Factorization is representation-relative: an epistemic-algorithmic
study

Orges Leka
November 11, 2025

Abstract

We formalize the idea that the practical difficulty of integer factorization depends on the
representation of the input. Two agents know the same integer n, but in different forms:
Agent A receives the binary string bin(n); Agent B receives a polynomial f,(z) € Z[z]
whose degree is ©(logn) and that multiplicatively encodes the prime structure of n. Under
standard, textbook bounds for univariate polynomial factorization over Q (polynomial in
degree and coefficient bit-size), B can compute the prime factorization Fact(n) in time
polynomial in logn, while doing so from bin(n) is not known to be polynomial-time. We
capture the advantage using resource-bounded epistemic operators, instance complexity, and
conditional Kolmogorov complexity, and prove “representation-relative” theorems. The note
is self-contained and conditional only on explicit assumptions stated herein.

Contents

1 Motivation and Overview

It is common wisdom that multiplication is easy whereas factorization seems hard. Less
emphasized is that difficulty is representation-relative. We consider two representations of the
same integer n:

o the standard binary numeral bin(n);

o a polynomial code f,(x) € Z[z] of small degree, designed so that factorizing f, over Q reveals
the prime factors of n by simple evaluation at x = 2.

We study how this difference of representation changes what agents can compute quickly (their
explicit knowledge), quantify the advantage with epistemic and information-theoretic measures,
and give precise conditional theorems.

High-level message. If the map n — f, satisfies natural axioms (irreducibility for primes,
multiplicativity, small degree and height), then

factorization from f,, is in poly(logn)-time,

whereas factorization from bin(n) is not known to be in polynomial time. Thus, in a rigorous
resource-bounded epistemic sense, Agent B knows more about n’s factorization than Agent A,
despite both “knowing n”.

2 Representations as Epistemic Objects

Definition 2.1 (Representation scheme). A representation scheme for natural numbers is a
pair R = (Enc, Dec) with

e Enc: N — ¥* an injective encoding,
o Dec: ¥* — N a partial decoding with Dec(Enc(n)) = n.
We identify the representation of n with r = Enc(n), and write evalg (r) := Dec(r).

Example 2.2 (Two schemes). (a) Binary numerals: Rpi, with Enc = bin and Dec the usual
base-2 interpretation.

(b) Polynomial codes: Ryqy with Enc(n) = f,(x) € Z[z] a univariate polynomial satisfying
assumptions in §77, and Dec(f,) = n given by evaluation at x = 2.

Definition 2.3 (Task and solution). The factorization task maps n to
Fact(n) = {(pi, v (n)) : pi € P, v, (n) > 1}.

A correct algorithm outputs Fact(n) up to ordering.

3 A Resource-Bounded Epistemic Lens

We adopt a minimal, operational notion of explicit knowledge indexed by time.

Definition 3.1 (Time-indexed explicit knowledge). Let A be an algorithm and R a representation
scheme. We write

Kl (@o(n)) iff there exists an algorithm A that, on input Encg(n), outputs a witness of ¢(n) in time < t.

For the factorization task, ¢(n) is “outputs Fact(n)”.

Definition 3.2 (Time advantage and instance complexity). For a fixed n, define the time
advantage of R over Rq by

Ar(n; R1—Ro) == inf{t : Kg,(Fact(n))} — inf{t: Ky, (Fact(n))}.
We also write the representation-relative instance complexity
ICr(n) := inf{t : K& (Fact(n))}.

Definition 3.3 (Conditional description length advantage). Let K(- | -) be (prefix-free) Kol-
mogorov complexity. Define

Ak (n;R1—Rse) := K(Fact(n) | Encg, (n)) — K(Fact(n) | Encg,(n)).

4 The Polynomial Representation of Integers

We axiomatize the desired properties of the map n +— f,(x) € Zx].

Assumption 4.1 (Prime code). For every prime p, f,(z) € Z[z] is irreducible over Z[x] and
satisfies f,(2) = p.

Assumption 4.2 (Multiplicativity). For n = []; p;*, we have

Ful@) = T fula).

2

Assumption 4.3 (Small degree). There exist constants ci,cz > 0 such that for all n > 2,
cilogn < degf, < cologn.

Assumption 4.4 (Moderate coefficient bit-size). Let H = ht(g) be the maximum absolute
value of the coefficients of g € Z[x]. The bit-length of the height, log(1 + H), is bounded by a
polynomial in logn. That is, there exists a polynomial g with

log(1+ht(fn)) < q(logn).

