
Prime Factorization from a Two-Bit-per-Integer Encoding

Orges Leka with help from ChatGPT 5

November 4, 2025

Abstract

We show that the complete set of prime factorizations of 1, . . . , n is faithfully encoded
by a Dyck word wn of length 2n that captures the shape of a prime-multiplication tree Tn.
From wn alone and the list of primes up to n, all factorizations can be enumerated in total
time Θ(n log log n) and O(n) space, which is optimal up to constants due to the output size.
We formalize admissible insertions, prove local commutativity and global confluence (any
linear extension of the ancestor poset yields TN), and investigate the direct limit tree T∞.
Under an explicit uniform-insertion heuristic, the pooled insertion index obeys an exact
mixture-of-uniforms law with density f(x) = − log x on (0, 1), matching simulations.

Contents
1 Introduction 2

2 The prime-multiplication tree Tn 3

3 Encoding Tn as a Dyck word wn 3
3.1 Triangles in the Dyck path of wn . 4

4 Epistemic reconstruction: from wn to all factorizations 5
4.1 Data and primitives . 5
4.2 Reconstruction algorithm . 6

5 The insertion index distribution: a mixture-of-uniforms law 7
5.1 Hypotheses . 7
5.2 Discrete law (exact) . 8
5.3 Scaling limit via pooling . 9

6 Commutativity of admissible insertions and confluence to TN 10
6.1 Parent, child set, and prime rank . 10
6.2 Admissible insertion at a fixed horizon . 10
6.3 Local commutativity for admissible insertions . 11
6.4 Global confluence: any linear extension yields TN 13
6.5 Worked example: swapping 5 and 6 at horizon N = 6 14

7 The limit tree T∞ 15
7.1 A category of rooted ordered trees and embeddings 15
7.2 The direct limit tree and its relation to Tn . 15
7.3 An explicit set–theoretic description of T∞ . 16

1

8 Abstract properties of the limit tree T∞ 16
8.1 Unique path property: arithmetic determinism 16
8.2 Recursive self-similarity . 17
8.3 Order structure vs. divisibility . 17
8.4 Topological and degree properties . 18

9 An abstract divisor–ordered setting for the factorization tree 18
9.1 Ordered unique-factorization monoids . 18
9.2 The abstract prime-restricted growth tree . 19
9.3 Uniqueness of paths and basic properties . 20
9.4 Finite truncations and Dyck encoding . 21
9.5 Examples . 21

10 Rational functions attached to the trees 24
10.1 Example values of p(Tn, x) . 26

11 Factorization trees, the p(Tn, x) recursion, and the link to π(n) 27
11.1 Definitions and basic setup . 27
11.2 Part (a): recursion in n and the branched continued fraction 27
11.3 Part (b): the identity for c(n) and bounds by π(n) 28

A SymPy/Numpy/Matplotlib script replicating the experiments 29

1 Introduction
Motivation. Prime factorization across 1, . . . , n carries strong global structure: every integer
appears exactly once as a product of nondecreasing primes. We make this structure explicit by
organizing all factorizations into a single rooted ordered tree Tn: a node m has children mp
with p prime and P1(m) ≤ p ≤ ⌊n/m⌋, ordered by increasing p. A depth-first traversal outputs
a Dyck word wn of length 2n. Thus Tn (hence all factorizations up to n) is faithfully encoded
by 2n bits.

Epistemic message. From wn alone and a precomputed list of primes up to n (via a sieve in
O(n log log n) time), one can reconstruct the prime factorization of every k ≤ n in total time
Θ(n log log n) using only primality/progression of primes. This matches the information-theoretic
output lower bound and yields an amortized Θ(log log n) per integer.

Contributions.

• A tree/Dyck encoding Tn ↔ wn that supports Θ(n log log n) total-time reconstruction of all
factorizations 1 ≤ k ≤ n.

• A self-similar functional system for Qr leading to branched S-fractions, Mahler-type scaling,
prime-series bounds, and local Taylor schemes.

• Simple two-sided bounds and convergents (first levels of the S-fraction) that already bracket
p∞ tightly and are numerically stable.

Organization. Section 2 defines the trees Tn and their Dyck encoding and proves unique-
ness/coverage properties. Section 5 develops the insertion-index model. An executable script for
testing these ideas is printed at the Appendix.

2

Figure 1: Some trees.

2 The prime-multiplication tree Tn

Let P1(1) := 1 and, for m ≥ 2, let P1(m) denote the largest prime divisor of m.
Definition 2.1 (Local trees and the global tree). For 1 ≤ m ≤ n, the rooted tree Tn,m is defined
recursively:
• the root is the integer m;

• if there exist primes p with P1(m) ≤ p ≤ ⌊n/m⌋, then the children of m are the roots of the
trees Tn,mp over all such primes p (in increasing order of p); otherwise m is a leaf.

We set Tn := Tn,1.

Remark 2.2 (Coverage, uniqueness, and order). Each integer 1 ≤ m ≤ n appears exactly once
as a node: represent m = ∏r

i=1 pi with nondecreasing primes p1 ≤ · · · ≤ pr; then the path
1 → p1 → p1p2 → · · · → m respects the rule pi+1 ≥ pi = P1(∏j≤i pj) and yields the unique node
m. The children of m are exactly the mp with p ∈ [P1(m), ⌊n/m⌋] prime.

3 Encoding Tn as a Dyck word wn

Traverse Tn in depth-first (preorder) fashion. Output a “1” when a node is visited (opening)
and a “0” when its subtree is fully processed (closing). This yields a Dyck word wn ∈ {1, 0}2n

of length 2n. The mapping Tn ↔ wn is bijective: from a Dyck word one can reconstruct the
underlying ordered rooted tree by the usual stack algorithm in O(n) time.

3

3.1 Triangles in the Dyck path of wn

We view the Dyck word wn ∈ {1, 0}2n obtained from the preorder traversal of Tn as a lattice path
that starts at height 0, interprets each symbol 1 as an up-step (+1) and each 0 as a down-step
(−1), and never goes below 0.

What we count. For a Dyck word w we define the number of (isosceles right) triangles t(w)
purely combinatorially as follows, using the standard first-return decomposition. Let |A|1 denote
the number of symbols 1 contained in a word A.

• t(ε) := 0.

• Every nonempty Dyck word is uniquely of the form

w = 1 A 0 B,

with A, B Dyck words (the first return to height 0). We then set

t(w) =
(
1 + 2 |A|1

)
+ t(A) + t(B). (1)

Geometric intuition. The term 1 counts the outer triangle of the mountain 1A0. Each of the |A|1
inner peaks of A creates exactly two boundary triangles along the sides of that outer triangle,
hence 2|A|1. The triangles strictly inside the mountain are exactly those of A, and the triangles
to the right are those of B. These three classes are disjoint, which yields (1). For n ≥ 1 we write
tn := t(wn).

