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Abstract

We define a family of integer polynomials (f,(7)),>1) and use three standard heuristic
assumptions about Galois groups and Frobenius elements (H1-H3), together with the
Inclusion—Exclusion principle (IE), to heuristically count: (1) primes up to N detected by
irreducibility modulo a fixed prime p, and (2) primes in a special subfamily (“prime shapes”)
up to N. The presentation is self-contained and aimed at undergraduates.

Definition of the polynomials f,(z)

Let fn(x) € Z[z] be defined recursively by
fl(x):]-a f2($):$,
if n is prime:  f,(z) =14 fr_1(x),
if n has the prime factorization n = Hp””(") s falz) = H(fp(x))yp(n).

p p

(All products are over primes p.) One checks that deg f,, grows logarithmically in n: there are
fixed constants 0 < ¢; < ¢g < oo such that

cilogn < degf, < calogn (n>3),

e.g. ¢ = 1/log3 and co = 1/log 2 work.

Basic properties of f,(x)

We collect elementary properties of the sequence (f,),>1 that follow immediately from the
definition and simple inductions.

e Multiplicativity. For all m,n € N one has

Indeed this is built into the rule for composite n, and extends to all m,n by unique
factorization.

¢ Monicity, integral and nonnegative coefficients. Since fo = x is monic with integer
coefficients and the rules are obtained from f — f + 1 and (f,g) — fg, it follows by
induction that every f,, is monic in Z[z] and all coefficients are nonnegative. In particular
the constant term is f,,(0) =1 for all n (with f1(0) =1).

e Evaluation at z = 2. For alln > 1,

fn(2) = n.



Proof by strong induction on n: it holds for n = 1,2. If n is prime, then
_1+ H f an1_1+ H quq(n 1)—1+(n—1)—n
ql(n—1) q|(n—1)

If n = [[p*? is composite, then by multiplicativity
2) =] @ =] p* =n.
P P

e Logarithmic degree growth. There are absolute constants 0 < ¢; < ¢ < oo such that
for all n > 3,
c1logn < degf, < cylogn,

e.g. c; = 1/log3 and ¢y = 1/log2. This follows by induction on n and the definiton of

e An equivalent characterization. The sequence (f,) is the unique family of nonzero
polynomials satisfying: fo(z) =z, fp(x) = fp—1(x)+1 for all primes p > 2, and fpn, = finfn
for all m,n. (This tidy axiomatization was noted by Will Sawin.)[]

Zeros lie in a left half-plane and irreducibility for prime indices

A key analytic observation is that, for every prime p, all zeros of f, lie in the half-plane Re(z) < %
From this, one can deduce irreducibility of f, over Z[z]. We include a self-contained proof
adapted from Jonathan Love’s MathOverflow answerE]

Lemma 1 (A root-location lemma). Let g(x) € Z[z] be a non-constant monic polynomial with

constant term £1. If g is not a power of (x + 1), then g has a root 6 with Re(0) > —%.

Proof. If all roots of g had real part < —%, then |6+ 1| < |6] for each root 6. For any irreducible
factor h of g we would have

n(=Dl= ] l6+t< [ 161=1In0)=1,
0:h(0)=0 0:h(0)=0

forcing h(—1) = 0, hence h(z) =z + 1. Thus g(z) = (x + 1)™. O

Lemma 2 (Uniform bound on |f,(z)| away from a compact set). For each prime p and each z
with Re(2) > 2, one has |fy(2)| > 2. Consequently, every root 0 of f, satisfies Re(f) < 3.

Proof. The claim is evident for p = 2. For p = 3 and p = 5 one checks directly: if z = a + bi
with a > %, then

[f3()] = 41| = [(a+1)+bi[ > a1 >2,  |f5(2)]? = [°+1° = (a®+(b-1)*)(a*+(b+1)?) = a* > 4.
For p > 7, write by definition
=1+ [] fo(z)a=V.
al(p—1)

If p — 1 has an odd prime divisor g, then |fa(z)| = |2| > 5 and by induction |f,(z)| > 2, so

3
2
LG > hEIE -1 > 32-1 =2

If instead p — 1 = 2% with k > 3, then |f,(2)| > [f2(2)[* — 1 > (3)3 — 1 > 2. This proves the
claim. 0

1See the MathOverflow discussion for details.
2MathOverflow question “Polynomials for natural numbers and irreducible polynomials for prime numbers?”,
answer by Jonathan Love (Dec. 11, 2024).



