
Factorization is representation-relative: an epistemic–algorithmic
study

Orges Leka

November 11, 2025

Abstract

We formalize the idea that the practical difficulty of integer factorization depends on the
representation of the input. Two agents know the same integer n, but in different forms:
Agent A receives the binary string bin(n); Agent B receives a polynomial fn(x) ∈ Z[x]
whose degree is Θ(log n) and that multiplicatively encodes the prime structure of n. Under
standard, textbook bounds for univariate polynomial factorization over Q (polynomial in
degree and coefficient bit-size), B can compute the prime factorization Fact(n) in time
polynomial in log n, while doing so from bin(n) is not known to be polynomial-time. We
capture the advantage using resource-bounded epistemic operators, instance complexity, and
conditional Kolmogorov complexity, and prove “representation-relative” theorems. The note
is self-contained and conditional only on explicit assumptions stated herein.

Contents

1 Motivation and Overview
It is common wisdom that multiplication is easy whereas factorization seems hard. Less
emphasized is that difficulty is representation-relative. We consider two representations of the
same integer n:

• the standard binary numeral bin(n);

• a polynomial code fn(x) ∈ Z[x] of small degree, designed so that factorizing fn over Q reveals
the prime factors of n by simple evaluation at x = 2.

We study how this difference of representation changes what agents can compute quickly (their
explicit knowledge), quantify the advantage with epistemic and information-theoretic measures,
and give precise conditional theorems.

High-level message. If the map n 7→ fn satisfies natural axioms (irreducibility for primes,
multiplicativity, small degree and height), then

factorization from fn is in poly(log n)-time,

whereas factorization from bin(n) is not known to be in polynomial time. Thus, in a rigorous
resource-bounded epistemic sense, Agent B knows more about n’s factorization than Agent A,
despite both “knowing n”.

1

2 Representations as Epistemic Objects
Definition 2.1 (Representation scheme). A representation scheme for natural numbers is a
pair R = (Enc, Dec) with

• Enc : N → Σ∗ an injective encoding,

• Dec : Σ∗ → N a partial decoding with Dec(Enc(n)) = n.

We identify the representation of n with r = Enc(n), and write evalR(r) := Dec(r).

Example 2.2 (Two schemes). (a) Binary numerals: Rbin with Enc = bin and Dec the usual
base-2 interpretation.

(b) Polynomial codes: Rpoly with Enc(n) = fn(x) ∈ Z[x] a univariate polynomial satisfying
assumptions in §??, and Dec(fn) = n given by evaluation at x = 2.

Definition 2.3 (Task and solution). The factorization task maps n to

Fact(n) =
{
(pi, vpi(n)) : pi ∈ P, vpi(n) ≥ 1

}
.

A correct algorithm outputs Fact(n) up to ordering.

3 A Resource-Bounded Epistemic Lens
We adopt a minimal, operational notion of explicit knowledge indexed by time.

Definition 3.1 (Time-indexed explicit knowledge). Let A be an algorithm and R a representation
scheme. We write

Kt
R(φ(n)) iff there exists an algorithm A that, on input EncR(n), outputs a witness of φ(n) in time ≤ t.

For the factorization task, φ(n) is “outputs Fact(n)”.

Definition 3.2 (Time advantage and instance complexity). For a fixed n, define the time
advantage of R2 over R1 by

∆T (n; R1 →R2) := inf{t : Kt
R2(Fact(n))} − inf{t : Kt

R1(Fact(n))}.

We also write the representation-relative instance complexity

ICR(n) := inf{t : Kt
R(Fact(n))}.

Definition 3.3 (Conditional description length advantage). Let K(· | ·) be (prefix-free) Kol-
mogorov complexity. Define

∆K(n; R1 →R2) := K
(
Fact(n) | EncR1(n)

)
− K

(
Fact(n) | EncR2(n)

)
.

4 The Polynomial Representation of Integers
We axiomatize the desired properties of the map n 7→ fn(x) ∈ Z[x].

Assumption 4.1 (Prime code). For every prime p, fp(x) ∈ Z[x] is irreducible over Z[x] and
satisfies fp(2) = p.

Assumption 4.2 (Multiplicativity). For n = ∏
i pei

i , we have

fn(x) =
∏

i

fpi(x)ei .

2

Assumption 4.3 (Small degree). There exist constants c1, c2 > 0 such that for all n ≥ 2,

c1 log n ≤ degfn ≤ c2 log n.