Inserting a leaf 10 increases t by 1 + 2d. When we pass from w to w+ by inserting one
new leaf 10 at some position of the word (this is precisely what happens when we move from
Tn−1 to Tn), the insertion depth d is the height of the path at the insertion point (equivalently,
the current stack depth).

Lemma 3.1 (Linear increment). If w+ is obtained from w by inserting 10 at depth d, then

t(w+) − t(w) = 1 + 2d.

Proof. We argue by induction on d using (1).
Base d = 0. Inserting at height 0 appends an additional mountain 10 to the right (or,

equivalently, modifies only the B-part in a decomposition w = 1A0 B). Then t(B) increases by
t(10) − t(ε) = 1, and all other terms in (1) are unchanged. Hence ∆t = 1 = 1 + 2 · 0.

Induction step. Suppose d ≥ 0 and the insertion occurs inside the A-part of the decomposition
w = 1A0 B. Let A+ be A after the same insertion. Then |A+|1 = |A|1 + 1 and by (1)

t(w+) − t(w) =
(
1 + 2|A+|1 + t(A+) + t(B)

)
−

(
1 + 2|A|1 + t(A) + t(B)

)
= 2 +

(
t(A+) − t(A)

)
.

The insertion depth inside A is d − 1. By the induction hypothesis applied to A we have
t(A+)− t(A) = 1+2(d−1). Therefore t(w+)− t(w) = 2+

(
1+2(d−1)

)
= 1+2d, as claimed.

Depth equals Ω. In the prime-multiplication tree, a node m has depth

depth(m) = Ω(m),

the number of prime factors of m counted with multiplicity, because the unique path 1 → p1 →
p1p2 → · · · → m = ∏r

i=1 pi performs exactly r = Ω(m) prime multiplications.

4

Figure 2: Dyck path for n = 1 with numbers at corresponding levels

Theorem 3.2. Let tn := t(wn). Then

tn = tn−1 + 2 Ω(n) + 1

and consequently

tn =
n∑

k=1

(
1 + 2 Ω(k)

)
= n + 2

n∑
k=1

Ω(k).

Proof. Passing from Tn−1 to Tn inserts the new leaf n at depth d = Ω(n). By Lemma 3.1 the
increment in the triangle count is 1 + 2d = 1 + 2Ω(n), which proves the recursion. Summing the
recursion and using t1 = t(10) = 1 yields the closed form.

Remark 3.3. By Hardy–Ramanujan, 1
n

∑
k≤n Ω(k) ∼ log log n. Hence tn = n + 2 ∑

k≤n Ω(k)
grows like 2n log log n+n. Geometrically, t(w) counts all (possibly nested) isosceles right triangles
whose legs are subsegments of the Dyck path; the recursion (1) matches exactly the first-return
decomposition of the path.

4 Epistemic reconstruction: from wn to all factorizations
We now show that from wn alone we can list prime factorizations of all 1 ≤ k ≤ n quickly.

4.1 Data and primitives

• Input: the word wn of length 2n (equivalently the ordered rooted tree Tn).

• Primitive 1: primality testing (AKS gives polylog time; in practice Miller–Rabin).

• Primitive 2: the list of primes ≤ n, which we precompute by a sieve in time O(n log log n)
and space O(n); we also keep the array primes[1..π(n)] and a “next prime” iterator.

5

Figure 3: Dyck path for n = 2 with numbers at corresponding levels

4.2 Reconstruction algorithm

Step A: parse wn to Tn (linear time). Scan wn with a stack to build the ordered rooted
tree (children order inherited from the parentheses nesting). This costs O(n).

Step B: label the nodes and output factorizations. We do a single DFS over Tn. At
each node we maintain:

• the multiset (ordered list) of prime factors along the path; its last entry is P1(m);

• the current integer value m is not needed to output the factorization, but it can be produced
on the fly as a product of small primes (fits in Õ(log n) bits).

For a node labeled by the path primes (p1 ≤ · · · ≤ pr), with P1(m) = pr (or 1 at the root), the
children are exactly the primes p in the interval

I(m) :=
{

p prime : pr ≤ p ≤ ⌊n/m⌋
}
,

in increasing order. We enumerate I(m) using the precomputed prime list and create children
with factor lists (p1, . . . , pr, p). We output the factorization of each visited node (i.e., each
m ≤ n) as we go.

Complexity analysis.

• Parsing wn → Tn: O(n) time, O(n) space.

• Prime precomputation: Sieve up to n in O(n log log n) time, O(n) space.

• Traversal and enumeration: Over the entire tree, the total number of children equals the
number of edges, n − 1. With a pointer into the prime table for each interval, we spend O(1)
amortized per child; thus O(n) total.

6

Figure 4: Dyck path for n = 3 with numbers at corresponding levels

Figure 5: Dyck path for n = 4 with numbers at corresponding levels

• Output size lower bound: The total length of all factorizations is ∑
k≤n ω(k) = n log log n +

Bn + o(n) (Hardy–Ramanujan), so the output alone costs Θ(n log log n).

Theorem 4.1 (Tight asymptotics). Given the word wn (length 2n), one can output the prime
factorization of every integer 1 ≤ k ≤ n in total time

Θ(n log log n) time and O(n) space,

which is optimal up to constants due to the Θ(n log log n) output size. The amortized time
per integer is Θ(log log n); the per-integer work equals Θ(ω(k)) with E[ω(k)] ∼ log log n and
worst-case O(log n).

5 The insertion index distribution: a mixture-of-uniforms law

5.1 Hypotheses

(U@fix) (Uniformity at a fixed step) For each fixed n ≥ 2 the insertion index

sn ∈ {0, 1, . . . , 2(n − 1) − 1}

7

Figure 6: Dyck path for n = 5 with numbers at corresponding levels

Figure 7: Dyck path for n = 6 with numbers at corresponding levels

is uniformly distributed over the 2(n − 1) available slots, i.e. P(sn = s) = 1
2(n−1) for all

admissible s.

(Pool) (Pooling across steps) For fixed N ≥ 2 we first draw n uniformly from {2, . . . , N}
and then, conditional on n, draw S uniformly from {0, . . . , 2(n − 1) − 1} (i.e., we forget n
afterwards and look at the pooled indices).

5.2 Discrete law (exact)

Proposition 5.1 (Mixture-of-uniforms, discrete). Under (U@fix) and (Pool), for s ∈
{0, 1, . . . , 2(N − 1) − 1} we have

P(S = s) = 1
N − 1

N∑
n=2

1{s < 2(n − 1)}
2(n − 1) =

HN−1 − H⌊s/2⌋
2(N − 1) ,

where Hm = ∑m
k=1

1
k (and H0 := 0) are the harmonic numbers.

Proof. Fix s. This value can only occur for steps with 2(n−1) > s, i.e. n ≥ ⌊s/2⌋+2. Conditional
on such n, the probability of that specific s equals 1/(2(n − 1)) (by (U@fix)). Averaging over
n ∈ {2, . . . , N} gives

P(S = s) = 1
N − 1

N∑
n=⌊s/2⌋+2

1
2(n − 1) = 1

2(N − 1)

N−1∑
m=⌊s/2⌋+1

1
m

=
HN−1 − H⌊s/2⌋

2(N − 1) .

