Factorization is representation-relative: an epistemic-algorithmic study

Orges Leka

November 11, 2025

Abstract

We formalize the idea that the practical difficulty of integer factorization depends on the representation of the input. Two agents know the same integer n, but in different forms: Agent A receives the binary string $\mathsf{bin}(n)$; Agent B receives a polynomial $f_n(x) \in \mathbb{Z}[x]$ whose degree is $\Theta(\log n)$ and that multiplicatively encodes the prime structure of n. Under standard, textbook bounds for univariate polynomial factorization over \mathbb{Q} (polynomial in degree and coefficient bit-size), B can compute the prime factorization $\mathsf{Fact}(n)$ in time polynomial in $\log n$, while doing so from $\mathsf{bin}(n)$ is not known to be polynomial-time. We capture the advantage using resource-bounded epistemic operators, instance complexity, and conditional Kolmogorov complexity, and prove "representation-relative" theorems. The note is self-contained and conditional only on explicit assumptions stated herein.

Contents

1 Motivation and Overview

It is common wisdom that multiplication is easy whereas factorization seems hard. Less emphasized is that difficulty is representation-relative. We consider two representations of the same integer n:

- the standard binary numeral bin(n);
- a polynomial code $f_n(x) \in \mathbb{Z}[x]$ of small degree, designed so that factorizing f_n over \mathbb{Q} reveals the prime factors of n by simple evaluation at x = 2.

We study how this difference of representation changes what agents can compute quickly (their explicit knowledge), quantify the advantage with epistemic and information-theoretic measures, and give precise conditional theorems.

High-level message. If the map $n \mapsto f_n$ satisfies natural axioms (irreducibility for primes, multiplicativity, small degree and height), then

factorization from f_n is in poly(log n)-time,

whereas factorization from bin(n) is not known to be in polynomial time. Thus, in a rigorous resource-bounded epistemic sense, Agent B knows more about n's factorization than Agent A, despite both "knowing n".

2 Representations as Epistemic Objects

Definition 2.1 (Representation scheme). A representation scheme for natural numbers is a pair $\mathcal{R} = (\mathsf{Enc}, \mathsf{Dec})$ with

- Enc: $\mathbb{N} \to \Sigma^*$ an injective encoding,
- Dec: $\Sigma^* \to \mathbb{N}$ a partial decoding with $\mathsf{Dec}(\mathsf{Enc}(n)) = n$.

We identify the representation of n with r = Enc(n), and write $\text{eval}_{\mathcal{R}}(r) := \text{Dec}(r)$.

Example 2.2 (Two schemes). (a) **Binary numerals:** \mathcal{R}_{bin} with Enc = bin and Dec the usual base-2 interpretation.

(b) **Polynomial codes:** \mathcal{R}_{poly} with $Enc(n) = f_n(x) \in \mathbb{Z}[x]$ a univariate polynomial satisfying assumptions in §??, and $Dec(f_n) = n$ given by evaluation at x = 2.

Definition 2.3 (Task and solution). The factorization task maps n to

$$\mathsf{Fact}(n) = \{(p_i, v_{p_i}(n)) : p_i \in \mathcal{P}, \ v_{p_i}(n) \ge 1\}.$$

A correct algorithm outputs Fact(n) up to ordering.

3 A Resource-Bounded Epistemic Lens

We adopt a minimal, operational notion of explicit knowledge indexed by time.

Definition 3.1 (Time-indexed explicit knowledge). Let A be an algorithm and \mathcal{R} a representation scheme. We write

 $\mathsf{K}^t_{\mathcal{R}}(\varphi(n))$ iff there exists an algorithm A that, on input $\mathsf{Enc}_{\mathcal{R}}(n)$, outputs a witness of $\varphi(n)$ in time $\leq t$. For the factorization task, $\varphi(n)$ is "outputs $\mathsf{Fact}(n)$ ".

Definition 3.2 (Time advantage and instance complexity). For a fixed n, define the *time advantage* of \mathcal{R}_2 over \mathcal{R}_1 by

$$\Delta_T(n; \mathcal{R}_1 \to \mathcal{R}_2) := \inf\{t: \ \mathsf{K}^t_{\mathcal{R}_2}(\mathsf{Fact}(n))\} \ - \ \inf\{t: \ \mathsf{K}^t_{\mathcal{R}_1}(\mathsf{Fact}(n))\}.$$

We also write the representation-relative instance complexity

$$IC_{\mathcal{R}}(n) := \inf\{t : \mathsf{K}^t_{\mathcal{R}}(\mathsf{Fact}(n))\}.$$

Definition 3.3 (Conditional description length advantage). Let $K(\cdot \mid \cdot)$ be (prefix-free) Kolmogorov complexity. Define

$$\Delta_K(n; \mathcal{R}_1 \to \mathcal{R}_2) := K(\mathsf{Fact}(n) \mid \mathsf{Enc}_{\mathcal{R}_1}(n)) - K(\mathsf{Fact}(n) \mid \mathsf{Enc}_{\mathcal{R}_2}(n)).$$

4 The Polynomial Representation of Integers

We axiomatize the desired properties of the map $n \mapsto f_n(x) \in \mathbb{Z}[x]$.

