
Counting primes with polynomials

Orges Leka

September 24, 2025

Abstract

We define a family of integer polynomials (fn(x))n≥1) and use three standard heuristic
assumptions about Galois groups and Frobenius elements (H1–H3), together with the
Inclusion–Exclusion principle (IE), to heuristically count: (1) primes up to N detected by
irreducibility modulo a fixed prime p, and (2) primes in a special subfamily (“prime shapes”)
up to N . The presentation is self-contained and aimed at undergraduates.

Definition of the polynomials fn(x)

Let fn(x) ∈ Z[x] be defined recursively by

f1(x) = 1, f2(x) = x,

if n is prime: fn(x) = 1 + fn−1(x),

if n has the prime factorization n =
∏
p

pνp(n) : fn(x) =
∏
p

(
fp(x)

)νp(n).
(All products are over primes p.) One checks that deg fn grows logarithmically in n: there are
fixed constants 0 < c1 ≤ c2 <∞ such that

c1 log n ≤ deg fn ≤ c2 log n (n ≥ 3),

e.g. c1 = 1/ log 3 and c2 = 1/ log 2 work.

Basic properties of fn(x)

We collect elementary properties of the sequence (fn)n≥1 that follow immediately from the
definition and simple inductions.

� Multiplicativity. For all m,n ∈ N one has

fmn(x) = fm(x) fn(x).

Indeed this is built into the rule for composite n, and extends to all m,n by unique
factorization.

� Monicity, integral and nonnegative coefficients. Since f2 = x is monic with integer
coefficients and the rules are obtained from f 7→ f + 1 and (f, g) 7→ fg, it follows by
induction that every fn is monic in Z[x] and all coefficients are nonnegative. In particular
the constant term is fn(0) = 1 for all n (with f1(0) = 1).

� Evaluation at x = 2. For all n ≥ 1,

fn(2) = n.
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Proof by strong induction on n: it holds for n = 1, 2. If n is prime, then

fn(2) = 1 +
∏

q|(n−1)

fq(2)
νq(n−1) = 1 +

∏
q|(n−1)

qνq(n−1) = 1 + (n− 1) = n.

If n =
∏

pνp is composite, then by multiplicativity

fn(2) =
∏
p

fp(2)
νp =

∏
p

pνp = n.

� Logarithmic degree growth. There are absolute constants 0 < c1 ≤ c2 <∞ such that
for all n ≥ 3,

c1 log n ≤ deg fn ≤ c2 log n,

e.g. c1 = 1/ log 3 and c2 = 1/ log 2. This follows by induction on n and the definiton of
fn(x).

� An equivalent characterization. The sequence (fn) is the unique family of nonzero
polynomials satisfying: f2(x) = x, fp(x) = fp−1(x)+1 for all primes p > 2, and fmn = fmfn
for all m,n. (This tidy axiomatization was noted by Will Sawin.)1

Zeros lie in a left half-plane and irreducibility for prime indices

A key analytic observation is that, for every prime p, all zeros of fp lie in the half-plane Re(z) < 3
2 .

From this, one can deduce irreducibility of fp over Z[x]. We include a self-contained proof
adapted from Jonathan Love’s MathOverflow answer.2

Lemma 1 (A root-location lemma). Let g(x) ∈ Z[x] be a non-constant monic polynomial with
constant term ±1. If g is not a power of (x+ 1), then g has a root θ with Re(θ) ≥ −1

2 .

Proof. If all roots of g had real part < −1
2 , then | θ+1 | < |θ| for each root θ. For any irreducible

factor h of g we would have

|h(−1)| =
∏

θ:h(θ)=0

|θ + 1| <
∏

θ:h(θ)=0

|θ| = |h(0)| = 1,

forcing h(−1) = 0, hence h(x) = x+ 1. Thus g(x) = (x+ 1)m.

Lemma 2 (Uniform bound on |fp(z)| away from a compact set). For each prime p and each z
with Re(z) ≥ 3

2 , one has |fp(z)| > 2. Consequently, every root θ of fp satisfies Re(θ) < 3
2 .

