Counting primes with polynomials

Orges Leka

September 24, 2025

Abstract

We define a family of integer polynomials $(f_n(x))_{n\geq 1}$ and use three standard heuristic assumptions about Galois groups and Frobenius elements (H1–H3), together with the Inclusion–Exclusion principle (IE), to *heuristically* count: (1) primes up to N detected by irreducibility modulo a fixed prime p, and (2) primes in a special subfamily ("prime shapes") up to N. The presentation is self-contained and aimed at undergraduates.

Definition of the polynomials $f_n(x)$

Let $f_n(x) \in \mathbb{Z}[x]$ be defined recursively by

$$f_1(x)=1, \qquad f_2(x)=x,$$
 if n is prime:
$$f_n(x)=1+f_{n-1}(x),$$
 if n has the prime factorization $n=\prod_p p^{\nu_p(n)}: \quad f_n(x)=\prod_p \left(f_p(x)\right)^{\nu_p(n)}.$

(All products are over primes p.) One checks that deg f_n grows logarithmically in n: there are fixed constants $0 < c_1 \le c_2 < \infty$ such that

$$c_1 \log n \le \deg f_n \le c_2 \log n \qquad (n \ge 3),$$

e.g. $c_1 = 1/\log 3$ and $c_2 = 1/\log 2$ work.

Basic properties of $f_n(x)$

We collect elementary properties of the sequence $(f_n)_{n\geq 1}$ that follow immediately from the definition and simple inductions.

• Multiplicativity. For all $m, n \in \mathbb{N}$ one has

$$f_{mn}(x) = f_m(x) f_n(x).$$

Indeed this is built into the rule for composite n, and extends to all m, n by unique factorization.

- Monicity, integral and nonnegative coefficients. Since $f_2 = x$ is monic with integer coefficients and the rules are obtained from $f \mapsto f + 1$ and $(f,g) \mapsto fg$, it follows by induction that every f_n is monic in $\mathbb{Z}[x]$ and all coefficients are nonnegative. In particular the constant term is $f_n(0) = 1$ for all n (with $f_1(0) = 1$).
- Evaluation at x = 2. For all $n \ge 1$,

$$f_n(2) = n.$$

Proof by strong induction on n: it holds for n = 1, 2. If n is prime, then

$$f_n(2) = 1 + \prod_{q|(n-1)} f_q(2)^{\nu_q(n-1)} = 1 + \prod_{q|(n-1)} q^{\nu_q(n-1)} = 1 + (n-1) = n.$$

If $n = \prod p^{\nu_p}$ is composite, then by multiplicativity

$$f_n(2) = \prod_p f_p(2)^{\nu_p} = \prod_p p^{\nu_p} = n.$$

• Logarithmic degree growth. There are absolute constants $0 < c_1 \le c_2 < \infty$ such that for all $n \ge 3$,

$$c_1 \log n \le \deg f_n \le c_2 \log n,$$

e.g. $c_1 = 1/\log 3$ and $c_2 = 1/\log 2$. This follows by induction on n and the definition of $f_n(x)$.

• An equivalent characterization. The sequence (f_n) is the unique family of nonzero polynomials satisfying: $f_2(x) = x$, $f_p(x) = f_{p-1}(x) + 1$ for all primes p > 2, and $f_{mn} = f_m f_n$ for all m, n. (This tidy axiomatization was noted by Will Sawin.)¹

Zeros lie in a left half-plane and irreducibility for prime indices

A key analytic observation is that, for every prime p, all zeros of f_p lie in the half-plane $\text{Re}(z) < \frac{3}{2}$. From this, one can deduce irreducibility of f_p over $\mathbb{Z}[x]$. We include a self-contained proof adapted from Jonathan Love's MathOverflow answer.²

Lemma 1 (A root-location lemma). Let $g(x) \in \mathbb{Z}[x]$ be a non-constant monic polynomial with constant term ± 1 . If g is not a power of (x+1), then g has a root θ with $\text{Re}(\theta) \geq -\frac{1}{2}$.

Proof. If all roots of g had real part $< -\frac{1}{2}$, then $|\theta+1| < |\theta|$ for each root θ . For any irreducible factor h of g we would have

$$|h(-1)| = \prod_{\theta:h(\theta)=0} |\theta+1| < \prod_{\theta:h(\theta)=0} |\theta| = |h(0)| = 1,$$

forcing h(-1) = 0, hence h(x) = x + 1. Thus $g(x) = (x + 1)^m$.