Assumption 4.4 (Moderate coefficient bit-size). Let H = ht(g) be the maximum absolute
value of the coefficients of g ∈ Z[x]. The bit-length of the height, log(1 + H), is bounded by a
polynomial in log n. That is, there exists a polynomial q with

log(1 + ht(fn)) ≤ q(log n).

Remark 4.5 (Decoding). By ?? and ??, fn(2) = n, so decoding n from fn is trivial: Dec(fn) =
fn(2).

4.1 Correctness of factorization by factorization of fn

Lemma 4.6 (Irreducible codes identify primes). Under ??, if g ∈ Z[x] is an irreducible factor
of some fn, then there is a unique prime p with g associate to fp (i.e. g = ±fp).

Proof. By ??, every irreducible factor of fn divides some fp for a prime p dividing n. Since fp

is irreducible in the UFD Z[x], any irreducible divisor is an associate, hence ±fp. Uniqueness
follows from unique factorization.

Theorem 4.7 (Correctness of the polynomial route). Assume ????. Let the factorization of fn

in Z[x] be fn = ∏t
j=1 g

ej

j with irreducible gj. Then there exist pairwise distinct primes p1, . . . , pt

with gj = ±fpj and
Fact(n) =

{
(pj , ej) : j = 1, . . . , t

}
.

Moreover, each pj can be read off as pj = gj(2).

Proof. By ??, each gj is associate to some fpj . Multiplicativity gives fn = ∏
f

ej
pj and by

uniqueness of factorization in Z[x] the exponents ej must match the prime-power exponents
of n. Finally gj(2) = ±fpj (2) = ±pj . Since fp(x) has non-negative coefficients (as shown in
§6), fp(2) = p > 0. We can choose the associate gj such that gj(2) > 0, fixing the sign to read
pj = gj(2).

4.2 Complexity of the polynomial route

Theorem 4.8 (Polynomial-time factorization from fn). Assume ????????. Then

ICRpoly(n) = poly(log n).

In particular, there exists an algorithm that on input fn outputs Fact(n) in time polynomial in
log n.

Proof. By standard algorithms (e.g., LLL-based methods) the factorization of a univariate integer
polynomial into irreducibles over Q can be computed in time polynomial in its bit-size. The
bit-size of fn is determined by its degree d = degfn and the bit-length of its largest coefficient
(its height H = ht(fn)). The total bit-size is O(d · log(1 + H)). By ??, d = Θ(log n). By ??,
log(1 + H) ≤ q(log n) for some polynomial q. Therefore, the total bit-size is O(log n · q(log n)),
which is poly(log n). Since the polynomial factoring algorithm runs in time polynomial in
this bit-size, the factoring step is poly(log n). By ??, reading off the primes as pj = gj(2) (a
polynomial-time evaluation) and pairing them with their exponents ej yields Fact(n) with only
polynomial overhead. Therefore the entire pipeline is poly(log n).

Remark 4.9 (Epistemic reading). ?? states that Kpoly(log n)
Rpoly

(Fact(n)) holds under our assump-
tions.

3

5 Comparison with the Binary Representation
Let Rbin be the usual binary numerals. For completeness:

Proposition 5.1 (Baseline decoding). Given bin(n), we can compute n in time O(log n) and
|bin(n)| = Θ(log n). This does not, by itself, reveal Fact(n).

Assumption 5.2 (Hardness hypothesis for the baseline). There is no algorithm that, on input
bin(n), computes Fact(n) in time polynomial in log n.

Remark 5.3. ?? is consistent with the current state of knowledge: factoring is not known to be
in P, and the best general-purpose algorithms are subexponential but superpolynomial in log n.

Theorem 5.4 (Representation-relative knowledge separation). Under ??????????, there exists
a polynomial p such that for all sufficiently large n,

Kp(log n)
Rpoly

(Fact(n)) holds while Kp(log n)
Rbin

(Fact(n)) fails.

Equivalently, ∆T (n; Rbin →Rpoly) < 0 for infinitely many n (in fact, for all large n).

Proof. The first claim is exactly ??. The second is the negation supplied by ??. The time-
advantage statement is by definition of ∆T .

Proposition 5.5 (Description-length advantage). Under the same assumptions, for infinitely
many n we have

∆K(n; Rbin →Rpoly) > 0.

Proof sketch. Given fn, a short universal program that (i) factors fn over Q and (ii) evaluates
each irreducible factor at x = 2 suffices to output Fact(n), so K(Fact(n) | fn) is bounded by a
constant plus the description of a polynomial-time factoring routine. Relative to bin(n), any
program that outputs Fact(n) must (in effect) perform nontrivial search absent additional advice;
hence for infinitely many n the conditional complexity cannot be uniformly bounded by the
same constant. Formalizing yields the claim.