Proof. The claim is evident for p = 2. For p = 3 and p = 5 one checks directly: if z = a+ bi
with a ≥ 3

2 , then

|f3(z)| = |z+1| = |(a+1)+bi| ≥ a+1 > 2, |f5(z)|2 = |z2+1|2 = (a2+(b−1)2)(a2+(b+1)2) ≥ a4 > 4.

For p ≥ 7, write by definition

fp(z) = 1 +
∏

q|(p−1)

fq(z)
νq(p−1).

If p− 1 has an odd prime divisor q, then |f2(z)| = |z| ≥ 3
2 and by induction |fq(z)| > 2, so

|fp(z)| ≥ |f2(z)| |fq(z)| − 1 > 3
2 · 2− 1 = 2.

If instead p − 1 = 2k with k ≥ 3, then |fp(z)| ≥ |f2(z)|k − 1 > (32)
3 − 1 > 2. This proves the

claim.
1See the MathOverflow discussion for details.
2MathOverflow question “Polynomials for natural numbers and irreducible polynomials for prime numbers?”,

answer by Jonathan Love (Dec. 11, 2024).
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Proposition 1 (Irreducibility for prime indices). For every prime p, the polynomial fp(x) is
irreducible in Z[x].
Proof. Assume fp = FG with non-constant F,G ∈ Z[x]. Since fp(2) = p, we may assume
F (2) = ±1. Consider g(x) := F (x + 2); then g is monic with constant term ±1. If g were
a power of (x + 1), then F (1) = 0, contradicting fp(1) > 0 (all coefficients are nonnegative).
Thus, by Lemma 1, g has a root with real part ≥ −1

2 , i.e. F has a root with real part ≥ 3
2 . By

Lemma 2 this is impossible, because all roots of fp lie strictly to the left of the line Re(z) = 3
2 .

Hence fp is irreducible.

Further remarks. The proof also shows that all zeros of fp lie in a fixed compact region, e.g.
the set {z : |z| ≤ 3

2} ∪ {z : |z + 1| ≤ 2} ∪ {z : |z2 + 1| ≤ 2}, which contains the zero sets of all
fp (see the MO discussion).

Heuristic assumptions (H1–H3)

Fix once and for all a prime p. For each prime q, write dq = deg fq and let Gq ≤ Sdq be the
Galois group of the splitting field of fq over Q. We adopt:

� (H1) Large Galois group. Typically Gq ≃ Sdq (or at least contains a dq-cycle).

� (H2) Random Frobenius at p. The Frobenius class at p in Gq behaves like a uniformly
random element of Gq.

� (H3) Weak independence across q. For different primes q, the events we consider
are independent enough that expectations add and inclusion–exclusion behaves as in the
random model.

Heuristic probability of irreducibility mod p

Fix a prime p. For each prime q let dq = deg fq and let Gq ≤ Sdq be the Galois group of the
splitting field of fq over Q. We keep the assumptions:

� (H1) Large Galois group: typically Gq ≃ Sdq (or at least contains a dq-cycle).

� (H2) Random Frobenius at p: the Frobenius class at p in Gq behaves like a uniformly
random element of Gq.

The key dictionary (Dedekind–Frobenius, used here heuristically) is:

factorization pattern of fq mod p in Fp[x] ←→ cycle type of a random element of Gq ⊆ Sdq .

In particular,

fq mod p is irreducible ⇐⇒ the associated permutation is a single dq-cycle.

Counting d-cycles in Sd

We now compute the exact fraction of permutations in Sd that are a single d-cycle.

|Sd| = d!,

#{d-cycles in Sd} =
d!

d
= (d− 1)!.

Reason: a d-cycle is just an ordering of the d symbols on a circle; there are d! linear orderings,
but each cyclic order has d starting points, so we divide by d.