Lemma 2 (Uniform bound on $|f_p(z)|$ away from a compact set). For each prime p and each z with $\text{Re}(z) \geq \frac{3}{2}$, one has $|f_p(z)| > 2$. Consequently, every root θ of f_p satisfies $\text{Re}(\theta) < \frac{3}{2}$.

Proof. The claim is evident for p=2. For p=3 and p=5 one checks directly: if z=a+bi with $a\geq \frac{3}{2}$, then

$$|f_3(z)| = |z+1| = |(a+1)+bi| \ge a+1 > 2,$$
 $|f_5(z)|^2 = |z^2+1|^2 = (a^2+(b-1)^2)(a^2+(b+1)^2) \ge a^4 > 4.$

For $p \geq 7$, write by definition

$$f_p(z) = 1 + \prod_{q|(p-1)} f_q(z)^{\nu_q(p-1)}.$$

If p-1 has an odd prime divisor q, then $|f_2(z)|=|z|\geq \frac{3}{2}$ and by induction $|f_q(z)|>2$, so

$$|f_p(z)| \ge |f_2(z)||f_q(z)| - 1 > \frac{3}{2} \cdot 2 - 1 = 2.$$

If instead $p-1=2^k$ with $k\geq 3$, then $|f_p(z)|\geq |f_2(z)|^k-1>(\frac{3}{2})^3-1>2$. This proves the claim.

¹See the MathOverflow discussion for details.

²MathOverflow question "Polynomials for natural numbers and irreducible polynomials for prime numbers?", answer by Jonathan Love (Dec. 11, 2024).

Proposition 1 (Irreducibility for prime indices). For every prime p, the polynomial $f_p(x)$ is irreducible in $\mathbb{Z}[x]$.

Proof. Assume $f_p = FG$ with non-constant $F, G \in \mathbb{Z}[x]$. Since $f_p(2) = p$, we may assume $F(2) = \pm 1$. Consider g(x) := F(x+2); then g is monic with constant term ± 1 . If g were a power of (x+1), then F(1) = 0, contradicting $f_p(1) > 0$ (all coefficients are nonnegative). Thus, by Lemma 1, g has a root with real part $\geq -\frac{1}{2}$, i.e. F has a root with real part $\geq \frac{3}{2}$. By Lemma 2 this is impossible, because all roots of f_p lie strictly to the left of the line $\text{Re}(z) = \frac{3}{2}$. Hence f_p is irreducible.

Further remarks. The proof also shows that all zeros of f_p lie in a fixed compact region, e.g. the set $\{z: |z| \leq \frac{3}{2}\} \cup \{z: |z+1| \leq 2\} \cup \{z: |z^2+1| \leq 2\}$, which contains the zero sets of all f_p (see the MO discussion).

Heuristic assumptions (H1–H3)

Fix once and for all a prime p. For each prime q, write $d_q = \deg f_q$ and let $G_q \leq S_{d_q}$ be the Galois group of the splitting field of f_q over \mathbb{Q} . We adopt:

- (H1) Large Galois group. Typically $G_q \simeq S_{d_q}$ (or at least contains a d_q -cycle).
- (H2) Random Frobenius at p. The Frobenius class at p in G_q behaves like a uniformly random element of G_q .
- (H3) Weak independence across q. For different primes q, the events we consider are independent enough that expectations add and inclusion–exclusion behaves as in the random model.

Heuristic probability of irreducibility mod p

Fix a prime p. For each prime q let $d_q = \deg f_q$ and let $G_q \leq S_{d_q}$ be the Galois group of the splitting field of f_q over \mathbb{Q} . We keep the assumptions:

- (H1) Large Galois group: typically $G_q \simeq S_{d_q}$ (or at least contains a d_q -cycle).
- (H2) Random Frobenius at p: the Frobenius class at p in G_q behaves like a uniformly random element of G_q .

The key dictionary (Dedekind-Frobenius, used here heuristically) is:

factorization pattern of $f_q \mod p$ in $\mathbb{F}_p[x] \longleftrightarrow \text{cycle type of a random element of } G_q \subseteq S_{d_q}$. In particular,

 $f_q \mod p$ is irreducible \iff the associated permutation is a single d_q -cycle.

Counting d-cycles in S_d

We now compute the exact fraction of permutations in S_d that are a single d-cycle.

$$|S_d| = d!,$$

$$\#\{d\text{-cycles in } S_d\} = \frac{d!}{d} = (d-1)!.$$

Reason: a d-cycle is just an ordering of the d symbols on a circle; there are d! linear orderings, but each cyclic order has d starting points, so we divide by d.