6 A Concrete Polynomial Representation
We now exhibit a specific family of polynomials (fn)n≥1 and prove that it satisfies the four
axioms required by our framework.

6.1 Definition

Let the family of polynomials fn(x) ∈ Z[x] be defined recursively as follows:

f1(x) = 1,

f2(x) = x,

if n is prime: fn(x) = 1 + fn−1(x),

if n has the prime factorization n =
∏
p

pνp(n) : fn(x) =
∏
p

(
fp(x)

)νp(n)
.

(All products are over primes p.)

4

6.2 Verification of Axioms

We prove that this family (fn) satisfies all four assumptions from §??.

Theorem 6.1. The polynomial family (fn(x))n≥1 defined above satisfies Assumptions ??, ??,
??, and ??.

Proof. • Assumption ?? (Prime code): We need to show that for any prime p, fp(x) is
irreducible in Z[x] and fp(2) = p.

– Evaluation at 2: We prove fn(2) = n for all n ≥ 1 by strong induction. It holds for
n = 1 (f1(2) = 1) and n = 2 (f2(2) = 2). If n = p is prime, fp(2) = 1 + fp−1(2). By
the inductive hypothesis, fp−1(2) = p − 1. Thus fp(2) = 1 + (p − 1) = p. If n = ∏

pei
i

is composite, fn(2) = ∏(fpi(2))ei . By the inductive hypothesis, fpi(2) = pi. Thus
fn(2) = ∏

pei
i = n. The claim holds. In particular, fp(2) = p for all primes p.

– Irreducibility: It has been proven (e.g., in the paper "Counting primes with polynomi-
als") that for every prime p, this fp(x) is irreducible in Z[x]. The proof relies on showing
that all zeros of fp lie in the half-plane Re(z) < 3/2 and then applying an irreducibility
criterion (like Sury’s lemma) using the evaluation fp(2) = p.

• Assumption ?? (Multiplicativity): This is satisfied by definition. The rule for composite
n = ∏

pei
i is precisely fn(x) = ∏

fpi(x)ei .

• Assumption ?? (Small degree): Let dn = degfn. From the definition: d1 = 0, d2 = 1.
If p is prime, dp = deg(1 + fp−1) = dp−1. If n = ∏

pei
i , then dn = ∑

eidpi . This implies
dp = dp−1 = ∑

r|(p−1) νr(p−1) dr. It is a known result for this family (and proven by induction)
that there are absolute constants c1, c2 (namely c1 = 1/ log 3, c2 = 1/ log 2) such that for all
n ≥ 2,

log n

log 3 ≤ dn ≤ log n

log 2 .

This establishes dn = Θ(log n), satisfying the assumption.

• Assumption ?? (Moderate coefficient bit-size): We need to show log(1 + H(fn)) ≤
q(log n) for some polynomial q. First, we establish by induction that all fn are monic and
have non-negative integer coefficients. f1, f2 have this property. The operations f 7→ 1 + f
and (f, g) 7→ fg preserve this property (since non-negative coefficients are closed under
addition and multiplication). Because the coefficients are non-negative, the height H(fn) (the
maximum coefficient) is bounded by the sum of all coefficients, which is fn(1).

H(fn) ≤ fn(1).

We now bound log(fn(1)). f1(1) = 1, f2(1) = 1. If p is prime: fp(1) = 1 + fp−1(1). If
n = ∏

pei
i : fn(1) = ∏

fpi(1)ei . We claim fn(1) ≤ n for all n ≥ 1. We prove this by strong
induction. It holds for n = 1, 2. If n = p is prime: fp(1) = 1 + fp−1(1). By hypothesis,
fp−1(1) ≤ p − 1. So fp(1) ≤ 1 + (p − 1) = p. If n = ∏

pei
i is composite: fn(1) = ∏

fpi(1)ei .
By hypothesis, fpi(1) ≤ pi. So fn(1) ≤

∏
pei

i = n. The claim holds.
Therefore, we have H(fn) ≤ fn(1) ≤ n. This implies log(1 + H(fn)) ≤ log(1 + n). Since
log(1 + n) = O(log n), we can choose q(x) = c · x for some constant c, which is a polynomial.
The assumption is satisfied.

5

7 Algorithmic Pipeline for Agent B

Algorithm 1 Factorization-from-Polynomial for Agent B
Require: Input fn(x) ∈ Z[x] satisfying ????????
Ensure: Prime factorization Fact(n)

1: Factor fn over Q: compute irreducible g1, . . . , gt and exponents e1, . . . , et with fn = ∏
g

ej

j .
2: for j = 1 to t do
3: Set pj := gj(2) (choose sign so pj > 0).
4: return {(pj , ej)}t

j=1.