Proposition 1 (Irreducibility for prime indices). For every prime p, the polynomial fy(z) is
irreducible in Z[z].

Proof. Assume f, = FG with non-constant F,G € Z[z]. Since f,(2) = p, we may assume
F(2) = £1. Consider g(x) := F(z + 2); then ¢ is monic with constant term +1. If g were
a power of (x 4 1), then F'(1) = 0, contradicting f,(1) > 0 (all coefficients are nonnegative).
Thus, by Lemma|l} g has a root with real part > —%, i.e. F' has a root with real part > % By
Lemma |2| this is impossible, because all roots of f, lie strictly to the left of the line Re(z) =
Hence f, is irreducible.

[Jrotes

Further remarks. The proof also shows that all zeros of f, lie in a fixed compact region, e.g.
the set {z: |2 <3}U{z: |2 +1] <2} U{z: |22+ 1| < 2}, which contains the zero sets of all
fp (see the MO discussion).

Heuristic assumptions (H1-H3)
Fix once and for all a prime p. For each prime ¢, write d;, = deg f, and let G, < Sy, be the
Galois group of the splitting field of f, over Q. We adopt:

e (H1) Large Galois group. Typically G; ~ Sy, (or at least contains a dg-cycle).

e (H2) Random Frobenius at p. The Frobenius class at p in G, behaves like a uniformly
random element of Gj.

e (H3) Weak independence across ¢. For different primes ¢, the events we consider
are independent enough that expectations add and inclusion—exclusion behaves as in the
random model.

Heuristic probability of irreducibility mod p

Fix a prime p. For each prime ¢ let d, = deg f, and let G, < Sy, be the Galois group of the
splitting field of f, over Q. We keep the assumptions:

e (H1) Large Galois group: typically G, =~ Sy, (or at least contains a dy-cycle).

e (H2) Random Frobenius at p: the Frobenius class at p in G, behaves like a uniformly
random element of G.

The key dictionary (Dedekind—Frobenius, used here heuristically) is:
factorization pattern of f; mod p in Fylz] <—  cycle type of a random element of G; C Sg,.
In particular,

fq mod p is irreducible <= the associated permutation is a single d,-cycle.

Counting d-cycles in Sy

We now compute the exact fraction of permutations in Sy that are a single d-cycle.
|Sq| = d!,
d!
#{d-cycles in Sy} = i (d—1).

Reason: a d-cycle is just an ordering of the d symbols on a circle; there are d! linear orderings,
but each cyclic order has d starting points, so we divide by d.
Therefore the exact proportion of d-cycles in Sy is

#{d-cycles} (d-1)! 1
1Sal  d




Heuristic probability

Under (H1)-(H2) with G ~ Sg, and a uniform random element,

1
P(fy(z) mod p is irreducible over F),) ~ T (1)

q

Relating d, to loggq

From the basic properties of the sequence (f,) (degree multiplicativity and recursion), one has
for all sufficiently large primes ¢ the two-sided bound

log g log ¢
< d, < . 2
log3 = 7 = log2 2)

Equivalently, writing d, ~ ¢ log ¢ with a constant ¢ depending only on the sequence (and lying
in the interval [1/log3, 1/log2]), the reciprocal satisfies the sandwich estimate
log 2 < 1 < log 3

logg = dy ~— logq

3)

Combining and yields the explicit approximation

. . 1 1
P(fq mod p 1rredu01ble) ~ d—q ~ clogq’ cE [@» @}» (4)

and in particular for all large q,

log 2
logq

log 3
logq

< ]P’( fq mod p irreducible) <

~ ~

)

Interpretation. Equation says: for a fixed modulus p, each prime ¢ independently “fires’
(i.e. gives f; mod p irreducible) with chance on the order of 1/logg. This is the only input
needed to derive the sums and inclusion—exclusion formulas used later to estimate

1
clogq’

Z P(f, mod p irreducible) =~ Z

q<N q<N

and to show (heuristically) that the union over p < N hits almost all primes < N.