Therefore the exact proportion of d-cycles in Sd is

#{d-cycles}
|Sd|

=
(d− 1)!

d!
=

1

d
.
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Heuristic probability

Under (H1)–(H2) with Gq ≃ Sdq and a uniform random element,

P
(
fq(x) mod p is irreducible over Fp

)
≈ 1

dq
. (1)

Relating dq to log q

From the basic properties of the sequence (fn) (degree multiplicativity and recursion), one has
for all sufficiently large primes q the two-sided bound

log q

log 3
≤ dq ≤

log q

log 2
. (2)

Equivalently, writing dq ≈ c log q with a constant c depending only on the sequence (and lying
in the interval [1/ log 3, 1/ log 2]), the reciprocal satisfies the sandwich estimate

log 2

log q
≤ 1

dq
≤ log 3

log q
. (3)

Combining (1) and (3) yields the explicit approximation

P
(
fq mod p irreducible

)
≈ 1

dq
≈ 1

c log q
, c ∈

[
1

log 3 ,
1

log 2

]
, (4)

and in particular for all large q,

log 2

log q
≲ P

(
fq mod p irreducible

)
≲

log 3

log q
.

Interpretation. Equation (4) says: for a fixed modulus p, each prime q independently “fires”
(i.e. gives fq mod p irreducible) with chance on the order of 1/ log q. This is the only input
needed to derive the sums and inclusion–exclusion formulas used later to estimate∑

q≤N

P(fq mod p irreducible) ≈
∑
q≤N

1

c log q
,

and to show (heuristically) that the union over p ≤ N hits almost all primes ≤ N .

Counting for a fixed p: primes ≤ N

Step 0. Setup and notation

Fix a prime modulus p. For each prime q let dq = deg fq. Recall the heuristic from (H1)–(H2):

P
(
fq(x) mod p is irreducible over Fp

)
≈ 1

dq
.

From the basic properties of (fn) we have logarithmic degree growth, so there exists a constant

c ∈
[

1
log 3 ,

1
log 2

]
with dq ≈ c log q,

hence
1

dq
≈ 1

c log q
.
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Step 1. Define the random variables

For each prime q ≤ N , define the indicator variable

Xq =

{
1, if fq(x) mod p is irreducible over Fp,

0, otherwise.

Then the total number of such primes q ≤ N is

Up(N) :=
∑
q≤N

q prime

Xq.

By definition of expectation and linearity of expectation,

EUp(N) =
∑
q≤N

EXq =
∑
q≤N

P(Xq = 1) ≈
∑
q≤N

1

dq
.

Using dq ≈ c log q we obtain the first-order approximation

EUp(N) ≈
∑
q≤N

1

c log q
=

1

c
S(N), S(N) :=

∑
q≤N

1

log q
. (5)

Step 2. Estimating S(N) =
∑

q≤N 1/ log q by summation by parts

Let π(x) denote the prime-counting function. We write S(N) as a Stieltjes integral with respect
to dπ(x):

S(N) =

∫ N

2−

1

log x
dπ(x),

where 2− indicates that if N < 2 the sum is empty (we will always take N ≥ 3). Let

a(x) :=
1

log x
for x ≥ 3, A(x) := π(x).

By summation by parts (the discrete analogue of integration by parts),∫ N

2
a(x) dA(x) = a(N)A(N) −

∫ N

2
A(x) da(x).

We compute da(x) = a′(x) dx with

a′(x) = − 1

x(log x)2
.

Hence

S(N) =
π(N)

logN
+

∫ N

2

π(x)

x(log x)2
dx. (6)

Step 3. A Chebyshev-level upper bound for the integral term

We do not use the prime number theorem. Instead, we rely on the classical Chebyshev bounds
(elementary) stating that for large x,

c1
x

log x
≤ π(x) ≤ c2

x

log x
, (7)

for some absolute constants 0 < c1 ≤ c2 <∞.
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Plugging the upper bound from (7) into (6) gives∫ N

2

π(x)

x(log x)2
dx ≤ c2

∫ N

2

1

(log x)3
dx.

To estimate the last integral, set u = log x so du = dx/x and x = eu. Then∫ N

2

dx

(log x)3
=

∫ logN

log 2

eu

u3
du.

Integration by parts (or a simple comparison) shows that this integral grows like∫ logN

log 2

eu

u3
du = O

( N

(logN)3

)
.

Therefore, ∫ N

2

π(x)

x(log x)2
dx = O

( N

(logN)3

)
. (8)

Step 4. Dominant term and comparison of sizes

From (6) and (8) we obtain

S(N) =
π(N)

logN
+ O

( N

(logN)3

)
.