Assumption 4.1 (Prime code). For every prime $p, f_p(x) \in \mathbb{Z}[x]$ is *irreducible* over $\mathbb{Z}[x]$ and satisfies $f_p(2) = p$.

Assumption 4.2 (Multiplicativity). For $n = \prod_i p_i^{e_i}$, we have

$$f_n(x) = \prod_i f_{p_i}(x)^{e_i}.$$

Assumption 4.3 (Small degree). There exist constants $c_1, c_2 > 0$ such that for all $n \geq 2$,

$$c_1 \log n \le \deg f_n \le c_2 \log n.$$

Assumption 4.4 (Moderate coefficient bit-size). Let $H = \operatorname{ht}(g)$ be the maximum absolute value of the coefficients of $g \in \mathbb{Z}[x]$. The bit-length of the height, $\log(1+H)$, is bounded by a polynomial in $\log n$. That is, there exists a polynomial q with

$$\log(1 + \operatorname{ht}(f_n)) \le q(\log n).$$

Remark 4.5 (Decoding). By ?? and ??, $f_n(2) = n$, so decoding n from f_n is trivial: $Dec(f_n) = f_n(2)$.

4.1 Correctness of factorization by factorization of f_n

Lemma 4.6 (Irreducible codes identify primes). Under ??, if $g \in \mathbb{Z}[x]$ is an irreducible factor of some f_n , then there is a unique prime p with g associate to f_p (i.e. $g = \pm f_p$).

Proof. By ??, every irreducible factor of f_n divides some f_p for a prime p dividing n. Since f_p is irreducible in the UFD $\mathbb{Z}[x]$, any irreducible divisor is an associate, hence $\pm f_p$. Uniqueness follows from unique factorization.

Theorem 4.7 (Correctness of the polynomial route). Assume ????. Let the factorization of f_n in $\mathbb{Z}[x]$ be $f_n = \prod_{j=1}^t g_j^{e_j}$ with irreducible g_j . Then there exist pairwise distinct primes p_1, \ldots, p_t with $g_j = \pm f_{p_j}$ and

$$Fact(n) = \{(p_j, e_j) : j = 1, \dots, t\}.$$

Moreover, each p_i can be read off as $p_i = g_i(2)$.

Proof. By ??, each g_j is associate to some f_{p_j} . Multiplicativity gives $f_n = \prod f_{p_j}^{e_j}$ and by uniqueness of factorization in $\mathbb{Z}[x]$ the exponents e_j must match the prime-power exponents of n. Finally $g_j(2) = \pm f_{p_j}(2) = \pm p_j$. Since $f_p(x)$ has non-negative coefficients (as shown in §6), $f_p(2) = p > 0$. We can choose the associate g_j such that $g_j(2) > 0$, fixing the sign to read $p_j = g_j(2)$.

4.2 Complexity of the polynomial route

Theorem 4.8 (Polynomial-time factorization from f_n). Assume ????????. Then

$$IC_{\mathcal{R}_{poly}}(n) = poly(\log n).$$

In particular, there exists an algorithm that on input f_n outputs Fact(n) in time polynomial in $\log n$.

Proof. By standard algorithms (e.g., LLL-based methods) the factorization of a univariate integer polynomial into irreducibles over \mathbb{Q} can be computed in time polynomial in its bit-size. The bit-size of f_n is determined by its degree $d = \deg f_n$ and the bit-length of its largest coefficient (its height $H = \operatorname{ht}(f_n)$). The total bit-size is $O(d \cdot \log(1+H))$. By ??, $d = \Theta(\log n)$. By ??, $\log(1+H) \leq q(\log n)$ for some polynomial q. Therefore, the total bit-size is $O(\log n \cdot q(\log n))$, which is $\operatorname{poly}(\log n)$. Since the polynomial factoring algorithm runs in time polynomial in this bit-size, the factoring step is $\operatorname{poly}(\log n)$. By ??, reading off the primes as $p_j = g_j(2)$ (a polynomial-time evaluation) and pairing them with their exponents e_j yields $\operatorname{Fact}(n)$ with only polynomial overhead. Therefore the entire pipeline is $\operatorname{poly}(\log n)$.