Remark 4.5 (Decoding). By ?? and 7?7, f,(2) = n, so decoding n from f,, is trivial: Dec(f,) =
fn(2).

4.1 Correctness of factorization by factorization of f,

Lemma 4.6 (Irreducible codes identify primes). Under ??, if g € Z[x] is an irreducible factor
of some fp, then there is a unique prime p with g associate to f, (i.e. g = £fp).

Proof. By 77, every irreducible factor of f, divides some f,, for a prime p dividing n. Since f,
is irreducible in the UFD Z[z], any irreducible divisor is an associate, hence +f,. Uniqueness
follows from unique factorization. O

in Zlx] be fn = §»:1 gjej with irreducible g;. Then there exist pairwise distinct primes p1,...,p;
with g; = +fp, and
Fact(n) = {(p;, ¢;) : j=1,...,t}.

Moreover, each p; can be read off as p; = g;(2).

Proof. By 77, each g; is associate to some fp,. Multiplicativity gives f, = [] f;j and by
uniqueness of factorization in Z[z] the exponents e; must match the prime-power exponents
of n. Finally g;(2) = £f,,(2) = £p;. Since f,(z) has non-negative coefficients (as shown in
§6), fp(2) =p > 0. We can choose the associate g; such that g;(2) > 0, fixing the sign to read
P = 9;(2). O

4.2 Complexity of the polynomial route

Theorem 4.8 (Polynomial-time factorization from f,). Assume ??2?272?7. Then

ICR,,,, (n) = poly(logn).

In particular, there exists an algorithm that on input f, outputs Fact(n) in time polynomial in
logn.

Proof. By standard algorithms (e.g., LLL-based methods) the factorization of a univariate integer
polynomial into irreducibles over @Q can be computed in time polynomial in its bit-size. The
bit-size of f,, is determined by its degree d = degf, and the bit-length of its largest coefficient
(its height H = ht(f,)). The total bit-size is O(d - log(1 + H)). By ??, d = ©(logn). By 77,
log(1+ H) < g(logn) for some polynomial g. Therefore, the total bit-size is O(logn - g(logn)),
which is poly(logn). Since the polynomial factoring algorithm runs in time polynomial in
this bit-size, the factoring step is poly(logn). By ?7?, reading off the primes as p; = ¢;(2) (a
polynomial-time evaluation) and pairing them with their exponents e; yields Fact(n) with only
polynomial overhead. Therefore the entire pipeline is poly(logn). O

Remark 4.9 (Epistemic reading). ?? states that K?;:Zl(ylog n)(Fact(n)) holds under our assump-

tions.

5 Comparison with the Binary Representation

Let Rpin be the usual binary numerals. For completeness:

Proposition 5.1 (Baseline decoding). Given bin(n), we can compute n in time O(logn) and
|bin(n)| = O(logn). This does not, by itself, reveal Fact(n).

Assumption 5.2 (Hardness hypothesis for the baseline). There is no algorithm that, on input
bin(n), computes Fact(n) in time polynomial in logn.

Remark 5.3. 77 is consistent with the current state of knowledge: factoring is not known to be
in P, and the best general-purpose algorithms are subexponential but superpolynomial in logn.

Theorem 5.4 (Representation-relative knowledge separation). Under ?7?72?772?77?, there exists
a polynomial p such that for all sufficiently large n,

KEE™ (Fact(n)) holds while Kl ®™ (Fact(n)) fails.
Equivalently, Ar(n; Rpin— Rpoly) < 0 for infinitely many n (in fact, for all large n).

Proof. The first claim is exactly ??. The second is the negation supplied by ?7. The time-
advantage statement is by definition of Ar. O

Proposition 5.5 (Description-length advantage). Under the same assumptions, for infinitely
many n we have
AK(TL; Robin HRpoly) > 0.

Proof sketch. Given f,, a short universal program that (i) factors f,, over Q and (ii) evaluates
each irreducible factor at = 2 suffices to output Fact(n), so K(Fact(n) | f,) is bounded by a
constant plus the description of a polynomial-time factoring routine. Relative to bin(n), any
program that outputs Fact(n) must (in effect) perform nontrivial search absent additional advice;
hence for infinitely many n the conditional complexity cannot be uniformly bounded by the
same constant. Formalizing yields the claim. O

6 A Concrete Polynomial Representation

We now exhibit a specific family of polynomials (fy)n,>1 and prove that it satisfies the four
axioms required by our framework.

