
extending Ω to Ω∗ so that the extended kernel k∗ satisfies∑

x,y∈Ω∗

k∗(x, y) = 0,

while preserving the squared values on the original set) offers several intriguing
applications across different fields. We briefly outline some of these potential
applications below:

1. Natural Language Processing and Distributional Seman-
tics

In many models of word meaning, words are represented as vectors in a high-
dimensional space and semantic similarity is measured via inner products. How-
ever, such spaces may possess a nonzero mean that can bias similarity measures.
The extension provides a principled way to “center” the semantic space by ex-
tending the vocabulary so that the overall representation is balanced. This
can lead to more accurate similarity computations, improved clustering, and
enhanced performance in tasks such as analogical reasoning and semantic role
labeling.
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2. Kernel Methods in Machine Learning

Kernel-based techniques (e.g., kernel principal component analysis, spectral
clustering) often benefit from centering the kernel matrix. A balanced semantic
space naturally induces a centered kernel, ensuring that the sum of all pairwise
similarities is zero. The extension method, preserves key pairwise relationships
while eliminating systemic bias. This can improve the performance and inter-
pretability of dimensionality reduction and clustering algorithms.

4. Graph and Network Analysis

In many network and graph-based applications, nodes (e.g., individuals in so-
cial networks or entities in relational databases) are embedded into a semantic
space for tasks such as community detection or link prediction. If the under-
lying similarity (or kernel) matrix is biased, it can obscure the true structure
of the network. An extension to a balanced semantic space removes this bias,
yielding a representation where the overall interaction is neutral. This can lead
to improved detection of communities or clusters and a clearer interpretation of
network dynamics.

5. Financial Modeling and Risk Management

Financial models often rely on probability measures to assess risk and model
asset returns. In practice, observed data may induce quasi-probability distribu-
tions that are biased. By applying the extension to create a balanced semantic
space, one can obtain a corrected representation that is centered (i.e., has zero
net bias). Such balanced representations are beneficial in risk-neutral pricing,
portfolio optimization, and in the identification of systematic deviations that
could lead to market anomalies.

6. Signal Processing and Time Series Analysis

In signal processing, it is common to remove the DC (zero-frequency) compo-
nent of a signal so that the residual signal is centered around zero. Similarly,
when constructing feature spaces or embedding signals into a semantic space,
a balanced representation (one with a zero mean) can improve filtering, com-
pression, and noise reduction techniques. The extension method can be used to
adjust the feature space so that it becomes balanced, thus ensuring that further
analysis is not influenced by an overall bias.

7. Data Visualization and Dimensionality Reduction

When visualizing high-dimensional data, a balanced embedding can improve
interpretability. For example, in techniques such as multidimensional scaling
(MDS) or t-SNE, a balanced semantic space ensures that the origin corresponds
to a natural center of the data, allowing for better separation of clusters and
more meaningful visualization of relationships.

In summary, the extension with a balanced semantic space is not only a
mathematically elegant solution to the problem of nonzero biases in quasi-
probability and kernel representations but also has the potential to impact di-
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verse fields—from natural language processing and machine learning to quantum
physics and financial modeling. Each application benefits from the elimination
of systemic biases, leading to improved performance and interpretability in both
theoretical analyses and practical implementations.

18 Speculative Applications

Although our investigation has focused on the mathematical structure underly-
ing negative probabilities and balance matrices, the methods developed herein
have intriguing potential applications beyond pure mathematics.

Quantum Physics

In quantum mechanics, quasi-probability distributions—such as the Wigner
function—are used to describe quantum states. These distributions often take
on negative values, reflecting the non-classical behavior of quantum systems.
The balance matrix framework could offer a new perspective on these quasi-
probabilities by decomposing them into a conventional probability part and a
bias term. Such an approach might clarify the role of interference effects and en-
tanglement in quantum measurements and contribute to a better understanding
of quantum-to-classical transitions.

Financial Modeling and Risk Management

Financial markets are rife with uncertainties and asymmetric risks, and classi-
cal probability models sometimes fail to capture extreme events (the so-called
”black swan” phenomena). By applying balance matrices, one might model
market probabilities in a way that incorporates hidden biases or risk factors.
For instance, a quasi-probability model of asset returns could be decomposed to
isolate the systematic deviations that lead to market crashes or bubbles, thus
providing a novel tool for risk assessment and management.

Cognitive Science and Decision Theory

Human decision-making often deviates from the predictions of classical probabil-
ity theory. In psychology and behavioral economics, observed choices sometimes
reflect negative probabilities or biases that are not easily captured by standard
models. By decomposing these quasi-probabilities, researchers could identify the
underlying biases in perception or judgment. This may lead to improved mod-
els of human cognition, allowing for better predictions of behavior in situations
involving uncertainty.

Artificial Intelligence and Machine Learning

In domains where systems must make decisions under uncertain or conflicting
information, such as in autonomous agents or recommendation systems, incor-
porating a balance matrix approach could enhance robustness. Decomposing
uncertain data into a traditional probability component and an adjustment term
may allow AI systems to better manage ambiguous inputs, leading to improved
decision-making and performance in complex environments.
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Other Interdisciplinary Areas

Beyond the fields mentioned above, the principles of balance matrices and quasi-
probabilities may find applications in any domain where uncertainty and hidden
biases play a role. This includes areas such as epidemiology (modeling the spread
of diseases with imperfect data), social sciences (analyzing opinion dynamics),
and even art and design (where probabilistic models can inform generative pro-
cesses).

19 Conclusion

We have presented a comprehensive framework for the interpretation of negative
probabilities using balance matrices, with a particular focus on its application
to an urn model with negative sampling. By decomposing a quasi-probability
matrix Q into a standard probability matrix P and a balance matrix B (with
Q = P +B and B having zero row and column sums), we preserve key marginal
properties while isolating non-classical contributions.

The proposed method, which utilizes iterative proportional fitting to achieve
the desired decomposition, provides a rigorous algebraic foundation for model-
ing systems where simultaneous removals and additions occur. Our urn model
demonstrates how negative sampling can be applied to simulate transitions in
real-world scenarios such as inventory management, population dynamics, and
beyond.

Future work will explore further applications of this method, refine the com-
putational techniques, and extend the framework to more complex, potentially
infinite-dimensional, settings. The balance matrix approach thus promises to
bridge the gap between abstract probability theory and practical problems that
involve both positive and negative contributions.
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