Remark 4.9 (Epistemic reading). ?? states that $\mathsf{K}^{\mathrm{poly}(\log n)}_{\mathcal{R}_{\mathrm{poly}}}(\mathsf{Fact}(n))$ holds under our assumptions.

5 Comparison with the Binary Representation

Let $\mathcal{R}_{\mathsf{bin}}$ be the usual binary numerals. For completeness:

Proposition 5.1 (Baseline decoding). Given bin(n), we can compute n in time $O(\log n)$ and $|bin(n)| = \Theta(\log n)$. This does not, by itself, reveal Fact(n).

Assumption 5.2 (Hardness hypothesis for the baseline). There is no algorithm that, on input bin(n), computes Fact(n) in time polynomial in log n.

Remark 5.3. ?? is consistent with the current state of knowledge: factoring is not known to be in \mathbf{P} , and the best general-purpose algorithms are subexponential but superpolynomial in $\log n$.

Theorem 5.4 (Representation-relative knowledge separation). Under ?????????, there exists a polynomial p such that for all sufficiently large n,

$$\mathsf{K}^{p(\log n)}_{\mathcal{R}_{\mathrm{poly}}}(\mathsf{Fact}(n)) \quad \mathit{holds \ while} \quad \mathsf{K}^{p(\log n)}_{\mathcal{R}_{\mathrm{bin}}}(\mathsf{Fact}(n)) \quad \mathit{fails}.$$

Equivalently, $\Delta_T(n; \mathcal{R}_{bin} \to \mathcal{R}_{poly}) < 0$ for infinitely many n (in fact, for all large n).

Proof. The first claim is exactly ??. The second is the negation supplied by ??. The time-advantage statement is by definition of Δ_T .

Proposition 5.5 (Description-length advantage). Under the same assumptions, for infinitely many n we have

$$\Delta_K(n; \mathcal{R}_{\mathsf{bin}} \to \mathcal{R}_{\mathsf{polv}}) > 0.$$

Proof sketch. Given f_n , a short universal program that (i) factors f_n over \mathbb{Q} and (ii) evaluates each irreducible factor at x=2 suffices to output $\mathsf{Fact}(n)$, so $K(\mathsf{Fact}(n) \mid f_n)$ is bounded by a constant plus the description of a polynomial-time factoring routine. Relative to $\mathsf{bin}(n)$, any program that outputs $\mathsf{Fact}(n)$ must (in effect) perform nontrivial search absent additional advice; hence for infinitely many n the conditional complexity cannot be uniformly bounded by the same constant. Formalizing yields the claim.

6 A Concrete Polynomial Representation

We now exhibit a specific family of polynomials $(f_n)_{n\geq 1}$ and prove that it satisfies the four axioms required by our framework.

6.1 Definition

Let the family of polynomials $f_n(x) \in \mathbb{Z}[x]$ be defined recursively as follows:

$$\begin{split} f_1(x) &= 1,\\ f_2(x) &= x,\\ \text{if n is prime:} \quad f_n(x) &= 1 + f_{n-1}(x),\\ \text{if n has the prime factorization } n &= \prod_p p^{\nu_p(n)}: \quad f_n(x) = \prod_p \left(f_p(x)\right)^{\nu_p(n)}. \end{split}$$

(All products are over primes p.)

6.2 Verification of Axioms

We prove that this family (f_n) satisfies all four assumptions from §??.

Theorem 6.1. The polynomial family $(f_n(x))_{n\geq 1}$ defined above satisfies Assumptions ??, ??, ??, and ??.

Proof. • Assumption ?? (Prime code): We need to show that for any prime p, $f_p(x)$ is irreducible in $\mathbb{Z}[x]$ and $f_p(2) = p$.