To see that the error term is genuinely smaller than the main term π(N)/ logN , compare sizes
using the lower Chebyshev bound in (7):

π(N)

logN
≥ c1N

(logN)2
.

Hence the ratio of error to main term is

O
(
N/(logN)3

)
π(N)/ logN

≪ N/(logN)3

N/(logN)2
=

1

logN
−→ 0.

Therefore

S(N) =
π(N)

logN

(
1 + o(1)

)
(no PNT needed; Chebyshev suffices). (9)

Step 5. Conclusion for the expectation

Returning to (5) and substituting (9) gives

EUp(N) ≈ 1

c
S(N) =

1

c
· π(N)

logN

(
1 + o(1)

)
.

In boxed form:

EUp(N) ≈ 1

c
· π(N)

logN
, c ∈

[
1

log 3 ,
1

log 2

]
.

Equivalently, solving for π(N) we get the heuristic relation

π(N) ≈ cEUp(N) logN.
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Remarks

� The constant c comes from the growth law dq ≈ c log q for the degrees deg fq. Any choice
of c in the interval [ 1

log 3 ,
1

log 2 ] is consistent with the proven degree bounds; numerically c
can be estimated from data by averaging dq/ log q over primes q ≤ N .

� We never used the full Prime Number Theorem. Chebyshev’s inequalities are enough to
show the integral term is smaller by a factor 1/ logN .

� Linearity of expectation needs no independence. We used (H1)–(H2) only to model
P(Xq = 1) ≈ 1/dq.

Inclusion–Exclusion over many p: near full coverage

Step 0. Fix q and define the events

Fix a prime q. For each prime p we consider the event

Ep(q) :=
{
fq(x) mod p is irreducible in Fp[x]

}
.

Under (H1)–(H2), the Frobenius class at p behaves like a uniformly random element of a group
Gq ≃ Sdq (heuristically), hence

P
(
Ep(q)

)
≈ κq :=

1

dq
.

We also assume (H3) that for distinct primes p ̸= p′ the events Ep(q) and Ep′(q) are “independent
enough” (we model them as independent Bernoulli trials with success probability κq). Thus the
entire family {Ep(q)}p≤N is modeled as i.i.d. Bernoulli(κq).

Step 1. Inclusion–Exclusion for the union probability

We want the probability that at least one prime p ≤ N makes fq mod p irreducible, i.e.

P
( ⋃

p≤N

Ep(q)
)
.

The inclusion–exclusion (IE) identity states, for finitely many events A1, . . . , Am,

P
( m⋃
j=1

Aj

)
=

m∑
r=1

(−1) r+1
∑

1≤j1<···<jr≤m

P
(
Aj1 ∩ · · · ∩Ajr

)
.

Here m = π(N) and Aj runs over Ep(q) with p ≤ N . Under our independence model and with
all single-event probabilities equal to κq,

P
(
Ep1(q) ∩ · · · ∩ Epr(q)

)
≈ κ r

q .

There are
(
π(N)
r

)
such r-fold intersections, so IE becomes the binomial series

P
( ⋃
p≤N

Ep(q)
)
≈

π(N)∑
r=1

(−1)r+1

(
π(N)

r

)
κ r
q = 1−

π(N)∑
r=0

(
π(N)

r

)
(−κq) r

= 1− (1− κq)
π(N).

Thus we obtain the closed form

P
( ⋃
p≤N

Ep(q)
)
≈ 1− (1− κq)

π(N). (10)
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Step 2. Elementary bounds for 1− (1− κ)m

For 0 ≤ κ ≤ 1 and m ≥ 1 we have the standard inequalities

1− e−mκ ≤ 1− (1− κ)m ≤ min{mκ, 1 }. (11)

The upper bound 1 − (1 − κ)m ≤ mκ is the union bound (Boole’s inequality) or the first
Bonferroni term. The lower bound follows from (1− κ)m ≤ e−mκ (since log(1− κ) ≤ −κ).