Counting for a fixed p: primes < N

Step 0. Setup and notation
Fix a prime modulus p. For each prime ¢ let d; = deg f;. Recall the heuristic from (H1)-(H2):

1

P(fy(z) mod p is irreducible over F),) ~ R
q

From the basic properties of (f,,) we have logarithmic degree growth, so there exists a constant

1 1 - ~
ceE [@, @] with d, =~ clogg,

hence
1 1

~
~

dq clogq
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Step 1. Define the random variables

For each prime ¢ < N, define the indicator variable

q:

1, if fy(z) mod p is irreducible over Fp,
0, otherwise.

Then the total number of such primes ¢ < N is

Up(N) = > X,
q<N
q prime

By definition of expectation and linearity of expectation,

1

EU,(N) = EX, = P(X,=1) = —.

0= Y BX, = YR =)~ Y o

q<N q<N g<N
Using d, ~ clog ¢ we obtain the first-order approximation
EU,(N) ~ > L 1S(N) S(N) := L (5)
b clogq c ’ log ¢
q<N q<N

Step 2. Estimating S(N) = }_ _y 1/logq by summation by parts

Let m(z) denote the prime-counting function. We write S(N) as a Stieltjes integral with respect
to dm(x):

N
S(N) = / L n(a),

- logzx

where 27 indicates that if N < 2 the sum is empty (we will always take N > 3). Let

a(x) :

gz or x > 3, () :=m(x)

By summation by parts (the discrete analogue of integration by parts),
N N
a(z)dA(x) =a(N)A(N) — / A(z)da(x).
2 2

We compute da(x) = d/(z) dz with

, 1
@lw) = - z(logx)?’
Hence ) N (@)
SO0 =g * |, g )

Step 3. A Chebyshev-level upper bound for the integral term

We do not use the prime number theorem. Instead, we rely on the classical Chebyshev bounds
(elementary) stating that for large z,

x (@) < x
C T\T
110ga: - -

(7)

C
*logz’

for some absolute constants 0 < ¢1 < ¢y < 00.



Plugging the upper bound from into @ gives

Noor(2) N
—————dr < dz.
| g = @), G

To estimate the last integral, set u = logz so du = dz/x and x = e". Then

/N dx /logN el g
= — du.
2 (log x)S log 2 u?

Integration by parts (or a simple comparison) shows that this integral grows like

Therefore,
N
m(x) N
2 dr = O ——).
/2 z(log z)? v O( (logN)3) (8)
Step 4. Dominant term and comparison of sizes

From () and we obtain

( ):ﬁ(g]j\)r + O(aogNN)s)-

To see that the error term is genuinely smaller than the main term 7(N)/log N, compare sizes
using the lower Chebyshev bound in ([7]):

™ (N ) S ClN

logN — (logN)?

Hence the ratio of error to main term is

O(N/(log N)?) N/(logN)* 1 .0
7(N)/log N N/(logN)2 ~ logN '
Therefore
m(N)
S(N) = log N <1 + 0(1)) (no PNT needed; Chebyshev suffices). (9)

Step 5. Conclusion for the expectation

Returning to and substituting @ gives

%S(N) = % m(N)

g NV (1 + 0(1)).

In boxed form:

1 7(N)
EUP(N) ~ E'logN’ ce [ﬁ’ @}

Equivalently, solving for m(NN) we get the heuristic relation

7(N) ~ cEU,(N) log N.



Remarks

e The constant ¢ comes from the growth law d, ~ clog ¢ for the degrees deg f,. Any choice

of ¢ in the interval [@, @] is consistent with the proven degree bounds; numerically ¢

can be estimated from data by averaging d,/log ¢ over primes ¢ < N.

e We never used the full Prime Number Theorem. Chebyshev’s inequalities are enough to
show the integral term is smaller by a factor 1/log N.

e Linearity of expectation needs no independence. We used (H1)-(H2) only to model

P(X, =1)~ 1/d,.

Inclusion—Exclusion over many p: near full coverage

Step 0. Fix ¢ and define the events
Fix a prime ¢q. For each prime p we consider the event
Ey(q) = { fq(x) mod p is irreducible in Fp[z] }.

Under (H1)-(H2), the Frobenius class at p behaves like a uniformly random element of a group
Gy ~ Sq, (heuristically), hence

P(Ep(q)) ~ kg == —.