Therefore the exact proportion of d-cycles in S_d is

$$\frac{\#\{d\text{-cycles}\}}{|S_d|} = \frac{(d-1)!}{d!} = \frac{1}{d}.$$

Heuristic probability

Under (H1)–(H2) with $G_q \simeq S_{d_q}$ and a uniform random element,

$$\mathbb{P}(f_q(x) \bmod p \text{ is irreducible over } \mathbb{F}_p) \approx \frac{1}{d_q}.$$
 (1)

Relating d_q to $\log q$

From the basic properties of the sequence (f_n) (degree multiplicativity and recursion), one has for all sufficiently large primes q the two-sided bound

$$\frac{\log q}{\log 3} \le d_q \le \frac{\log q}{\log 2}. \tag{2}$$

Equivalently, writing $d_q \approx c \log q$ with a constant c depending only on the sequence (and lying in the interval $[1/\log 3, 1/\log 2]$), the reciprocal satisfies the sandwich estimate

$$\frac{\log 2}{\log q} \le \frac{1}{d_q} \le \frac{\log 3}{\log q}. \tag{3}$$

Combining (1) and (3) yields the explicit approximation

$$\mathbb{P}(f_q \bmod p \text{ irreducible}) \approx \frac{1}{d_q} \approx \frac{1}{c \log q}, \qquad c \in \left[\frac{1}{\log 3}, \frac{1}{\log 2}\right], \tag{4}$$

and in particular for all large q,

$$\frac{\log 2}{\log q} \lesssim \mathbb{P}(f_q \bmod p \text{ irreducible}) \lesssim \frac{\log 3}{\log q}.$$

Interpretation. Equation (4) says: for a fixed modulus p, each prime q independently "fires" (i.e. gives $f_q \mod p$ irreducible) with chance on the order of $1/\log q$. This is the only input needed to derive the sums and inclusion—exclusion formulas used later to estimate

$$\sum_{q \le N} \mathbb{P}(f_q \bmod p \text{ irreducible}) \approx \sum_{q \le N} \frac{1}{c \log q},$$

and to show (heuristically) that the union over $p \leq N$ hits almost all primes $\leq N$.

Counting for a fixed p: primes $\leq N$

Step 0. Setup and notation

Fix a prime modulus p. For each prime q let $d_q = \deg f_q$. Recall the heuristic from (H1)-(H2):

$$\mathbb{P}(f_q(x) \mod p \text{ is irreducible over } \mathbb{F}_p) \approx \frac{1}{d_q}.$$

From the basic properties of (f_n) we have logarithmic degree growth, so there exists a constant

$$c \in \left[\frac{1}{\log 3}, \frac{1}{\log 2}\right]$$
 with $d_q \approx c \log q$,

hence

$$\frac{1}{d_q} \approx \frac{1}{c \log q}.$$

Step 1. Define the random variables

For each prime $q \leq N$, define the indicator variable

$$X_q = \begin{cases} 1, & \text{if } f_q(x) \bmod p \text{ is irreducible over } \mathbb{F}_p, \\ 0, & \text{otherwise.} \end{cases}$$

Then the total number of such primes $q \leq N$ is

$$U_p(N) := \sum_{\substack{q \le N \\ q \text{ prime}}} X_q.$$

By definition of expectation and linearity of expectation,

$$\mathbb{E} U_p(N) = \sum_{q \le N} \mathbb{E} X_q = \sum_{q \le N} \mathbb{P}(X_q = 1) \approx \sum_{q \le N} \frac{1}{d_q}.$$

Using $d_q \approx c \log q$ we obtain the first-order approximation

$$\mathbb{E} U_p(N) \approx \sum_{q \le N} \frac{1}{c \log q} = \frac{1}{c} S(N), \qquad S(N) := \sum_{q \le N} \frac{1}{\log q}.$$
 (5)

Step 2. Estimating $S(N) = \sum_{q \le N} 1/\log q$ by summation by parts

Let $\pi(x)$ denote the prime-counting function. We write S(N) as a Stieltjes integral with respect to $d\pi(x)$:

$$S(N) = \int_{2^-}^{N} \frac{1}{\log x} d\pi(x),$$

where 2^- indicates that if N < 2 the sum is empty (we will always take $N \ge 3$). Let

$$a(x) := \frac{1}{\log x}$$
 for $x \ge 3$, $A(x) := \pi(x)$.