- **Evaluation at 2:** We prove $f_n(2) = n$ for all $n \ge 1$ by strong induction. It holds for n = 1 $(f_1(2) = 1)$ and n = 2 $(f_2(2) = 2)$. If n = p is prime, $f_p(2) = 1 + f_{p-1}(2)$. By the inductive hypothesis, $f_{p-1}(2) = p 1$. Thus $f_p(2) = 1 + (p 1) = p$. If $n = \prod p_i^{e_i}$ is composite, $f_n(2) = \prod (f_{p_i}(2))^{e_i}$. By the inductive hypothesis, $f_{p_i}(2) = p_i$. Thus $f_n(2) = \prod p_i^{e_i} = n$. The claim holds. In particular, $f_p(2) = p$ for all primes p.
- Irreducibility: It has been proven (e.g., in the paper "Counting primes with polynomials") that for every prime p, this $f_p(x)$ is irreducible in $\mathbb{Z}[x]$. The proof relies on showing that all zeros of f_p lie in the half-plane Re(z) < 3/2 and then applying an irreducibility criterion (like Sury's lemma) using the evaluation $f_p(2) = p$.
- Assumption ?? (Multiplicativity): This is satisfied by definition. The rule for composite $n = \prod p_i^{e_i}$ is precisely $f_n(x) = \prod f_{p_i}(x)^{e_i}$.
- Assumption ?? (Small degree): Let $d_n = \deg f_n$. From the definition: $d_1 = 0$, $d_2 = 1$. If p is prime, $d_p = \deg(1 + f_{p-1}) = d_{p-1}$. If $n = \prod p_i^{e_i}$, then $d_n = \sum e_i d_{p_i}$. This implies $d_p = d_{p-1} = \sum_{r|(p-1)} \nu_r(p-1) d_r$. It is a known result for this family (and proven by induction) that there are absolute constants c_1, c_2 (namely $c_1 = 1/\log 3, c_2 = 1/\log 2$) such that for all $n \geq 2$,

$$\frac{\log n}{\log 3} \le d_n \le \frac{\log n}{\log 2}.$$

This establishes $d_n = \Theta(\log n)$, satisfying the assumption.

• Assumption ?? (Moderate coefficient bit-size): We need to show $\log(1 + H(f_n)) \le q(\log n)$ for some polynomial q. First, we establish by induction that all f_n are monic and have non-negative integer coefficients. f_1, f_2 have this property. The operations $f \mapsto 1 + f$ and $(f, g) \mapsto fg$ preserve this property (since non-negative coefficients are closed under addition and multiplication). Because the coefficients are non-negative, the height $H(f_n)$ (the maximum coefficient) is bounded by the sum of all coefficients, which is $f_n(1)$.

$$H(f_n) \leq f_n(1)$$
.

We now bound $\log(f_n(1))$. $f_1(1)=1$, $f_2(1)=1$. If p is prime: $f_p(1)=1+f_{p-1}(1)$. If $n=\prod p_i^{e_i}$: $f_n(1)=\prod f_{p_i}(1)^{e_i}$. We claim $f_n(1)\leq n$ for all $n\geq 1$. We prove this by strong induction. It holds for n=1,2. If n=p is prime: $f_p(1)=1+f_{p-1}(1)$. By hypothesis, $f_{p-1}(1)\leq p-1$. So $f_p(1)\leq 1+(p-1)=p$. If $n=\prod p_i^{e_i}$ is composite: $f_n(1)=\prod f_{p_i}(1)^{e_i}$. By hypothesis, $f_{p_i}(1)\leq p_i$. So $f_n(1)\leq \prod p_i^{e_i}=n$. The claim holds.

Therefore, we have $H(f_n) \leq f_n(1) \leq n$. This implies $\log(1 + H(f_n)) \leq \log(1 + n)$. Since $\log(1+n) = O(\log n)$, we can choose $q(x) = c \cdot x$ for some constant c, which is a polynomial. The assumption is satisfied.

7 Algorithmic Pipeline for Agent B

Algorithm 1 Factorization-from-Polynomial for Agent B

Require: Input $f_n(x) \in \mathbb{Z}[x]$ satisfying ????????

Ensure: Prime factorization Fact(n)

- 1: Factor f_n over \mathbb{Q} : compute irreducible g_1, \ldots, g_t and exponents e_1, \ldots, e_t with $f_n = \prod g_i^{e_j}$.
- 2: **for** j = 1 to t **do**
- 3: Set $p_j := g_j(2)$ (choose sign so $p_j > 0$).
- 4: **return** $\{(p_j, e_j)\}_{j=1}^t$.

By ????, the algorithm is correct and runs in time poly(log n).

8 Epistemic and Evidence-Theoretic Measures

8.1 Resource-bounded knowledge operators

Definition 8.1 (Operators $K_{\mathcal{R}}^t$). We write

$$K^t_{\mathcal{R}}[\mathsf{Fact}(n)] \quad \text{iff} \quad \exists \ \text{algorithm} \ A: A(\mathsf{Enc}_{\mathcal{R}}(n)) = \mathsf{Fact}(n) \ \text{in time} \ \leq t.$$

By ??, $K_{\mathcal{R}_{\text{poly}}}^{\text{poly}(\log n)}$ holds under our assumptions; by ??, $K_{\mathcal{R}_{\text{bin}}}^{\text{poly}(\log n)}$ fails.