We also assume (H3) that for distinct primes p # p’ the events E,(¢) and E,(q) are “independent
enough” (we model them as independent Bernoulli trials with success probability ). Thus the
entire family {F,(q)}p<n is modeled as i.i.d. Bernoulli(k,).

Step 1. Inclusion—Exclusion for the union probability

We want the probability that at least one prime p < N makes f, mod p irreducible, i.e.

(U Eila) ).

p<N
The inclusion—ezclusion (IE) identity states, for finitely many events Ay,..., A,
m m
P(U Aj) => (=D >3 P40 4.
j=1 r=1 1<j1<<jr<m

Here m = w(N) and A; runs over E,(q) with p < N. Under our independence model and with
all single-event probabilities equal to xg,

P(Ep, (q)N---NEy.(q) = Fg -
There are (”(iv )) such r-fold intersections, so IE becomes the binomial series

() m(N)

P(U B) = Yo (M) =1 3 (M)

p<N r=1 r=0
=1— (1= k)" ™.

Thus we obtain the closed form

IP’( U Ep(q)> ~ 1= (1= kg™, (10)

p<N




Step 2. Elementary bounds for 1 — (1 — k)™
For 0 < k <1 and m > 1 we have the standard inequalities

l—e™ < 1-(1-k)" < min{ms, 1}.

(11)

The upper bound 1 — (1 — k)™ < mk is the union bound (Boole’s inequality) or the first

Bonferroni term. The lower bound follows from (1 — k)™ < e™™" (since log(l — k) < —k).
Applying to with k = kg and m = w(N) gives the sandwich

1— e ™Nq S P( U Ep(Q)) < min{m(N)kg, 1}.
p<N

Step 3. Insert the size of x, and of 7(NV)

From the degree growth we have d, < log ¢, hence for some absolute C' > 0,

/’iq:i 2 L .
dy ~ Clogq

Also, by Chebyshev’s elementary bounds, for large N there exists an absolute ¢ > 0 with

N
> .
m(N) > clogN

Therefore, uniformly for all ¢ < N,

> N o1 > N .
~ logN Cloggq C(log N)?

Insert this in the lower bound of :

m(N)k

]P’(U Ep(q)) 2 1—exp<— C(lo]g\;rN)Q) = 1-o0(1).

p<N

(12)

(13)

Thus, for each fixed ¢ < N, the probability that no prime p < N makes f;, mod p irreducible is

exponentially small in N/(log N)2.

Step 4. Expected size of the union over p < N and all ¢ < N
Define the random set of “hit” primes
H(N) := {¢ < N prime : Ip < N prime with Ey(q) }.

Its (random) size is

HN| = > Lzpen: By0)-
g<N

Taking expectations and using linearity,
EHWN) = > (U E@)-
g<N  p<N
By (13), each summand is 1 — o(1) (with the same small o(1) for all ¢ < N), hence
EHN)| = Y (1-0(1)) = (r(N) - (1= o(1))

q<N
=7(N) — o(w(N)).

In particular,

E#{q<N: 3p<N, fymodp irreducible } = w(N) —o(m(N)).




Step 5. Interpretation and robustness

o “Near full coverage”. Equation says that, under (H1)—(H3), the union over p < N
hits almost every prime ¢ < N. The expected number of “misses” is at most of order

S exp(— ON/(log N)?)) < (N) - exp ~ N/(10g N)?) ),

q<N
which is tiny compared to m(V).

e Why inclusion—exclusion matters. If we kept only the first term (union bound), we
would get the coarse estimate

P(U Bol@) < 7Ny,

p<N

which correctly captures small-x, behavior but misses the saturation to 1. The full IE
series sums to 1 — (1 — k,)™ ™), which transitions from ~ 7(N)k, (when m(N)k, < 1) to
~ 1 (when m(N)ky > 1).

e Ramified or exceptional primes. A finite set of small primes p may behave atypi-
cally (e.g. ramification). This affects at most O(1) values of p and does not change the
asymptotics, because m(N) — 0.

e No need for the PNT. We only used Chebyshev’s inequalities to ensure 7(N) > N/log N,
which suffices to make the exponent in grow and force near certainty.