6.1 Definition

Let the family of polynomials f,,(z) € Z[z] be defined recursively as follows:

1()
(z)

if n is prime: f,(x

Sy

ISR
I

,EE)—lan—l

fn 1()
pup(n) D falm) = H(fp(a?))yp(n).

p

if n has the prime factorization n =

(All products are over primes p.)

6.2 Verification of Axioms

We prove that this family (f,,) satisfies all four assumptions from §77.

Theorem 6.1. The polynomial family (f,(x))n>1 defined above satisfies Assumptions 77, 772,
7?7, and 77.

Proof. « Assumption ?? (Prime code): We need to show that for any prime p, f,(z) is
irreducible in Z[z] and f,(2) = p.

— Evaluation at 2: We prove f,(2) = n for all n > 1 by strong induction. It holds for
n=1(fi(2) =1) and n =2 (f2(2) = 2). If n = p is prime, f,(2) =1+ f,—1(2). By
the inductive hypothesis, f,—1(2) =p — 1. Thus f,(2) =1+ (p—1) =p. if n =[]p;
is composite, fn(2) = [1(fp,(2))¢. By the inductive hypothesis, f,,(2) = p;. Thus
fn(2) =I1p;* = n. The claim holds. In particular, f,(2) = p for all primes p.

— Irreducibility: It has been proven (e.g., in the paper "Counting primes with polynomi-
als") that for every prime p, this f,(x) is irreducible in Z[z]. The proof relies on showing
that all zeros of f, lie in the half-plane Re(z) < 3/2 and then applying an irreducibility
criterion (like Sury’s lemma) using the evaluation f,(2) = p.

o Assumption ?? (Multiplicativity): This is satisfied by definition. The rule for composite
n = []p; is precisely fn(x) =[] fp,(x).

o Assumption ?? (Small degree): Let d,, = degf,,. From the definition: dy = 0, dy = 1.
If p is prime, dp = deg(1 + fp—1) = dp—1. If n = [[p*, then d,, = ¥ e;dp,. This implies
dp = dp—1 = >y (p—1) ¥r(P—1) dy. It is a known result for this family (and proven by induction)
that there are absolute constants c¢1,ca (namely ¢; = 1/log3,ca = 1/1log2) such that for all
n>2,

logn logn
log3 = " ~ log2’

This establishes d,, = O(logn), satisfying the assumption.

o Assumption ?? (Moderate coefficient bit-size): We need to show log(1 + H(f,)) <
¢(logn) for some polynomial ¢. First, we establish by induction that all f,, are monic and
have non-negative integer coefficients. f;, fo have this property. The operations f +— 1+ f
and (f,g) — fg preserve this property (since non-negative coefficients are closed under
addition and multiplication). Because the coefficients are non-negative, the height H(f,) (the
maximum coefficient) is bounded by the sum of all coefficients, which is f,(1).

H(fn) < fu(1).

We now bound log(f,(1)). fi(1) =1, f2(1) = 1. If p is prime: fp(1) = 1+ fp—1(1). If
n=1[Ip" fu(1) =11 fp,(1). We claim f,(1) <n for all n > 1. We prove this by strong
induction. It holds for n = 1,2. If n = p is prime: f,(1) = 1+ f,—1(1). By hypothesis,
fp—1(1) <p—1. So f,(1) <1+ (p—1) =p. Iif n=]]p;" is composite: f,(1) =TT fp,(1)%.
By hypothesis, fp,(1) < p;. So fn(1) <[Ip;* =n. The claim holds.

Therefore, we have H(f,) < fn,(1) < n. This implies log(1 + H(f,)) < log(1 + n). Since
log(1 +n) = O(logn), we can choose g(x) = ¢ -z for some constant ¢, which is a polynomial.

The assumption is satisfied.
O

7 Algorithmic Pipeline for Agent B

Algorithm 1 Factorization-from-Polynomial for Agent B

Ensure: Prime factorization Fact(n)
1: Factor f,, over Q: compute irreducible g1, ..., g: and exponents eq,...,e; with f, =[] g;-"j .
2: for j=1tot do
3: Set p; := gj(2) (choose sign so p; > 0).
4

: return {(p;, ej)}é-:l.