8

Figure 8: Dyck path for n = 7 with numbers at corresponding levels

Figure 9: Dyck path for n = 8 with numbers at corresponding levels

Remark 5.2 (Shape). The mixture is heaviest near the middle (many steps contribute) and
lightest near the extremes (few steps contribute); the weights are governed by harmonic sums.
There are no free parameters.

5.3 Scaling limit via pooling

Let Smax := 2(N − 1) and X := S/Smax ∈ [0, 1].

Proposition 5.3 (Continuum limit). As N → ∞, X converges in distribution to a continuous
law on (0, 1) with CDF and density

F (x) = x
(
1 − log x

)
, f(x) = − log x, x ∈ (0, 1).

Moreover, the moments satisfy E[Xk] =
∫ 1

0 xk(− log x) dx = 1
(k+1)2 , in particular

E[X] = 1
4 , Var(X) = 7

144 .

Proof. For s = ⌊xSmax⌋ we have HN−1 − H⌊s/2⌋ ∼ log
(
(N − 1)/⌊s/2⌋

)
∼ log(1/x). From

Proposition 5.1 this yields the Riemann-sum limit F (x) =
∫ x

0 (− log u) du = x(1 − log x), and
differentiation gives f(x) = − log x. The moments follow from

∫ 1
0 xk(− log x) dx = (k + 1)−2.

Remark 5.4 (Stochastic interpretation). Draw U ∼ Unif(0, 1) and, conditional on U = u, let
X | (U = u) ∼ Unif(0, u). Then the unconditional density of X is f(x) = − log x (the continuous
mixture of uniforms).

9

Figure 10: Dyck path for n = 9 with numbers at corresponding levels

Figure 11: Dyck path for n = 10 with numbers at corresponding levels

6 Commutativity of admissible insertions and confluence to TN

We recall our convention: for m ≥ 2, P1(m) denotes the largest prime divisor of m, with
P1(1) := 1. For N ∈ N, the finite tree TN has vertex set {1, 2, . . . , N}, root 1, and edges

m −→ mp for primes p such that P1(m) ≤ p ≤
⌊N

m

⌋
,

with the children of m ordered increasingly by p.

6.1 Parent, child set, and prime rank

For m ≥ 2 we set
par(m) := m

P1(m) ∈ N. (2)

Then in TN the vertex m is exactly the child of par(m), and the ordered children of par(m) are

ChN

(
par(m)

)
=

{
par(m) · p : p prime, P1(par(m)) ≤ p ≤

⌊ N

par(m)
⌋ }

, (3)

sorted by increasing p.
It is convenient to record the prime rank of m among its siblings:

rankN (m) := 1 + #
{

q prime : P1
(
par(m)

)
≤ q < P1(m)

}
. (4)

Thus rankN (m) is the index of the prime P1(m) within the sorted list of allowable primes for the
parent par(m); note that rankN (m) does not depend on the upper cutoff N as long as N ≥ m.

6.2 Admissible insertion at a fixed horizon

Fix a finite rooted ordered tree U that is a valid truncation of some TM (for some M), and fix a
target horizon N ≥ 1. For x ∈ N, we say that x is N -admissible in U and write x ∈ AdmN (U) if

par(x) ∈ U and x ≤ N. (5)

10

Figure 12: Dyck path for n = 11 with numbers at corresponding levels

Figure 13: Dyck path for n = 12 with numbers at corresponding levels

In that case we define the insertion operation

U ⊕N x

to be the rooted ordered tree obtained from U by adjoining the new vertex x as the child of
par(x) and placing it among the children of par(x) at the unique position prescribed by the
prime rank (4), i.e. so that the child order remains increasing in the underlying prime parameter.

Remark 6.1. If U = Tn and x = n + 1 then x is (n + 1)-admissible and Tn ⊕n+1 (n + 1) = Tn+1.
For general x > n one must raise the horizon to N ≥ x; the operation Tn ⊕N x is well-defined
but (unless N = x and x = n + 1) does not yield the full TN by itself, because other admissible
nodes y ≤ N might still be missing.

6.3 Local commutativity for admissible insertions

We first show that two admissible insertions that do not stand in an ancestor–descendant relation
commute.

Definition 6.2 (Ancestor partial order). For u, v ∈ N we write u ≼ v (“u is an ancestor of v”)
if v can be reached from u by a (possibly empty) sequence of valid prime multiplications with
nondecreasing primes, i.e. if there exists k ≥ 0 and primes q1 ≤ · · · ≤ qk such that

v = u ·
k∏

i=1
qi and q1 ≥ P1(u),

with the convention that k = 0 means v = u. We write u ≺ v for u ≼ v and u ̸= v.

Lemma 6.3 (Local commutativity). Let U be a valid finite truncation and fix N . Suppose
a, b ∈ AdmN (U), i.e. par(a), par(b) ∈ U and a, b ≤ N , and assume a ̸≼ b and b ̸≼ a (incomparable
in the ancestor order). Then both b ∈ AdmN (U ⊕N a) and a ∈ AdmN (U ⊕N b), and(

U ⊕N a
)

⊕N b =
(
U ⊕N b

)
⊕N a. (6)

11

Figure 14: Dyck path for n = 18 with numbers at corresponding levels

Figure 15: Empirical CDF (pooled indices S for 2 ≤ n ≤ 1000) versus the discrete mixture-of-
uniforms model CDF from Proposition 5.1.

Proof. We consider two cases.
Case 1: par(a) ̸= par(b). Inserting a only modifies the child list of par(a) by appending a at

the rank (4); in particular it does not create or destroy par(b) nor affect its children. Hence b
remains N -admissible after inserting a, and symmetrically a remains admissible after inserting b.
Moreover, the two operations affect disjoint parts of the tree (two different child lists), so the
final tree does not depend on the order: (6) holds.

Case 2: par(a) = par(b) =: m. Let pa := P1(a) and pb := P1(b). By admissibility we have
P1(m) ≤ pa, pb ≤ ⌊N/m⌋. The insertion U ⊕N a places a into the sorted child list of m at the
unique position determined by pa; inserting b afterwards places b into the same sorted list at
the position determined by pb. Thus the final child list of m is the same multiset of children
{m · p : p ∈ P} with P the set of primes in [P1(m), ⌊N/m⌋] augmented by {pa, pb} and ordered
increasingly; hence the result does not depend on whether we insert a first or b first. All other
vertices and child lists are unaffected in either order, so (6) follows.

Remark 6.4 (Necessity of incomparability). If a ≺ b then par(b) does not belong to U unless a
(and all its ancestors up to par(b)) has been inserted; hence b may fail to be admissible before
inserting a. In this sense, the partial order ≼ encodes precedence constraints that must be
respected by any valid insertion schedule.