By summation by parts (the discrete analogue of integration by parts),

$$\int_{2}^{N} a(x) \, dA(x) = a(N) \, A(N) \, - \, \int_{2}^{N} A(x) \, da(x).$$

We compute da(x) = a'(x) dx with

$$a'(x) = -\frac{1}{x(\log x)^2}.$$

Hence

$$S(N) = \frac{\pi(N)}{\log N} + \int_{2}^{N} \frac{\pi(x)}{x(\log x)^{2}} dx.$$
 (6)

Step 3. A Chebyshev-level upper bound for the integral term

We do *not* use the prime number theorem. Instead, we rely on the classical Chebyshev bounds (elementary) stating that for large x,

$$c_1 \frac{x}{\log x} \le \pi(x) \le c_2 \frac{x}{\log x},\tag{7}$$

for some absolute constants $0 < c_1 \le c_2 < \infty$.

Plugging the upper bound from (7) into (6) gives

$$\int_{2}^{N} \frac{\pi(x)}{x(\log x)^{2}} dx \leq c_{2} \int_{2}^{N} \frac{1}{(\log x)^{3}} dx.$$

To estimate the last integral, set $u = \log x$ so du = dx/x and $x = e^u$. Then

$$\int_{2}^{N} \frac{dx}{(\log x)^{3}} = \int_{\log 2}^{\log N} \frac{e^{u}}{u^{3}} du.$$

Integration by parts (or a simple comparison) shows that this integral grows like

$$\int_{\log 2}^{\log N} \frac{e^u}{u^3} du = O\left(\frac{N}{(\log N)^3}\right).$$

Therefore,

$$\int_{2}^{N} \frac{\pi(x)}{x(\log x)^{2}} dx = O\left(\frac{N}{(\log N)^{3}}\right).$$
 (8)

Step 4. Dominant term and comparison of sizes

From (6) and (8) we obtain

$$S(N) = \frac{\pi(N)}{\log N} + O\left(\frac{N}{(\log N)^3}\right).$$

To see that the error term is genuinely smaller than the main term $\pi(N)/\log N$, compare sizes using the *lower* Chebyshev bound in (7):

$$\frac{\pi(N)}{\log N} \ge \frac{c_1 N}{(\log N)^2}.$$

Hence the ratio of error to main term is

$$\frac{O(N/(\log N)^3)}{\pi(N)/\log N} \ll \frac{N/(\log N)^3}{N/(\log N)^2} = \frac{1}{\log N} \longrightarrow 0.$$

Therefore

$$S(N) = \frac{\pi(N)}{\log N} \left(1 + o(1) \right)$$
 (no PNT needed; Chebyshev suffices). (9)

Step 5. Conclusion for the expectation

Returning to (5) and substituting (9) gives

$$\mathbb{E} U_p(N) \approx \frac{1}{c} S(N) = \frac{1}{c} \cdot \frac{\pi(N)}{\log N} \left(1 + o(1) \right).$$

In boxed form:

$$\mathbb{E} U_p(N) \approx \frac{1}{c} \cdot \frac{\pi(N)}{\log N}, \qquad c \in \left[\frac{1}{\log 3}, \frac{1}{\log 2}\right].$$

Equivalently, solving for $\pi(N)$ we get the heuristic relation

$$\pi(N) \approx c \mathbb{E} U_n(N) \log N.$$

Remarks

- The constant c comes from the growth law $d_q \approx c \log q$ for the degrees $\deg f_q$. Any choice of c in the interval $\left[\frac{1}{\log 3}, \frac{1}{\log 2}\right]$ is consistent with the proven degree bounds; numerically c can be estimated from data by averaging $d_q/\log q$ over primes $q \leq N$.
- We never used the full Prime Number Theorem. Chebyshev's inequalities are enough to show the integral term is smaller by a factor $1/\log N$.
- Linearity of expectation needs no independence. We used (H1)–(H2) only to model $\mathbb{P}(X_q = 1) \approx 1/d_q$.

Inclusion–Exclusion over many p: near full coverage

Step 0. Fix q and define the events

Fix a prime q. For each prime p we consider the event

$$E_p(q) := \{ f_q(x) \bmod p \text{ is irreducible in } \mathbb{F}_p[x] \}.$$

Under (H1)–(H2), the Frobenius class at p behaves like a uniformly random element of a group $G_q \simeq S_{d_q}$ (heuristically), hence

$$\mathbb{P}\big(E_p(q)\big) \approx \kappa_q := \frac{1}{d_q}.$$

We also assume (H3) that for distinct primes $p \neq p'$ the events $E_p(q)$ and $E_{p'}(q)$ are "independent enough" (we model them as independent Bernoulli trials with success probability κ_q). Thus the entire family $\{E_p(q)\}_{p\leq N}$ is modeled as i.i.d. Bernoulli(κ_q).