These operators obey familiar modal axioms with resource caveats (monotonicity in t, conjunction for joint tasks, etc.).

8.2 Representation-relative instance complexity

For each n, $IC_{\mathcal{R}}(n)$ is the least time bound that witnesses $K_{\mathcal{R}}^t[\mathsf{Fact}(n)]$. Then ?? gives

$$IC_{\mathcal{R}_{poly}}(n) = poly(\log n), \qquad IC_{\mathcal{R}_{bin}}(n) \notin O(poly(\log n)) \text{ (under ??)}.$$

8.3 Conditional Kolmogorov complexity

?? formalizes the intuitive statement that, given f_n , a short description suffices to reconstruct Fact(n), while given bin(n) such a short description typically does not exist uniformly across n.

8.4 Evidence as likelihood gains

Consider the hypothesis H_d : " $d \mid n$ ". Observation O_g : "g is an irreducible factor of f_n " implies $H_{g(2)}$ with certainty by ??. Thus the (log) weight of evidence

$$w(H_{g(2)}: O_g) = \log \frac{\Pr[O_g \mid H_{g(2)}]}{\Pr[O_g \mid \neg H_{g(2)}]}$$

is $+\infty$ in the idealized model (or very large under noise), whereas from bin(n) no analogous immediate certificate arises without performing a hard computation. This captures B's *epistemic* edge as a gain in *decisive* evidence for divisibility claims.

9 Limits, Caveats, and Design Space

Coefficient height is crucial. ?? hinges on ??. If $\log(\operatorname{ht}(f_n))$ grew super-polynomially in $\log n$ (e.g. exponentially in $\deg f_n$), factoring over \mathbb{Q} could become expensive. Our ?? ensures the total bit-size of the polynomial is $\operatorname{poly}(\log n)$.

Who computes f_n ? Our analysis treats f_n as given. If constructing f_n from bin(n) is itself hard (say factoring-hard), then the representation functions as a compiled or even trapdoor artifact. This does not invalidate B's advantage given the representation; it just moves work to an offline producer.

Robustness. The results remain valid if evaluation occurs at any fixed integer $x = x_0$ with $f_p(x_0) = p$. The choice $x_0 = 2$ is only for concreteness.

10 Related Perspectives (Brief)

Knowledge compilation. Representations that make certain queries (here, "factorization") polytime often become larger or more structured; there is a succinctness/tractability trade-off.

Algorithmic knowledge. Resource-bounded accounts of knowledge interpret "knows φ " as "has an algorithm to compute a witness of φ within resources". Our operators $K_{\mathcal{R}}^t$ are in this tradition.

11 Conclusions

Under clear axioms on a polynomial encoding $n \mapsto f_n$, factorization becomes easy relative to the polynomial representation and remains nontrivial relative to the binary representation. We demonstrated a concrete polynomial family that satisfies these axioms. The difference can be measured in running time, description length, and evidence-theoretic terms, providing a precise sense in which representation is epistemology for computational tasks.

Appendix A: Small Technical Details

Bit-size of polynomial input. If $d = \deg f_n$ and $H = \operatorname{ht}(f_n)$, the bit-size of the coefficient list is $O(d \log(1+H))$. Our poly($\log n$) bound implicitly refers to this encoding size.

Sign of irreducibles. If some $g_j(2) < 0$, the sign can be flipped by replacing g_j by $-g_j$ (which is an associate) without changing factorization or exponents. For the family in §6, all f_p have non-negative coefficients, so $f_p(2) = p > 0$ and this is not an issue.

Squarefreeness issues. If n is squarefree, the polynomial f_n is squarefree by ??. For prime powers p^k , the exponent k is exactly the multiplicity of f_p in f_n .

Acknowledgments and Notes

The structure of the assumptions (irreducible codes for primes, multiplicativity, evaluation at a fixed point) is inspired by discussions about polynomial encodings of integers where irreducibility mirrors primality. Standard references for polynomial factorization over \mathbb{Q} include textbooks on computer algebra and the original LLL method.

References

- [1] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. *Mathematische Annalen* 261, 515–534 (1982).
- [2] J. von zur Gathen and J. Gerhard. *Modern Computer Algebra*, 3rd ed. Cambridge University Press, 2013.

- [3] J. Halpern and R. Pucella. A logic for reasoning about algorithmic knowledge. Information and Computation 206(9–10): 1302–1332, 2008.
- [4] A. Darwiche and P. Marquis. A knowledge compilation map. *Journal of Artificial Intelligence Research* 17: 229–264, 2002.