12

Figure 16: CDF residuals: empirical CDF minus model CDF for the pooled S at N=1000.

6.4 Global confluence: any linear extension yields TN

Fix n < N and set
A := {n + 1, n + 2, . . . , N}. (7)

Equip A with the restriction of the ancestor partial order ≼ of Definition 6.2. A valid schedule
is a bijection σ : {1, . . . , |A|} → A such that

u ≼ v in A ⇒ σ−1(u) ≤ σ−1(v),

i.e. σ is a linear extension of (A,≼). Given such σ, define the iterative insertion

U0 := Tn, Uk := Uk−1 ⊕N σ(k) (k = 1, . . . , |A|). (8)

Theorem 6.5 (Confluence to TN). For every valid schedule σ as above, the tree U|A| defined by
(8) is equal (as an ordered rooted tree) to TN . In particular, if σ and τ are two linear extensions
of (A,≼), then the outcomes coincide:

Fold(Tn, σ) = Fold(Tn, τ) = TN .

Proof. We proceed by induction on |A|.
Base |A| = 0. Then N = n and U0 = Tn = TN .
Inductive step. Assume the claim for all target sets of size < |A|. Let M be the set of

≼-minimal elements of A. Every valid schedule starts with some x ∈ M . Fix any x ∈ M .
Then par(x) ∈ Tn (because x has no strict ancestor in A), hence x is N -admissible in Tn and
U1 = Tn ⊕N x is well-defined.

Consider the reduced target set A′ := A \ {x} with the induced partial order. Any linear
extension σ of (A,≼) with σ(1) = x restricts to a linear extension σ′ of (A′,≼), and the iterative
fold (8) for k ≥ 2 coincides with the fold that starts from U1 and inserts the σ′(1), . . . , σ′(|A′|)
in that order. By the induction hypothesis applied to U1 and the target A′, this results in TN .

13

Figure 17: Histogram of pooled S (bin size 33) versus the binned model PMF from Proposition 5.1
(N=1000).

It remains to check that the particular choice of the first minimal element does not matter. If
x, y ∈ M are two distinct minimal elements, then x and y are incomparable in ≼; by Lemma 6.3
we have local commutativity(

Tn ⊕N x
)

⊕N y =
(
Tn ⊕N y

)
⊕N x.

Therefore any two valid schedules that differ only by swapping the first two entries x, y ∈ M lead
to the same U2; iterating this argument and using induction on the remaining |A| − 2 insertions
shows that all valid schedules yield the same final tree, which must be TN by vertex count and
the defining edge/ordering rules. This completes the induction.

6.5 Worked example: swapping 5 and 6 at horizon N = 6
Start from T4 (vertices {1, 2, 3, 4}). We have

par(5) = 5
P1(5) = 5

5 = 1, P1(5) = 5,

so 5 is a new child of the root. Also

par(6) = 6
P1(6) = 6

3 = 2, P1(6) = 3,

so 6 is a new child of 2. Both parents 1 and 2 already belong to T4, hence at horizon N = 6 we
have {5, 6} ⊂ Adm6(T4), and 5 and 6 are incomparable in the ancestor order. Lemma 6.3 yields(

T4 ⊕6 6
)

⊕6 5 =
(
T4 ⊕6 5

)
⊕6 6.

By Theorem 6.5 the common result is T6; concretely, inserting 6 first modifies only the child list
of 2 by appending 2 · 3, while inserting 5 first modifies only the child list of 1 by appending the
prime child 5. The two modifications are independent and the final ordered child lists coincide
with those in T6.

14

7 The limit tree T∞

In this section we formalize the category in which our prime–multiplication trees live, construct
the direct (colimit) limit object T∞, relate it to the finite trees Tn, and finally give an explicit
set–theoretic description of T∞.

7.1 A category of rooted ordered trees and embeddings

Definition 7.1 (Category Treeemb). An object of Treeemb is a (possibly countably infinite)
rooted, ordered tree T = (V, E, ρ, ⪯) where

• V is a set of vertices, E ⊂ V × V is a set of directed edges forming a tree oriented away from
the root ρ ∈ V ;

• for each vertex v ∈ V , the set of children Ch(v) := {w : (v, w) ∈ E} is endowed with a total
order ⪯v (“plane”/ordered tree).

A morphism f : T → T ′ in Treeemb is an embedding, i.e. an injective map f : V → V ′ such that

(i) f(ρ) = ρ′ (root-preserving);

(ii) (v, w) ∈ E ⇐⇒ (f(v), f(w)) ∈ E′ (edge- and ancestor-preserving);

(iii) for each v ∈ V , the order on Ch(v) is preserved: if x ⪯v y then f(x) ⪯′
f(v) f(y).

Remark 7.2. In this category, directed systems of trees with embedding transition maps have
concrete colimits given by directed unions: since the morphisms are injective and order/edge
preserving, the universal object is obtained by taking the union of vertex and edge sets and the
induced child orders.

7.2 The direct limit tree and its relation to Tn

Recall Tn is the rooted ordered tree on vertices {1, 2, . . . , n} with root 1, where a vertex m has as
children the numbers mp ≤ n for primes p satisfying p ≥ P1(m) (with the convention P1(1) = 1),
ordered by increasing p.

Proposition 7.3 (Directed system (Tn)). For each n, the inclusion of vertex sets {1, . . . , n} ↪→
{1, . . . , n + 1} induces an embedding

in,n+1 : Tn ↪→ Tn+1

in Treeemb. Hence (Tn, in,n+1)n≥1 is a directed system in Treeemb.

Definition 7.4 (Direct limit T∞). The limit tree T∞ is the colimit of the directed system
(Tn, in,n+1) in Treeemb:

T∞ := lim−→ (Tn, in,n+1).

Concretely (Remark above), T∞ is obtained by taking the directed union of the vertex and edge
sets and the induced child orders, and the canonical embeddings jn : Tn → T∞ are the inclusions.

Proposition 7.5 (Relationship between T∞ and Tn). For each n, Tn is precisely the induced
finite rooted ordered subtree of T∞ on the vertex set {1, 2, . . . , n}. Equivalently, jn : Tn → T∞
identifies Tn with that induced subtree. Moreover, (T∞, (jn)) satisfies the universal property of
the colimit: for any cocone (S, ϕn) with ϕn+1 ◦ in,n+1 = ϕn, there exists a unique morphism
u : T∞ → S with u ◦ jn = ϕn.

15

7.3 An explicit set–theoretic description of T∞

Definition 7.6 (Explicit model of T∞). Let P denote the set of prime numbers and P1 : N → N
the map sending m ≥ 2 to its largest prime factor and P1(1) := 1. Define the rooted ordered tree

T∞ = (V, E, ρ, ⪯)

as follows:

• Vertices: V = N = {1, 2, 3, . . . }.

• Root: ρ = 1.

• Edges: For each m ∈ N, its (possibly infinite) set of children is

Ch(m) := { mp : p ∈ P, p ≥ P1(m) },

and E = {(m, mp) : p ∈ P, p ≥ P1(m)}.