Special prime shapes

Step 0. Fix a special class of primes

Let
S(N) € {g<N: qprime}

be any specified family of primes up to N. Typical examples:
e Arithmetic progressions: S(N) ={q < N: g =a (mod m)} with (a,m) = 1.
e Polynomial shapes (one variable): S(N) = {q < N : ¢ = f(n) prime for some n € N}, e.g.
g=n>+1.
o Two-linear forms (twin/Sophie Germain, etc.): S(N) ={q < N : ¢ prime and ¢(q) prime},
e.g. g(q) =2q+ 1.
e Mersenne primes: S(N) ={q < N: qg=2"—1 prime}.

We will assume, in the spirit of (H1)-(H3), that the irreducibility model we used for all primes
also applies uniformly to the subfamily S(N): for each ¢ € S(IV) and each prime p,
1
P(fq mod p irreducible) R kg = T d, = deg f, < loggq,
q
and (for fixed q) the events over different p behave like independent Bernoulli trials with success
probability k.



Step 1. Per-q hit probability via Inclusion—Exclusion
Fix g € S(N). Define the events E,(q) as before:
E,(q) = { fy(z) mod p is irreducible in Fy[z] }.

By the inclusion—exclusion computation (with independence as in (H3)),
IP’(EIp <N: Ep(q)) ~ 1= (1— rg)™ ). (15)

Using the elementary bounds 1 — e ™™* < 1 — (1 — k)™ < min{mk, 1} with m = 7(N) and
Kk = Kq = 1/dg, we obtain

1—exp(—7m(N)kg) < IP’(EIp <N: Ep(q)> < min{n(N)kg, 1}. (16)
Since dgy < logq and ¢ < N, there exists a fixed C > 0 with k, > 1/(C'loggq) > 1/(Clog N).

Chebyshev’s inequality gives m(IN) > ¢ N/log N for some absolute ¢ > 0, so

(N)ky > cN 1 c N
T(N)k . = - —.
7 = logN ClogN C (logN)?

Plugging into the lower bound in yields

N
uniformly for all ¢ € S(N).

Step 2. Expected number of hits inside S(N)

Let
Hg(N) = #{ geS(N): 3p <N, f, modp irreducible}.

By linearity of expectation and ,
EHs(N) = Y P(apg N: Ep(q)> ~ 3 [1 —a —ﬁq)ﬂ(N)}.
qeS(N) geS(N)
Using the uniform lower bound , we get
EHs(N) > 3 (1-exp(~Q(V/(0gN))) = [S(V)] ~ S(N)] - exp( ~ N/ (log N)?))
geS(N)

Since |S(N)| < 7(NN) and the exponential factor decays faster than any power of N, the “expected
misses” are negligible:

EHs(N) = |S(N)|- (1 o(1). (18)

Step 3. A note on concentration (optional, heuristic)

If we strengthen (H3) to say that for different q the families {E,(q)}p<n are weakly depen-
dent enough (or approximately independent), then standard concentration inequalities (Cher-
noff/Hoeffding for sums of bounded variables) suggest that Hg(N) is tightly concentrated around
its mean. Heuristically,

Hg(N) = [S(N)]- (1 —-0(1)) with high probability.

We will not rely on this; the expectation already shows that our method loses asymptotically
nothing.
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Step 4. How |S(N)| is obtained (external number theory)
Our framework is conditional on an external estimate for |S(IV)|. Some standard inputs:
e Primes in APs. (Dirichlet’s theorem, plus effective forms.) For fixed (a,m) = 1,

1 N

= < : = i ~ — .
|S(INV)] #{q < N: q¢=amodm prime} oo Tog N

e One-variable prime-producing polynomials. (Bateman—Horn conjecture.) E.g. for

q=n’+1,
VN
IS(N)| ~ Cpayq- log N’
e Two-linear forms (e.g. Sophie Germain). (Bateman—Horn.) For ¢ prime and 2q + 1

prime,
N
N)| ~ R —
[SNI~ Csa (log N )2

e Mersenne primes. (Wagstaff/Lenstra-Pomerance heuristics.) Up to bound N,

e
[S(N)| =~

loglog V.
log 2 08108

Whatever the ambient asymptotic for |S(N)| is, the expectation says our detection count
matches it up to a (1 — o(1)) factor.