Applying (11) to (10) with κ = κq and m = π(N) gives the sandwich

1− e−π(N)κq ≲ P
( ⋃
p≤N

Ep(q)
)

≲ min{π(N)κq, 1}. (12)

Step 3. Insert the size of κq and of π(N)

From the degree growth we have dq ≍ log q, hence for some absolute C > 0,

κq =
1

dq
≳

1

C log q
.

Also, by Chebyshev’s elementary bounds, for large N there exists an absolute c > 0 with

π(N) ≥ c
N

logN
.

Therefore, uniformly for all q ≤ N ,

π(N)κq ≳
N

logN
· 1

C log q
≥ N

C(logN)2
.

Insert this in the lower bound of (12):

P
( ⋃
p≤N

Ep(q)
)

≳ 1− exp
(
− N

C(logN)2

)
= 1− o(1). (13)

Thus, for each fixed q ≤ N , the probability that no prime p ≤ N makes fq mod p irreducible is
exponentially small in N/(logN)2.

Step 4. Expected size of the union over p ≤ N and all q ≤ N

Define the random set of “hit” primes

H(N) :=
{
q ≤ N prime : ∃ p ≤ N prime with Ep(q)

}
.

Its (random) size is

|H(N)| =
∑
q≤N

1{∃ p≤N :Ep(q)}.

Taking expectations and using linearity,

E |H(N)| =
∑
q≤N

P
( ⋃
p≤N

Ep(q)
)
.

By (13), each summand is 1− o(1) (with the same small o(1) for all q ≤ N), hence

E |H(N)| =
∑
q≤N

(
1− o(1)

)
=

(
π(N)

)
·
(
1− o(1)

)
= π(N)− o

(
π(N)

)
.

In particular,

E#
{
q ≤ N : ∃ p ≤ N, fq mod p irreducible

}
= π(N)− o

(
π(N)

)
. (14)
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Step 5. Interpretation and robustness

� “Near full coverage”. Equation (14) says that, under (H1)–(H3), the union over p ≤ N
hits almost every prime q ≤ N . The expected number of “misses” is at most of order∑

q≤N

exp
(
−Ω

(
N/(logN)2

))
≤ π(N) · exp

(
−Ω

(
N/(logN)2

))
,

which is tiny compared to π(N).

� Why inclusion–exclusion matters. If we kept only the first term (union bound), we
would get the coarse estimate

P
( ⋃
p≤N

Ep(q)
)
≤ π(N)κq,

which correctly captures small-κq behavior but misses the saturation to 1. The full IE
series sums to 1− (1− κq)

π(N), which transitions from ≈ π(N)κq (when π(N)κq ≪ 1) to
≈ 1 (when π(N)κq ≫ 1).

� Ramified or exceptional primes. A finite set of small primes p may behave atypi-
cally (e.g. ramification). This affects at most O(1) values of p and does not change the
asymptotics, because π(N)→∞.

� No need for the PNT.We only used Chebyshev’s inequalities to ensure π(N)≫ N/ logN ,
which suffices to make the exponent in (13) grow and force near certainty.

Special prime shapes

Step 0. Fix a special class of primes

Let
S(N) ⊆ { q ≤ N : q prime }

be any specified family of primes up to N . Typical examples:

� Arithmetic progressions: S(N) = {q ≤ N : q ≡ a (mod m)} with (a,m) = 1.

� Polynomial shapes (one variable): S(N) = {q ≤ N : q = f(n) prime for some n ∈ N}, e.g.
q = n2 + 1.

� Two-linear forms (twin/Sophie Germain, etc.): S(N) = {q ≤ N : q prime and g(q) prime},
e.g. g(q) = 2q + 1.

� Mersenne primes: S(N) = {q ≤ N : q = 2r − 1 prime}.

We will assume, in the spirit of (H1)–(H3), that the irreducibility model we used for all primes
also applies uniformly to the subfamily S(N): for each q ∈ S(N) and each prime p,

P
(
fq mod p irreducible

)
≈ κq =

1

dq
, dq = deg fq ≍ log q,

and (for fixed q) the events over different p behave like independent Bernoulli trials with success
probability κq.
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Step 1. Per-q hit probability via Inclusion–Exclusion

Fix q ∈ S(N). Define the events Ep(q) as before:

Ep(q) = { fq(x) mod p is irreducible in Fp[x] }.