• Child order: The children Ch(m) are totally ordered by the value of the prime, i.e. if p < q
then mp ≺ mq.

Proposition 7.7. The explicit tree of Definition 7.6 is isomorphic (in Treeemb) to the colimit
T∞ of Definition 7.4. Under this identification, for each n the finite tree Tn is the induced
ordered subtree of T∞ on the vertex set {1, . . . , n}.

Proof sketch. By construction, Tn has vertex set {1, . . . , n} and edges (m, mp) whenever mp ≤ n
and p ≥ P1(m). Taking the directed union in n yields precisely the edge set in Definition 7.6,
and the child orders are compatible (increasing primes) and hence induce the stated total
orders on Ch(m). The universal property follows from the standard colimit property for nested
embeddings.

Remark 7.8 (Local finiteness and truncations). Note that T∞ has countably infinite outdegree
at every vertex (all sufficiently large primes are allowed), hence it is not locally finite. For any
finite cutoff n, the truncation obtained by deleting vertices > n recovers Tn; for any prime cutoff
B, the induced subtree on edges with child-prime ≤ B is finite over each vertex and stabilizes as
n → ∞.

8 Abstract properties of the limit tree T∞

Recall the explicit model of the limit tree T∞ = (V, E, ρ, ⪯) from Definition 7.6: V = N, ρ = 1,
and for each m ∈ N the set of children is

Ch(m) = { mp : p prime, p ≥ P1(m) },

where P1(m) denotes the largest prime factor of m (with the convention P1(1) = 1); the children
are ordered by increasing prime p.

8.1 Unique path property: arithmetic determinism

Proposition 8.1 (Unique path from the root). For every node m ∈ N, there exists a unique
simple path in T∞ from the root 1 to m.

16

Proof. Existence. Write the prime factorization of m as

m =
k∏

i=1
pi with p1 ≤ p2 ≤ · · · ≤ pk.

Define the chain m0 := 1, mi := ∏i
j=1 pj for 1 ≤ i ≤ k. Then mi → mi+1 = mi ·pi+1 is an edge of

T∞ because P1(mi) = pi and pi+1 ≥ pi by construction. Hence 1 = m0 → m1 → · · · → mk = m
is a valid path.

Uniqueness. Let 1 = n0 → n1 → · · · → nℓ = m be any path in T∞. By definition of edges,
for each i there exists a prime qi+1 such that ni+1 = ni · qi+1 and qi+1 ≥ P1(ni). Therefore
m = ∏ℓ

j=1 qj , so the multiset {q1, . . . , qℓ} equals the multiset of prime factors of m. Moreover
the monotonicity constraint implies qi+1 ≥ P1(ni) = max{q1, . . . , qi}, hence q1 ≤ q2 ≤ · · · ≤ qℓ.
Since there is only one nondecreasing listing of a fixed multiset of primes, the path is uniquely
determined and coincides with the one constructed above.

Corollary 8.2 (Acyclicity and connectedness). T∞ is a connected acyclic graph; in particular it
is a (rooted, ordered) tree.

Proof. By Proposition 8.1, every vertex is joined to the root by a path (connectedness) and
there is a unique simple path between any two vertices (no cycles).

8.2 Recursive self-similarity

For m ∈ N, write T∞(m) for the full rooted ordered subtree of T∞ induced by the descendants
of m.

Proposition 8.3 (Self-similarity via prime filtering). Let r := P1(m). Consider the auxiliary
rooted ordered tree T ′

∞(r) defined by:

• vertices V ′ = { k ∈ N : every prime factor of k is ≥ r } with root 1;

• edges k → k · p for primes p ≥ max{r, P1(k)}, ordered by increasing p.

Then the map
ϕ : T ′

∞(r) −→ T∞(m), ϕ(k) = m · k,

is an isomorphism of rooted ordered trees.

Proof. Well-definedness and bijectivity. If k ∈ V ′, then every prime factor of k is ≥ r = P1(m),
hence P1(mk) = max{P1(m), P1(k)} = P1(k), so ϕ(k) = mk is a descendant of m. Conversely,
any descendant x of m has the form x = m · k with all prime factors of k ≥ P1(m), thus k ∈ V ′.
Hence ϕ is a bijection V ′ → V (T∞(m)).

Edge preservation. In T ′
∞(r), we have an edge k → k · p iff p ≥ max{r, P1(k)}. Since

r = P1(m) and all primes of k are ≥ r, we have P1(mk) = P1(k). In T∞(m), there is an edge
ϕ(k) = mk → ϕ(k · p) = mk · p iff p ≥ P1(mk) = P1(k). Thus the edge condition is identical
under ϕ.

Order preservation. Children are ordered by increasing p in both trees; ϕ leaves p unchanged,
hence preserves the child order.

8.3 Order structure vs. divisibility

Let u ≼ v denote the ancestor relation in T∞ (i.e. u lies on the unique root-to-v path).

Proposition 8.4 (Ancestor implies divisibility; strictness). If u ≼ v in T∞, then u | v. The
converse fails in general: there exist u | v with u ̸≼ v.

17

Proof. If u ≼ v, the unique path u = n0 → n1 → · · · → nt = v multiplies by primes at each step,
hence v = u ·

∏t
i=1 qi and u | v.

For failure of the converse, take u = 3 and v = 12. Although 3 | 12, the unique path to 12 is
1 → 2 → 4 → 12 (primes 2, 2, 3 in nondecreasing order). There is no edge 3 → 6 using prime 2
because the edge rule requires a prime ≥ P1(3) = 3. Thus 3 ̸≼ 12.

The ancestor relation admits a precise arithmetic characterization.

Proposition 8.5 (Characterization of ancestry). Let u, v ∈ N. Write v = u · t if u | v, and list
the prime factors of t in nondecreasing order as q1 ≤ · · · ≤ qs (with t = 1 interpreted as s = 0).
Then

u ≼ v ⇐⇒ u | v and q1 ≥ P1(u) (vacuously true if s = 0).

Equivalently, u ≼ v iff u | v and every prime factor of v/u is at least P1(u).

Proof. ⇒: If u ≼ v, then along the unique path from u to v we multiply by a nondecreasing
sequence of primes each ≥ P1(u); hence u | v and all primes dividing v/u are ≥ P1(u).

⇐: If u | v and every prime factor of t = v/u is ≥ P1(u), list them as q1 ≤ · · · ≤ qs. Then
the chain u → uq1 → uq1q2 → · · · → v is a valid path because at each step the edge rule requires
multiplying by a prime at least as large as the current largest prime factor, and q1 ≥ P1(u) while
qi+1 ≥ qi. By Proposition 8.1, this is the unique path; hence u ≼ v.

8.4 Topological and degree properties

Proposition 8.6 (Basic graph-theoretic properties). The tree T∞ is connected and acyclic
(Corollary 8.2). Moreover, for every vertex m one has |Ch(m)| = ℵ0, i.e. the out-degree of every
vertex is countably infinite. In particular T∞ is not locally finite.