Step 1. Inclusion–Exclusion for the union probability

We want the probability that at least one prime $p \leq N$ makes $f_q \mod p$ irreducible, i.e.

$$\mathbb{P}\Big(\bigcup_{p\leq N} E_p(q)\Big).$$

The inclusion-exclusion (IE) identity states, for finitely many events A_1, \ldots, A_m ,

$$\mathbb{P}\Big(\bigcup_{j=1}^{m} A_j\Big) = \sum_{r=1}^{m} (-1)^{r+1} \sum_{1 \le j_1 < \dots < j_r \le m} \mathbb{P}\Big(A_{j_1} \cap \dots \cap A_{j_r}\Big).$$

Here $m = \pi(N)$ and A_j runs over $E_p(q)$ with $p \leq N$. Under our independence model and with all single-event probabilities equal to κ_q ,

$$\mathbb{P}\big(E_{p_1}(q)\cap\cdots\cap E_{p_r}(q)\big) \approx \kappa_q^r.$$

There are $\binom{\pi(N)}{r}$ such r-fold intersections, so IE becomes the binomial series

$$\mathbb{P}\Big(\bigcup_{p \le N} E_p(q)\Big) \approx \sum_{r=1}^{\pi(N)} (-1)^{r+1} \binom{\pi(N)}{r} \kappa_q^r = 1 - \sum_{r=0}^{\pi(N)} \binom{\pi(N)}{r} (-\kappa_q)^r$$
$$= 1 - (1 - \kappa_q)^{\pi(N)}.$$

Thus we obtain the closed form

$$\mathbb{P}\Big(\bigcup_{p\leq N} E_p(q)\Big) \approx 1 - (1 - \kappa_q)^{\pi(N)}. \tag{10}$$

Step 2. Elementary bounds for $1 - (1 - \kappa)^m$

For $0 \le \kappa \le 1$ and $m \ge 1$ we have the standard inequalities

$$1 - e^{-m\kappa} \le 1 - (1 - \kappa)^m \le \min\{m\kappa, 1\}. \tag{11}$$

The upper bound $1 - (1 - \kappa)^m \le m\kappa$ is the union bound (Boole's inequality) or the first Bonferroni term. The lower bound follows from $(1 - \kappa)^m \le e^{-m\kappa}$ (since $\log(1 - \kappa) \le -\kappa$).

Applying (11) to (10) with $\kappa = \kappa_q$ and $m = \pi(N)$ gives the sandwich

$$1 - e^{-\pi(N)\kappa_q} \lesssim \mathbb{P}\Big(\bigcup_{p < N} E_p(q)\Big) \lesssim \min\{\pi(N)\kappa_q, 1\}.$$
 (12)

Step 3. Insert the size of κ_q and of $\pi(N)$

From the degree growth we have $d_q \approx \log q$, hence for some absolute C > 0,

$$\kappa_q = \frac{1}{d_q} \gtrsim \frac{1}{C \log q}.$$

Also, by Chebyshev's elementary bounds, for large N there exists an absolute c > 0 with

$$\pi(N) \ge c \frac{N}{\log N}.$$

Therefore, uniformly for all $q \leq N$,

$$\pi(N)\kappa_q \gtrsim \frac{N}{\log N} \cdot \frac{1}{C\log q} \geq \frac{N}{C(\log N)^2}.$$

Insert this in the *lower* bound of (12):

$$\mathbb{P}\Big(\bigcup_{q \le N} E_p(q)\Big) \gtrsim 1 - \exp\Big(-\frac{N}{C(\log N)^2}\Big) = 1 - o(1). \tag{13}$$

Thus, for each fixed $q \leq N$, the probability that no prime $p \leq N$ makes $f_q \mod p$ irreducible is exponentially small in $N/(\log N)^2$.

Step 4. Expected size of the union over $p \leq N$ and all $q \leq N$

Define the random set of "hit" primes

$$\mathcal{H}(N) := \{ q \leq N \text{ prime } : \exists p \leq N \text{ prime with } E_p(q) \}.$$

Its (random) size is

$$|\mathcal{H}(N)| = \sum_{q \le N} \mathbf{1}_{\{\exists p \le N: E_p(q)\}}.$$

Taking expectations and using linearity,

$$\mathbb{E} |\mathcal{H}(N)| = \sum_{q \le N} \mathbb{P} \Big(\bigcup_{p \le N} E_p(q) \Big).$$

By (13), each summand is 1 - o(1) (with the same small o(1) for all $q \le N$), hence

$$\mathbb{E}|\mathcal{H}(N)| = \sum_{q \le N} \left(1 - o(1)\right) = \left(\pi(N)\right) \cdot \left(1 - o(1)\right)$$
$$= \pi(N) - o(\pi(N)).$$