By the inclusion–exclusion computation (with independence as in (H3)),

P
(
∃ p ≤ N : Ep(q)

)
≈ 1− (1− κq)

π(N). (15)

Using the elementary bounds 1 − e−mκ ≤ 1 − (1 − κ)m ≤ min{mκ, 1} with m = π(N) and
κ = κq = 1/dq, we obtain

1− exp
(
− π(N)κq

)
≲ P

(
∃ p ≤ N : Ep(q)

)
≲ min{π(N)κq, 1}. (16)

Since dq ≍ log q and q ≤ N , there exists a fixed C > 0 with κq ≥ 1/(C log q) ≥ 1/(C logN).
Chebyshev’s inequality gives π(N) ≥ cN/ logN for some absolute c > 0, so

π(N)κq ≥
cN

logN
· 1

C logN
=

c

C
· N

(logN)2
.

Plugging into the lower bound in (16) yields

P
(
∃ p ≤ N : Ep(q)

)
≳ 1− exp

(
− c

C
· N

(logN)2

)
= 1− o(1), (17)

uniformly for all q ∈ S(N).

Step 2. Expected number of hits inside S(N)

Let
HS(N) := #

{
q ∈ S(N) : ∃ p ≤ N, fq mod p irreducible

}
.

By linearity of expectation and (15),

EHS(N) =
∑

q∈S(N)

P
(
∃ p ≤ N : Ep(q)

)
≈

∑
q∈S(N)

[
1− (1− κq)

π(N)
]
.

Using the uniform lower bound (17), we get

EHS(N) ≥
∑

q∈S(N)

(
1− exp

(
−Ω(N/(logN)2)

))
= |S(N)| − |S(N)| · exp

(
−Ω(N/(logN)2)

)
.

Since |S(N)| ≤ π(N) and the exponential factor decays faster than any power of N , the “expected
misses” are negligible:

EHS(N) = |S(N)| ·
(
1− o(1)

)
. (18)

Step 3. A note on concentration (optional, heuristic)

If we strengthen (H3) to say that for different q the families {Ep(q)}p≤N are weakly depen-
dent enough (or approximately independent), then standard concentration inequalities (Cher-
noff/Hoeffding for sums of bounded variables) suggest that HS(N) is tightly concentrated around
its mean. Heuristically,

HS(N) = |S(N)| ·
(
1− o(1)

)
with high probability.

We will not rely on this; the expectation (18) already shows that our method loses asymptotically
nothing.
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Step 4. How |S(N)| is obtained (external number theory)

Our framework is conditional on an external estimate for |S(N)|. Some standard inputs:

� Primes in APs. (Dirichlet’s theorem, plus effective forms.) For fixed (a,m) = 1,

|S(N)| = #{q ≤ N : q ≡ a mod m prime} ∼ 1

φ(m)
· N

logN
.

� One-variable prime-producing polynomials. (Bateman–Horn conjecture.) E.g. for
q = n2 + 1,

|S(N)| ∼ Cn2+1 ·
√
N

logN
.

� Two-linear forms (e.g. Sophie Germain). (Bateman–Horn.) For q prime and 2q + 1
prime,

|S(N)| ∼ CSG ·
N

(logN)2
.

� Mersenne primes. (Wagstaff/Lenstra–Pomerance heuristics.) Up to bound N ,

|S(N)| ≈ eγ

log 2
log logN.

Whatever the ambient asymptotic for |S(N)| is, the expectation (18) says our detection count
matches it up to a (1− o(1)) factor.

Step 5. Putting it all together

Combining the “fixed p” estimate and the union estimate:

� For any fixed prime p,

EUp(N) ≈ 1

c
· π(N)

logN
, c ∈

[
1

log 3 ,
1

log 2

]
,

by the detailed summation-by-parts argument.

� For the union over all p ≤ N , and for any special class S(N),

E #
{
q ∈ S(N) : ∃ p ≤ N, fq mod p irreducible

}
= |S(N)| ·

(
1− o(1)

)
,

by the inclusion–exclusion estimate and the uniform bound κq ≳ 1/ log q.