Proof. Connectedness and acyclicity were proved in Corollary 8.2. For the degree, fix m. Then
Ch(m) = { mp : p prime, p ≥ P1(m) }. By Euclid’s theorem there are infinitely many primes
exceeding any given bound, hence Ch(m) is infinite; in fact it is countably infinite. Since every
vertex has infinite out-degree, the graph is not locally finite.

Remark 8.7 (Consequences for random processes). The failure of local finiteness implies
that certain probabilistic processes (e.g. simple random walk started at the root) behave
differently than on locally finite trees; for instance, transition probabilities out of a vertex are
not normalizable by uniform choice over children. One can nevertheless build natural dynamics
using size-biased or intensity-biased selections over primes p ≥ P1(m).

9 An abstract divisor–ordered setting for the factorization tree
We now isolate the minimal axioms under which our “prime-multiplication tree” construction
(§??) still works. The key point is that we only ever used: (i) divisibility, (ii) a notion of “prime
atom”, (iii) a total order on those atoms, (iv) and the rule that you are only allowed to multiply
by atoms that are not smaller than your current largest atom.

This can be formulated abstractly without reference to the integers.

9.1 Ordered unique-factorization monoids

Definition 9.1 (Ordered UFM). An ordered unique-factorization monoid (ordered UFM) is a
quadruple

(X, ·, 1, ≤)

satisfying the following axioms:

18

(A1) Commutative cancellative monoid. (X, ·, 1) is a commutative monoid with identity 1.
Cancellation holds: if a · b = a · c then b = c.

(A2) Atoms, unique factorization. There is a distinguished subset P ⊂ X \ {1} of atoms
(think: “primes”) such that: every x ∈ X can be written as a finite product

x =
∏
p∈P

pep(x),

where ep(x) ∈ N and ep(x) = 0 for all but finitely many p. Moreover, this multiset
{(p, ep(x)) : p ∈ P} is unique. In particular, 1 is the empty product (all ep(1) = 0).

(A3) Divisibility. Define a | b iff ∃t ∈ X with b = a · t. This induces a partial order (the
divisibility poset).

(A4) Covers are “multiply by one atom”. If x ≺ y is a cover in the divisibility poset (i.e.
x | y, x ̸= y, and no z satisfies x | z | y except z = x, y), then

y = x · p for a unique atom p ∈ P.

Conversely, for every x ∈ X and atom p ∈ P, x ≺ x · p is a cover.

(A5) Total order on atoms. We are given a total order ≤ on P. We extend notation and also
write ≤ for this order on atoms.1

(A6) Least element. 1 is the unique |-minimal element of X (and thus the root we will use).

Remark 9.2. Axioms (A2) and (A4) say abstractly: the divisibility poset (X, |) looks like a
free commutative monoid on the atom set P, and each cover x ≺ y corresponds to “multiply x
by exactly one more copy of a single atom”. Axiom (A5) gives us a total order on atoms, so we
can meaningfully say “the largest atom dividing x”.

Definition 9.3 (Largest atom dividing an element). For x ̸= 1, define

P1(x) := max≤ { p ∈ P : ep(x) ≥ 1 } ∈ P,

i.e. the ≤-largest atom that divides x. By convention set P1(1) := 1, where 1 is regarded as
“smaller than every atom”. This is well-defined because each x has only finitely many atoms with
ep(x) > 0, and ≤ is a total order on P.

9.2 The abstract prime-restricted growth tree

Definition 9.4 (Global tree TX). Let (X, ·, 1, ≤) be an ordered UFM. We define the rooted,
ordered tree

TX = (V, E, ρ, ⪯)

as follows:

• Vertices: V := X.

• Root: ρ := 1.

• Directed edges: for each x ∈ X, for each atom p ∈ P with p ≥ P1(x) (in the total order on
atoms), we draw a directed edge

x −→ x · p.

1We do not require ≤ to be compatible with multiplication globally. We only require it to totally order the
atoms.

19

• Child order: for a fixed parent x, we order its children x · p by the total order on atoms p.
So “smaller atom first” means “left child first.”

This is exactly the same rule we used over the integers: from x you are only allowed to
multiply by atoms p that are not smaller than your current largest atom P1(x), and among
those children we sort by p.

9.3 Uniqueness of paths and basic properties

Proposition 9.5 (Canonical nondecreasing-atom path). For every x ∈ X there is a unique
simple directed path in TX from 1 to x.

Proof. Existence. By unique factorization (A2), write

x =
∏
p∈P

pep(x).

List each atom p exactly ep(x) times, and sort these atoms in nondecreasing order with respect
to ≤:

p1 ≤ p2 ≤ · · · ≤ pk.

Now define

x0 := 1, xi :=
(i∏

j=1
pj

)
(1 ≤ i ≤ k).

We claim xi−1 → xi is an edge of TX . Indeed, xi = xi−1 · pi. Since p1 ≥ P1(1) = 1, the first
edge 1 → p1 is allowed. For i > 1, the largest atom dividing xi−1 is exactly pi−1 because by
construction we multiplied by atoms in nondecreasing order. Therefore P1(xi−1) = pi−1 ≤ pi.
Thus pi ≥ P1(xi−1), so xi−1 → xi is allowed by Definition 9.4. Hence

1 = x0 → x1 → · · · → xk = x

is a directed path in TX .

Uniqueness. Suppose we have any directed path in TX ,

1 = y0 → y1 → · · · → yℓ = x.

By the edge rule, for each step there is some atom qi such that

yi = yi−1 · qi and qi ≥ P1(yi−1).

In particular qi divides yi. Since P1(yi−1) is the largest atom dividing yi−1, and qi ≥ P1(yi−1),
we get

q1 ≤ q2 ≤ · · · ≤ qℓ in the total order on P.

Multiplying along the path,
x = yℓ = q1q2 · · · qℓ.

By unique factorization, the multiset {q1, . . . , qℓ} (counting multiplicities) must equal the multiset
of atoms {p1, . . . , pk} from the sorted factorization of x above. Moreover, because both (qi)
and (pi) are nondecreasing lists of the same multiset, they must agree as sequences, not just as
multisets. Therefore k = ℓ, and yi = xi for all i. So the path we constructed is the only possible
path.

Corollary 9.6. TX is a connected acyclic directed graph with distinguished root 1 and a unique
root-to-x path for each x ∈ X. In particular, TX is an (infinite) rooted ordered tree.

20

Proposition 9.7 (Ancestry vs. divisibility). Let u, v ∈ X. Then u is an ancestor of v in TX

(i.e. u lies on the unique path from 1 to v) if and only if

u | v and every atom dividing v/u is ≥ P1(u).

Equivalently, write v = u · q1q2 · · · qs with the atoms q1 ≤ · · · ≤ qs. Then u is an ancestor of v
iff q1 ≥ P1(u).