By ????, the algorithm is correct and runs in time poly(log n).

8 Epistemic and Evidence-Theoretic Measures

8.1 Resource-bounded knowledge operators

Definition 8.1 (Operators Kt
R). We write

Kt
R[Fact(n)] iff ∃ algorithm A : A(EncR(n)) = Fact(n) in time ≤ t.

By ??, K
poly(log n)
Rpoly

holds under our assumptions; by ??, K
poly(log n)
Rbin

fails.

These operators obey familiar modal axioms with resource caveats (monotonicity in t,
conjunction for joint tasks, etc.).

8.2 Representation-relative instance complexity

For each n, ICR(n) is the least time bound that witnesses Kt
R[Fact(n)]. Then ?? gives

ICRpoly(n) = poly(log n), ICRbin(n) ̸∈ O
(
poly(log n)

)
(under ??).

8.3 Conditional Kolmogorov complexity

?? formalizes the intuitive statement that, given fn, a short description suffices to reconstruct
Fact(n), while given bin(n) such a short description typically does not exist uniformly across n.

8.4 Evidence as likelihood gains

Consider the hypothesis Hd : “d | n”. Observation Og : “g is an irreducible factor of fn” implies
Hg(2) with certainty by ??. Thus the (log) weight of evidence

w(Hg(2) : Og) = log
Pr[Og | Hg(2)]

Pr[Og | ¬Hg(2)]

is +∞ in the idealized model (or very large under noise), whereas from bin(n) no analogous
immediate certificate arises without performing a hard computation. This captures B’s epistemic
edge as a gain in decisive evidence for divisibility claims.

9 Limits, Caveats, and Design Space
Coefficient height is crucial. ?? hinges on ??. If log(ht(fn)) grew super-polynomially in
log n (e.g. exponentially in deg fn), factoring over Q could become expensive. Our ?? ensures
the total bit-size of the polynomial is poly(log n).

6

Who computes fn? Our analysis treats fn as given. If constructing fn from bin(n) is itself
hard (say factoring-hard), then the representation functions as a compiled or even trapdoor
artifact. This does not invalidate B’s advantage given the representation; it just moves work to
an offline producer.

Robustness. The results remain valid if evaluation occurs at any fixed integer x = x0 with
fp(x0) = p. The choice x0 = 2 is only for concreteness.

10 Related Perspectives (Brief)
Knowledge compilation. Representations that make certain queries (here, “factorization”)
polytime often become larger or more structured; there is a succinctness/tractability trade-off.

Algorithmic knowledge. Resource-bounded accounts of knowledge interpret “knows φ”
as “has an algorithm to compute a witness of φ within resources”. Our operators Kt

R are in this
tradition.

11 Conclusions
Under clear axioms on a polynomial encoding n 7→ fn, factorization becomes easy relative to
the polynomial representation and remains nontrivial relative to the binary representation. We
demonstrated a concrete polynomial family that satisfies these axioms. The difference can be
measured in running time, description length, and evidence-theoretic terms, providing a precise
sense in which representation is epistemology for computational tasks.

Appendix A: Small Technical Details
Bit-size of polynomial input. If d = deg fn and H = ht(fn), the bit-size of the coefficient
list is O(d log(1 + H)). Our poly(log n) bound implicitly refers to this encoding size.

Sign of irreducibles. If some gj(2) < 0, the sign can be flipped by replacing gj by −gj (which
is an associate) without changing factorization or exponents. For the family in §6, all fp have
non-negative coefficients, so fp(2) = p > 0 and this is not an issue.

Squarefreeness issues. If n is squarefree, the polynomial fn is squarefree by ??. For prime
powers pk, the exponent k is exactly the multiplicity of fp in fn.

Acknowledgments and Notes
The structure of the assumptions (irreducible codes for primes, multiplicativity, evaluation at a
fixed point) is inspired by discussions about polynomial encodings of integers where irreducibility
mirrors primality. Standard references for polynomial factorization over Q include textbooks on
computer algebra and the original LLL method.

References
[1] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen 261, 515–534 (1982).

[2] J. von zur Gathen and J. Gerhard. Modern Computer Algebra, 3rd ed. Cambridge University
Press, 2013.

7

[3] J. Halpern and R. Pucella. A logic for reasoning about algorithmic knowledge. Information
and Computation 206(9–10): 1302–1332, 2008.

[4] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence
Research 17: 229–264, 2002.

8