By 7?77, the algorithm is correct and runs in time poly(logn).

8 Epistemic and Evidence-Theoretic Measures

8.1 Resource-bounded knowledge operators
Definition 8.1 (Operators K%). We write
KL [Fact(n)] iff 3 algorithm A : A(Encg(n)) = Fact(n) in time <t.
By 77, K%(i}:lsog ™ holds under our assumptions; by 77, K%z}z’(log " fails.
These operators obey familiar modal axioms with resource caveats (monotonicity in ¢,
conjunction for joint tasks, etc.).
8.2 Representation-relative instance complexity

For each n, ICg(n) is the least time bound that witnesses K% [Fact(n)]. Then 77 gives

ICRr,,,, (1) = poly(logn), ICg,, (n) & O(poly(logn)) (under ??).

8.3 Conditional Kolmogorov complexity

7?7 formalizes the intuitive statement that, given f,, a short description suffices to reconstruct
Fact(n), while given bin(n) such a short description typically does not exist uniformly across n.

8.4 Evidence as likelihood gains

Consider the hypothesis Hy : “d | n”. Observation O, : “g is an irreducible factor of f,,” implies

Hg) with certainty by ??. Thus the (log) weight of evidence

Pr(Og | Hyz)]
U}(Hg(Q) . Og) = log PI‘[OQ | _‘Hg(Q)]

is +o00 in the idealized model (or very large under noise), whereas from bin(n) no analogous
immediate certificate arises without performing a hard computation. This captures B’s epistemic
edge as a gain in decisive evidence for divisibility claims.

9 Limits, Caveats, and Design Space

Coefficient height is crucial. 7?7 hinges on ??. If log(ht(f,)) grew super-polynomially in
logn (e.g. exponentially in deg f,,), factoring over Q could become expensive. Our ?? ensures
the total bit-size of the polynomial is poly(logn).

Who computes f,? Our analysis treats f, as given. If constructing f,, from bin(n) is itself
hard (say factoring-hard), then the representation functions as a compiled or even trapdoor
artifact. This does not invalidate B’s advantage given the representation; it just moves work to
an offline producer.

Robustness. The results remain valid if evaluation occurs at any fixed integer x = xg with
fp(z0) = p. The choice zy = 2 is only for concreteness.

10 Related Perspectives (Brief)

Knowledge compilation. Representations that make certain queries (here, “factorization”)
polytime often become larger or more structured; there is a succinctness/tractability trade-off.

Algorithmic knowledge. Resource-bounded accounts of knowledge interpret “knows ¢’
as “has an algorithm to compute a witness of ¢ within resources”. Our operators Kk are in this
tradition.

9

11 Conclusions

Under clear axioms on a polynomial encoding n — f,, factorization becomes easy relative to
the polynomial representation and remains nontrivial relative to the binary representation. We
demonstrated a concrete polynomial family that satisfies these axioms. The difference can be
measured in running time, description length, and evidence-theoretic terms, providing a precise
sense in which representation is epistemology for computational tasks.

Appendix A: Small Technical Details

Bit-size of polynomial input. If d = deg f,, and H = ht(f,), the bit-size of the coefficient
list is O(dlog(1 + H)). Our poly(logn) bound implicitly refers to this encoding size.

Sign of irreducibles. If some g;(2) < 0, the sign can be flipped by replacing g; by —g; (which
is an associate) without changing factorization or exponents. For the family in §6, all f, have
non-negative coefficients, so f,(2) = p > 0 and this is not an issue.

Squarefreeness issues. If n is squarefree, the polynomial f,, is squarefree by ?7. For prime
powers p”, the exponent k is ezactly the multiplicity of fpin fo.

Acknowledgments and Notes

The structure of the assumptions (irreducible codes for primes, multiplicativity, evaluation at a
fixed point) is inspired by discussions about polynomial encodings of integers where irreducibility
mirrors primality. Standard references for polynomial factorization over QQ include textbooks on
computer algebra and the original LLL method.

References

[1] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz. Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 515-534 (1982).

[2] J. von zur Gathen and J. Gerhard. Modern Computer Algebra, 3rd ed. Cambridge University
Press, 2013.

[3] J. Halpern and R. Pucella. A logic for reasoning about algorithmic knowledge. Information
and Computation 206(9-10): 1302-1332, 2008.

[4] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research 17: 229-264, 2002.