In particular,

$$\mathbb{E} \# \{ q \le N : \exists p \le N, f_q \bmod p \text{ irreducible } \} = \pi(N) - o(\pi(N)).$$
 (14)

Step 5. Interpretation and robustness

• "Near full coverage". Equation (14) says that, under (H1)–(H3), the union over $p \leq N$ hits almost every prime $q \leq N$. The expected number of "misses" is at most of order

$$\sum_{q < N} \exp \Bigl(- \Omega \bigl(N/(\log N)^2 \bigr) \Bigr) \ \le \ \pi(N) \cdot \exp \Bigl(- \Omega \bigl(N/(\log N)^2 \bigr) \Bigr),$$

which is tiny compared to $\pi(N)$.

• Why inclusion—exclusion matters. If we kept only the first term (union bound), we would get the coarse estimate

$$\mathbb{P}\Big(\bigcup_{p \le N} E_p(q)\Big) \le \pi(N)\kappa_q,$$

which correctly captures small- κ_q behavior but misses the saturation to 1. The full IE series sums to $1 - (1 - \kappa_q)^{\pi(N)}$, which transitions from $\approx \pi(N)\kappa_q$ (when $\pi(N)\kappa_q \ll 1$) to ≈ 1 (when $\pi(N)\kappa_q \gg 1$).

- Ramified or exceptional primes. A finite set of small primes p may behave atypically (e.g. ramification). This affects at most O(1) values of p and does not change the asymptotics, because $\pi(N) \to \infty$.
- No need for the PNT. We only used Chebyshev's inequalities to ensure $\pi(N) \gg N/\log N$, which suffices to make the exponent in (13) grow and force near certainty.

Special prime shapes

Step 0. Fix a special class of primes

Let

$$S(N) \subset \{q < N : q \text{ prime }\}$$

be any specified family of primes up to N. Typical examples:

- Arithmetic progressions: $S(N) = \{q \le N : q \equiv a \pmod{m}\}$ with (a, m) = 1.
- Polynomial shapes (one variable): $S(N) = \{q \leq N : q = f(n) \text{ prime for some } n \in \mathbb{N} \}$, e.g. $q = n^2 + 1$.
- Two-linear forms (twin/Sophie Germain, etc.): $S(N) = \{q \leq N : q \text{ prime and } g(q) \text{ prime} \}$, e.g. g(q) = 2q + 1.
- Mersenne primes: $S(N) = \{q \le N : q = 2^r 1 \text{ prime}\}.$

We will assume, in the spirit of (H1)–(H3), that the irreducibility model we used for all primes also applies uniformly to the subfamily S(N): for each $q \in S(N)$ and each prime p,

$$\mathbb{P}(f_q \bmod p \text{ irreducible}) \approx \kappa_q = \frac{1}{d_q}, \qquad d_q = \deg f_q \asymp \log q,$$

and (for fixed q) the events over different p behave like independent Bernoulli trials with success probability κ_q .

Step 1. Per-q hit probability via Inclusion-Exclusion

Fix $q \in S(N)$. Define the events $E_p(q)$ as before:

$$E_p(q) = \{ f_q(x) \bmod p \text{ is irreducible in } \mathbb{F}_p[x] \}.$$

By the inclusion–exclusion computation (with independence as in (H3)),

$$\mathbb{P}\Big(\exists p \le N : E_p(q)\Big) \approx 1 - (1 - \kappa_q)^{\pi(N)}. \tag{15}$$

Using the elementary bounds $1 - e^{-m\kappa} \le 1 - (1 - \kappa)^m \le \min\{m\kappa, 1\}$ with $m = \pi(N)$ and $\kappa = \kappa_q = 1/d_q$, we obtain

$$1 - \exp(-\pi(N)\kappa_q) \lesssim \mathbb{P}(\exists p \leq N : E_p(q)) \lesssim \min\{\pi(N)\kappa_q, 1\}.$$
 (16)

Since $d_q \approx \log q$ and $q \leq N$, there exists a fixed C > 0 with $\kappa_q \geq 1/(C \log q) \geq 1/(C \log N)$. Chebyshev's inequality gives $\pi(N) \geq c N/\log N$ for some absolute c > 0, so

$$\pi(N)\kappa_q \geq \frac{c N}{\log N} \cdot \frac{1}{C \log N} = \frac{c}{C} \cdot \frac{N}{(\log N)^2}.$$

Plugging into the *lower* bound in (16) yields

$$\mathbb{P}\Big(\exists p \le N : E_p(q)\Big) \gtrsim 1 - \exp\left(-\frac{c}{C} \cdot \frac{N}{(\log N)^2}\right) = 1 - o(1), \tag{17}$$

uniformly for all $q \in S(N)$.