Summary. Under (H1)–(H3):

1. For a fixed prime p,

EUp(N) ≈ 1

c
· π(N)

logN
.

2. For any special prime class S(N),

EHS(N) = |S(N)| · (1− o(1)).

Thus our inclusion–exclusion heuristic loses essentially nothing : the count of detected primes
inside S(N) is asymptotically the full ambient size |S(N)|, whatever that size is (from theorems
like Dirichlet or conjectures like Bateman–Horn/Wagstaff).
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Empirical justification

Setup. The following experiment was generated by running the SageMath script
counting primes with polynomials.sage. It constructs the polynomials fn(x), tests irre-
ducibility of fq(x) mod p over Fp, and measures both the fixed-p count Up(N) and the inclusion–
exclusion union coverage over all primes p ≤ Pmax, restricted to various special prime classes
S(N).

Parameters and results (raw console output).

=== Parameters ===

N=50000, Pmax=50000, fixed p=101

==================

>> Fixed p baseline

Estimated c_N ~ 1.2203

U_p(N) for p=101: 448

Prediction sum_q 1/(c log q): 443.768

pi(N) ~ 5133, pi(N)/log N ~ 474.409

>> Union coverage (all primes q <= N)

All primes covered 5123 / 5133 ratio = 0.998

>> Special prime classes S(N) and union coverage over p <= Pmax

AP q ~=~ 1 (mod 4) covered 2539 / 2549 ratio = 0.996

AP q ~=~ 1 (mod 3) covered 2554 / 2556 ratio = 0.999

AP q ~=~ 1 (mod 5) covered 1270 / 1274 ratio = 0.997

AP q ~=~ 2 (mod 5) covered 1285 / 1289 ratio = 0.997

q = n^2 + 1 covered 33 / 37 ratio = 0.892

q = n^2 + n + 41 covered 169 / 169 ratio = 1.000

twin primes (q, q+2) covered 702 / 705 ratio = 0.996

Sophie Germain q covered 669 / 670 ratio = 0.999

Mersenne primes covered 5 / 5 ratio = 1.000

Done.

Interpretation. The fixed-p count Up(N) closely matches the heuristic prediction
∑

q≤N
1

c log q ≈
1
c ·

π(N)
logN , and the union over p ≤ Pmax almost hits all primes q ≤ N (ratio 0.998). Within special

classes S(N) (APs, polynomial shapes, twin/Sophie Germain, Mersenne), the observed coverage
ratios are ≈ 1, in line with the inclusion–exclusion prediction that the detected count inside
S(N) is |S(N)|(1− o(1)).

Remark (where we use irreducibility of fn). Short answer: we only really use the “if
n is prime, then fn is irreducible over Q” half. The converse (“if n is composite, then fn is
reducible”) is true but not essential for our counting.

� (1) Setting up the model for primes q. All counting arguments restrict to q prime and
study fq. We need fq irreducible over Q so that (i) it has a well-defined degree dq = deg fq
equal to [Q[x]/(fq) : Q]; (ii) its splitting field has a transitive Galois group Gq ≤ Sdq ,
allowing the Dedekind–Frobenius dictionary (factorization mod p↔ cycle type); (iii) hence
“fq mod p is irreducible” ⇐⇒ “Frobenius at p is a dq-cycle”, giving the success probability
κq ≈ 1/dq.
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� (2) Log-degree control in the probabilities. We use dq ≍ log q to turn κq into
≍ 1/ log q. This is applied only for prime q, i.e. to irreducible fq.

� (3) Inclusion–Exclusion for each fixed q. IE needs a single success probability κq
per p. This relies on (1): for irreducible fq over Q, “success” truly means “dq-cycle” with
chance 1/dq.

What we do not need:

� We never use the “⇐” direction for composites in the counting. Although for composite n

one has fn =
∏

p f
νp(n)
p (hence reducible), our sums run only over prime q.

� The IE “near full coverage” over p ≤ N is computed per prime q, so again only “prime ⇒
irreducible over Q” is invoked.

In one line: we use “n prime ⇒ fn irreducible over Q” to justify the dq-cycle model and
κq = 1/dq; the converse is not needed for the heuristic counts (though it explains why composites
are irrelevant).
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