Step 5. Putting it all together
Combining the “fixed p” estimate and the union estimate:

e For any fized prime p,

EU,(N) ~ % L T()

1 1
logN’ ce [log3’log2:|’
by the detailed summation-by-parts argument.

e For the union over all p < N, and for any special class S(N),
E #{ ge S(N): 3p< N, fymodp irreducible} = |S(N)]|- (1 - 0(1)),
by the inclusion-exclusion estimate and the uniform bound x; 2 1/logq.

Summary. Under (H1)-(H3):

1. For a fixed prime p,

EU,(N) =~ % m(N)

log N’
2. For any special prime class S(N),

EHs(N) = [S(N)[- (1 —o(1)).

Thus our inclusion—exclusion heuristic loses essentially nothing: the count of detected primes
inside S(N) is asymptotically the full ambient size |S(IV)|, whatever that size is (from theorems
like Dirichlet or conjectures like Bateman-Horn/Wagstaff).
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Empirical justification

Setup. The following experiment was generated by running the SageMath script

counting primes with polynomials.sage. It constructs the polynomials f,(x), tests irre-
ducibility of f,(z) mod p over F,, and measures both the fixed-p count U,(N) and the inclusion—
exclusion union coverage over all primes p < Pjax, restricted to various special prime classes
S(N).

Parameters and results (raw console output).

=== Parameters ===
N=50000, Pmax=50000, fixed p=101

>> Fixed p baseline

Estimated c_N 7 1.2203

U_p(N) for p=101: 448

Prediction sum_q 1/(c log q): 443.768
pi(N) ~ 5133, pi(N)/log N ~ 474.409

>> Union coverage (all primes q <= N)
All primes covered 5123 / 5133 ratio = 0.998

>> Special prime classes S(N) and union coverage over p <= Pmax

AP q "=" 1 (mod 4) covered 2539 / 2549 ratio = 0.996
AP q =" 1 (mod 3) covered 2554 / 2556 ratio = 0.999
AP q "=~ 1 (mod 5) covered 1270 / 1274 ratio = 0.997
AP q "=" 2 (mod 5) covered 1285 / 1289 ratio = 0.997
q=n"2+1 covered 33/ 37 ratio = 0.892
q=1n"2+n + 41 covered 169 / 169 ratio = 1.000
twin primes (q, q+2) covered 702 / 705 ratio = 0.996
Sophie Germain q covered 669 / 670 ratio = 0.999
Mersenne primes covered 5/ 5 ratio = 1.000
Done.

Interpretation. The fixed-p count Uy (V) closely matches the heuristic prediction g<N @ ~

% . 172) (gN]\),, and the union over p < Ppax almost hits all primes ¢ < N (ratio 0.998). Within special

classes S(N) (APs, polynomial shapes, twin/Sophie Germain, Mersenne), the observed coverage
ratios are = 1, in line with the inclusion—exclusion prediction that the detected count inside

S(N) is |S(N)|(1 - o(1)).

Remark (where we use irreducibility of f,). Short answer: we only really use the “if
n is prime, then f, is irreducible over Q” half. The converse (“if n is composite, then f, is
reducible”) is true but not essential for our counting.

e (1) Setting up the model for primes ¢. All counting arguments restrict to ¢ prime and
study f;. We need f, irreducible over Q so that (i) it has a well-defined degree d, = deg f,
equal to [Q[z]/(f,) : Q]; (ii) its splitting field has a transitive Galois group G, < Sg,,
allowing the Dedekind—Frobenius dictionary (factorization mod p <+ cycle type); (iii) hence
“fy mod p is irreducible” <= “Frobenius at p is a d4-cycle”, giving the success probability
kg &~ 1/dy.
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e (2) Log-degree control in the probabilities. We use d; =< logq to turn x4 into
= 1/logg. This is applied only for prime ¢, i.e. to irreducible f,.

¢ (3) Inclusion—Exclusion for each fixed ¢. IE needs a single success probability &,
per p. This relies on (1): for irreducible f, over Q, “success” truly means “dg-cycle” with
chance 1/d,.

What we do not need:

e We never use the “<” direction for composites in the counting. Although for composite n
one has f, = Hp i () (hence reducible), our sums run only over prime q.

e The IE “near full coverage” over p < N is computed per prime ¢, so again only “prime =
irreducible over Q” is invoked.

In one line: we use “n prime = f, irreducible over Q” to justify the d,-cycle model and
kq = 1/dg; the converse is not needed for the heuristic counts (though it explains why composites
are irrelevant).
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