Step 2. Expected number of hits inside S(N)

Let

$$H_S(N) := \# \{ q \in S(N) : \exists p \leq N, f_q \bmod p \text{ irreducible} \}.$$

By linearity of expectation and (15),

$$\mathbb{E} H_S(N) = \sum_{q \in S(N)} \mathbb{P} \Big(\exists p \le N : E_p(q) \Big) \approx \sum_{q \in S(N)} \Big[1 - (1 - \kappa_q)^{\pi(N)} \Big].$$

Using the uniform lower bound (17), we get

$$\mathbb{E} \, H_S(N) \, \, \geq \, \, \sum_{q \in S(N)} \Big(1 - \exp \Big(- \Omega(N/(\log N)^2) \Big) \Big) \, \, = \, \, |S(N)| \, - \, |S(N)| \, - \, |S(N)| \, \cdot \, \exp \Big(- \Omega(N/(\log N)^2) \Big).$$

Since $|S(N)| \le \pi(N)$ and the exponential factor decays faster than any power of N, the "expected misses" are negligible:

$$\mathbb{E} H_S(N) = |S(N)| \cdot (1 - o(1)). \tag{18}$$

Step 3. A note on concentration (optional, heuristic)

If we strengthen (H3) to say that for different q the families $\{E_p(q)\}_{p\leq N}$ are weakly dependent enough (or approximately independent), then standard concentration inequalities (Chernoff/Hoeffding for sums of bounded variables) suggest that $H_S(N)$ is tightly concentrated around its mean. Heuristically,

$$H_S(N) = |S(N)| \cdot (1 - o(1))$$
 with high probability.

We will not rely on this; the expectation (18) already shows that our method loses asymptotically nothing.

Step 4. How |S(N)| is obtained (external number theory)

Our framework is *conditional* on an external estimate for |S(N)|. Some standard inputs:

• Primes in APs. (Dirichlet's theorem, plus effective forms.) For fixed (a, m) = 1,

$$|S(N)| = \#\{q \le N : q \equiv a \mod m \text{ prime}\} \sim \frac{1}{\varphi(m)} \cdot \frac{N}{\log N}.$$

• One-variable prime-producing polynomials. (Bateman-Horn conjecture.) E.g. for $q = n^2 + 1$,

$$|S(N)| \sim C_{n^2+1} \cdot \frac{\sqrt{N}}{\log N}.$$

• Two-linear forms (e.g. Sophie Germain). (Bateman-Horn.) For q prime and 2q + 1 prime,

$$|S(N)| \sim C_{\rm SG} \cdot \frac{N}{(\log N)^2}.$$

• Mersenne primes. (Wagstaff/Lenstra-Pomerance heuristics.) Up to bound N,

$$|S(N)| \approx \frac{e^{\gamma}}{\log 2} \log \log N.$$

Whatever the ambient asymptotic for |S(N)| is, the expectation (18) says our detection count matches it up to a (1 - o(1)) factor.

Step 5. Putting it all together

Combining the "fixed p" estimate and the union estimate:

• For any fixed prime p,

$$\mathbb{E} U_p(N) \approx \frac{1}{c} \cdot \frac{\pi(N)}{\log N}, \qquad c \in \left[\frac{1}{\log 3}, \frac{1}{\log 2}\right],$$

by the detailed summation-by-parts argument.

• For the union over all $p \leq N$, and for any special class S(N),

$$\mathbb{E} \# \Big\{ q \in S(N) : \exists p \leq N, \ f_q \bmod p \text{ irreducible} \Big\} = |S(N)| \cdot (1 - o(1)),$$

by the inclusion–exclusion estimate and the uniform bound $\kappa_q \gtrsim 1/\log q$.

Summary. Under (H1)–(H3):

1. For a fixed prime p,

$$\mathbb{E} U_p(N) \approx \frac{1}{c} \cdot \frac{\pi(N)}{\log N}.$$

2. For any special prime class S(N),

$$\mathbb{E} H_S(N) = |S(N)| \cdot (1 - o(1)).$$

Thus our inclusion–exclusion heuristic loses essentially nothing: the count of detected primes inside S(N) is asymptotically the full ambient size |S(N)|, whatever that size is (from theorems like Dirichlet or conjectures like Bateman–Horn/Wagstaff).

11

Empirical justification

Setup. The following experiment was generated by running the SageMath script counting_primes_with_polynomials.sage. It constructs the polynomials $f_n(x)$, tests irreducibility of $f_q(x)$ mod p over \mathbb{F}_p , and measures both the fixed-p count $U_p(N)$ and the inclusion–exclusion union coverage over all primes $p \leq P_{\max}$, restricted to various special prime classes S(N).

Parameters and results (raw console output).

```
=== Parameters ===
N=50000, Pmax=50000, fixed p=101
===========
>> Fixed p baseline
Estimated c_N \sim 1.2203
U_p(N) for p=101: 448
Prediction sum_q 1/(c log q): 443.768
pi(N) ~ 5133, pi(N)/log N ~ 474.409
>> Union coverage (all primes q <= N)
All primes
                                 covered 5123 / 5133
                                                            ratio = 0.998
>> Special prime classes S(N) and union coverage over p <= Pmax
AP \ q \ ^{-} \ 1 \ (mod \ 4)
                                   covered
                                             2539 /
                                                     2549
                                                              ratio = 0.996
AP \ q \ ^{-} \ 1 \ (mod \ 3)
                                                              ratio = 0.999
                                             2554 /
                                                     2556
                                   covered
AP q = 1 \pmod{5}
                                   covered
                                             1270 /
                                                     1274
                                                              ratio = 0.997
AP q = 2 \pmod{5}
                                   covered
                                             1285 /
                                                     1289
                                                              ratio = 0.997
q = n^2 + 1
                                 covered
                                             33 /
                                                     37
                                                            ratio = 0.892
q = n^2 + n + 41
                                            169 /
                                                            ratio = 1.000
                                 covered
                                                    169
twin primes (q, q+2)
                                 covered
                                            702 /
                                                    705
                                                            ratio = 0.996
Sophie Germain q
                                                    670
                                            669 /
                                                            ratio = 0.999
                                 covered
Mersenne primes
                                              5 /
                                                      5
                                                            ratio = 1.000
                                 covered
```

Done.

Interpretation. The fixed-p count $U_p(N)$ closely matches the heuristic prediction $\sum_{q \leq N} \frac{1}{c \log q} \approx \frac{1}{c} \cdot \frac{\pi(N)}{\log N}$, and the union over $p \leq P_{\text{max}}$ almost hits all primes $q \leq N$ (ratio 0.998). Within special classes S(N) (APs, polynomial shapes, twin/Sophie Germain, Mersenne), the observed coverage ratios are ≈ 1 , in line with the inclusion–exclusion prediction that the detected count inside S(N) is |S(N)|(1-o(1)).

Remark (where we use irreducibility of f_n). Short answer: we only really use the "if n is prime, then f_n is irreducible over \mathbb{Q} " half. The converse ("if n is composite, then f_n is reducible") is true but not essential for our counting.

• (1) Setting up the model for primes q. All counting arguments restrict to q prime and study f_q . We need f_q irreducible over \mathbb{Q} so that (i) it has a well-defined degree $d_q = \deg f_q$ equal to $[\mathbb{Q}[x]/(f_q):\mathbb{Q}]$; (ii) its splitting field has a transitive Galois group $G_q \leq S_{d_q}$, allowing the Dedekind-Frobenius dictionary (factorization mod $p \leftrightarrow \text{cycle}$ type); (iii) hence " $f_q \mod p$ is irreducible" \iff "Frobenius at p is a d_q -cycle", giving the success probability $\kappa_q \approx 1/d_q$.

- (2) Log-degree control in the probabilities. We use $d_q \approx \log q$ to turn κ_q into $\approx 1/\log q$. This is applied only for prime q, i.e. to irreducible f_q .
- (3) Inclusion–Exclusion for each fixed q. IE needs a single success probability κ_q per p. This relies on (1): for irreducible f_q over \mathbb{Q} , "success" truly means " d_q -cycle" with chance $1/d_q$.

What we do not need:

- We never use the " \Leftarrow " direction for composites in the counting. Although for composite n one has $f_n = \prod_p f_p^{\nu_p(n)}$ (hence reducible), our sums run only over *prime q*.
- The IE "near full coverage" over $p \leq N$ is computed per prime q, so again only "prime \Rightarrow irreducible over \mathbb{Q} " is invoked.

In one line: we use "n prime $\Rightarrow f_n$ irreducible over \mathbb{Q} " to justify the d_q -cycle model and $\kappa_q = 1/d_q$; the converse is not needed for the heuristic counts (though it explains why composites are irrelevant).