Proof. Exactly as in the integer setting. (⇒) If u is on the path 1 → · · · → v, then by
concatenating the segment from u to v we see v = u · q1 · · · qs for a weakly nondecreasing
sequence of atoms qi, each satisfying qi ≥ P1(current node) ≥ P1(u). Thus each prime factor
of v/u is ≥ P1(u). (⇐) Conversely, suppose u | v and every atom of v/u is ≥ P1(u). Sort
those atoms nondecreasingly as q1 ≤ · · · ≤ qs. Then, starting at u and multiplying successively
by q1, . . . , qs, the edge rule is always satisfied, so we build a directed path u → · · · → v. By
uniqueness of the root-to-v path, this shows u is on it.

9.4 Finite truncations and Dyck encoding

In applications we work not with all of X but with a finite “horizon”—for the integers, this was
{1, 2, . . . , n}.

Definition 9.8 (Finite horizon / truncation). A finite subset B ⊂ X is called a divisibility ideal
if whenever x ∈ B and y | x, then y ∈ B. Given such a B, we define TX [B] to be the induced
rooted ordered subtree of TX with vertex set B, keeping only edges x → x · p that stay inside B.

For X = N and B = {1, . . . , n}, this is precisely the finite tree Tn we studied. For any such
finite rooted ordered tree, a standard depth-first traversal (“write 1 when you enter a node,
write 0 when you finish its subtree”) produces a Dyck word of length 2|B|, and conversely any
Dyck word of length 2|B| reconstructs that ordered rooted tree in O(|B|) time. All proofs of
correctness carry over verbatim because they use only tree structure, not arithmetic of N.

9.5 Examples

We now list two concrete families that satisfy the axioms above and which can be visualized in
computer algebra systems.

Example 1: The classical integer case. Take

X = N≥1, · = ordinary multiplication, 1 = 1, P = {prime numbers},

and let ≤ be the usual order on primes (2 < 3 < 5 < 7 < · · ·). Then Axioms (A1)–(A6) hold:
commutative cancellative monoid, unique factorization into primes, divisibility is the usual
divisibility, covers are m ≺ mp for a prime p, the primes are totally ordered by their numeric
size, and 1 is the global minimum. The resulting TX is exactly the prime-multiplication tree T∞
defined earlier: each node m has children m · p for primes p ≥ P1(m), ordered increasingly by p.

Finite truncations B = {1, 2, . . . , n} give the finite trees Tn from §??.

Example 2: Monomials in two variables. Let X be the set of all monomials in two
commuting variables x, y:

X = {xayb : a, b ∈ N}, (xayb) · (xcyd) := xa+cyb+d, 1 := x0y0.

This is a commutative cancellative monoid. The atoms are

P = {x, y}.

21

Figure 18: Trees at {2}

Every monomial xayb factors uniquely as xayb, so unique factorization holds. Divisibility is

xayb | xcyd ⇐⇒ a ≤ c and b ≤ d,

and covers are exactly “multiply by one more x” or “multiply by one more y”. To make this an
ordered UFM, we choose a total order on {x, y}. For instance, declare

x < y.

Then P1(xayb) is:

• P1(1) = 1;

• P1(xa) = x if b = 0;

• P1(xayb) = y if b > 0, because y > x.

The edge rule in TX says: from xayb you may multiply by any atom ≥ P1(xayb). Concretely:

• From 1: P1(1) = 1, so both x and y are allowed. Children: 1 → x, 1 → y, ordered as x ≺ y.

• From x: P1(x) = x, so you may multiply by any atom ≥ x, i.e. x or y. Children: x → x2,
x → xy.

• From y: P1(y) = y, so you may only multiply by atoms ≥ y, i.e. only y. Child: y → y2.

• From xy: P1(xy) = y, so only y is allowed. Child: xy → xy2.

This produces an infinite rooted ordered tree where “once you have used y, you are forever
locked to y only,” but along the x-only branch you can still branch into x or y.

A finite horizon is, for example,

Bd := {xayb : a + b ≤ d},

which is clearly downward closed under divisibility. Then TX [Bd] is a finite ordered rooted tree
you can draw in Sage.

22

Figure 19: Trees at {2, 3}

Example 3: Monomials in three variables. Similarly, take X = {xaybzc : a, b, c ∈ N},
P = {x, y, z}, and impose a total order x < y < z. Then P1(xaybzc) is:

P1(xaybzc) =


x if b = c = 0,

y if c = 0 but b > 0,

z if c > 0,

and edges from a monomial allow you to multiply only by atoms ≥ P1(that monomial). Again,
choosing a finite “degree ball”

Bd := {xaybzc : a + b + c ≤ d}

gives a finite tree.
In both monomial examples:

• Axiom (A1): obvious (commutative cancellative monoid under multiplication of monomials).

• (A2): unique factorization into variables x, y (or x, y, z) with exponents.

• (A3): divisibility is coordinatewise ≤.

• (A4): covers correspond to multiplying by exactly one more factor of one variable.

• (A5): we impose a total order on the variables, e.g. x < y < z.

• (A6): 1 = x0y0z0 is minimal under divisibility.

Therefore these monomial worlds are valid ordered UFMs in our sense, and TX is well-defined
and has unique root-to-node paths, just like in the integer case.

23

Figure 20: Trees at {2, 3, 5}

10 Rational functions attached to the trees
We work with the prime-multiplication tree described earlier. For a node v with numeric value
val(v) ∈ N, and for x > 0, define recursively

p(v; x) :=


xval(v), v leaf,

xval(v)∑
v→w

p(w; x)
, otherwise, p(Tn, x) := p(root; x), p∞(x) := lim

n→∞
p(Tn, x).

We prove that p∞(x) = 0.

24

Figure 21: Plot of one function

25

10.1 Example values of p(Tn, x)
We list the exact expressions for p(Tn, x) for n = 1, . . . , 20:

n = 1 : x

n = 2 : 1
x

n = 3 : x

x3 + x2

n = 4 : x

x3 + 1
x2

n = 5 : x

x5 + x3 + 1
x2

n = 6 : x

x5 + x3 + x2

x6+x4

n = 7 : x

x7 + x5 + x3 + x2

x6+x4

n = 8 : x

x7 + x5 + x3 + x2

x6+ 1
x4

n = 9 : x

x7 + x5 + x2

x6+ 1
x4

+ 1
x6

n = 10 : x

x7 + x5 + x2

x10+x6+ 1
x4

+ 1
x6

n = 11 : x

x11 + x7 + x5 + x2

x10+x6+ 1
x4

+ 1
x6

n = 12 : x

x11 + x7 + x5 + x2

x10+x6+ x4
x12+x8

+ 1
x6

n = 13 : x

x13 + x11 + x7 + x5 + x2

x10+x6+ x4
x12+x8

+ 1
x6

n = 14 : x

x13 + x11 + x7 + x5 + x2

x14+x10+x6+ x4
x12+x8

+ 1
x6

n = 15 : x

x13 + x11 + x7 + x5 + x3

x15+x9 + x2

x14+x10+x6+ x4
x12+x8

n = 16 : x

x13 + x11 + x7 + x5 + x3

x15+x9 + x2

x14+x10+x6+ x4
x12+ 1

x8

n = 17 : x

x17 + x13 + x11 + x7 + x5 + x3

x15+x9 + x2

x14+x10+x6+ x4
x12+ 1

x8

n = 18 : x

x17 + x13 + x11 + x7 + x5 + x3

x15+x9 + x2

x14+x10+ x4
x12+ 1

x8
+ 1

x12
26

11 Factorization trees, the p(Tn, x) recursion, and the link to
π(n)

This section distills the content of the MathOverflow question “Factorization trees and (continued)
fractions?” and the answer by Weber into a self-contained proof of two statements:

(a) a recursion in n for the root weight p(Tn, x) together with the branched “continued–fraction”
representation coming from the tree structure;

(b) the exact identity c(n) := 1
p(Tn,1) = ∑

p≤n p(Tn,p, 1) and the bounds π(n) − π(
√

n) ≤ c(n) ≤
π(n), which imply c(n) ∼ π(n).

11.1 Definitions and basic setup

For m ≥ 2 let P1(m) denote the largest prime divisor of m, with the convention P1(1) = 1. For
integers 1 ≤ m ≤ n we define the rooted ordered tree Tn,m as follows: the root is m; its children
are the numbers mp with p prime and P1(m) ≤ p ≤ ⌊n/m⌋, ordered by increasing p. If no such
prime exists, m is a leaf. We write Tn := Tn,1. For a node v with numeric value val(v) and
parameter x > 0 set

p(Tn,v, x) :=


xval(v), if v is a leaf,

xval(v)∑
v→w

p(Tn,w, x)
, otherwise,

p(Tn, x) := p(Tn,1, x).

This is exactly the weighting used in the MO discussion.

11.2 Part (a): recursion in n and the branched continued fraction

Step 1: a locality lemma for the update n 7→ n+1

Let n ≥ 1 and write the prime factorization of n+1 in nondecreasing order as n+1 = p1p2 · · · pr

(r ≥ 1). The unique root-to-(n+1) path in Tn+1 is

1 = v0 → v1 = p1 → v2 = p1p2 → · · · → vr = p1 · · · pr = n+1.

Consequently, from Tn to Tn+1 the only structural change in the child list of the root occurs
either by appending the prime child n+1 (when r = 1), or by modifying the subtree rooted at
the single prime child p1 (when r ≥ 2). No other root child is affected.

Step 2: the n–recursions for p(Tn, x)

Let
Sn(x) :=

∑
p≤n

p prime

p(Tn,p, x), so that p(Tn, x) = x

Sn(x) .

Then:

• n+1 prime. A new root child n+1 appears and is a leaf, hence Sn+1(x) = Sn(x) + x n+1 and
therefore

p(Tn+1, x) = x
x

p(Tn,x) + x n+1 . (9)

27

• n+1 composite. Let s := spf(n+1) be the smallest prime dividing n+1. By the locality lemma
only the subtree at the root child s changes; all other prime children are unchanged. Thus

Sn+1(x) = Sn(x) − p(Tn,s, x) + p(Tn+1,s, x),

and hence
p(Tn+1, x) = x

x
p(Tn,x) +

(
p(Tn+1,s, x) − p(Tn,s, x)

) . (10)

Both formulas follow directly from the definition of p(·) and the description of which child sums
change when n increases by one.

Step 3: “branched continued–fraction” representation

The defining rule for an internal node m, p(Tn,m, x) = xm/
∑

m→v p(Tn,v, x), together with the
leaf rule p(Tn,m, x) = xm, shows by induction on the number of nodes in a finite subtree that
p(Tn,m, x) is obtained from the leaf monomials by repeatedly applying the operations (finite sum
over children) and (take reciprocal and multiply by xm). Equivalently:

Lemma 11.1 (branched S-fraction along the tree). For every finite rooted subtree U ⊆ Tn,
p(U, x) is a rational expression built from the leaves xval(v) by alternating finite sums and
reciprocals according to the tree structure. In particular p(Tn, x) admits a nested (branched)
Stieltjes continued–fraction expansion dictated by Tn.

11.3 Part (b): the identity for c(n) and bounds by π(n)
Define

c(n) := 1
p(Tn, 1) .

At x = 1 the root formula reads p(Tn, 1) = 1/
∑

p≤n p(Tn,p, 1), because the root children are
precisely the primes ≤ n. Therefore

c(n) =
∑
p≤n

p prime

p(Tn,p, 1) . (11)

Upper bound c(n) ≤ π(n)

We show p(Tn,m, 1) ≤ 1 for every non-leaf node m. By Bertrand’s postulate there is a prime q
with n

2m < q ≤ n
m . Then mq is a child of m and satisfies mq > n/2, hence mq has no further

children (any additional prime factor would push it above n), i.e. mq is a leaf and p(Tn,mq, 1) = 1.
Since the denominator of p(Tn,m, 1) is a sum over the children and contains at least this 1, we
get p(Tn,m, 1) ≤ 1. Applying this at the root to the children m = p (primes) gives

c(n) =
∑
p≤n

p(Tn,p, 1) ≤
∑
p≤n

1 = π(n).

Lower bound c(n) ≥ π(n) − π(
√

n)

If p >
√

n is prime, then p is a leaf of Tn (since p2 > n), hence p(Tn,p, 1) = 1. Counting such
primes yields

c(n) ≥ #{ p ≤ n : p >
√

n } = π(n) − π(
√

n).

28

Asymptotics and an n–recurrence for c(n)

Combining the bounds,
π(n) − π(

√
n) ≤ c(n) ≤ π(n),

and using π(
√

n) = o(π(n)) (e.g. by the prime number theorem) gives c(n) ∼ π(n). Moreover,
from (11) we read off the exact increment:

• if n+1 is prime, a new root child (a leaf) of weight 1 is added, so c(n+1) = c(n) + 1;

• if n+1 is composite with s = spf(n+1), then the only changed root subtree is that rooted at
s, hence

c(n+1) − c(n) = p(Tn+1,s, 1) − p(Tn,s, 1) .

In summary, (a) establishes the precise n–recursions (9)–(10) and the branched continued–fraction
structure of p(Tn, x); (b) proves the identity (11) together with the bounds sandwiching c(n)
between π(n) and π(n) − π(

√
n), and derives the exact update rule for c.

Acknowledgments
The definition of the factorization tree and the observation about the fast factorization were
done by the first author, while all the rest by the second author.

A SymPy/Numpy/Matplotlib script replicating the experiments
What it does. Builds wn incrementally via the nextWord logic, records the insertion index
sn, constructs the stable separating permutation, computes C(σ), then Z = |w| − C(σ), and
plots/prints normalized histograms.
prime_tree_experiments .py (pure SymPy/NumPy/ Matplotlib)

from sympy import factorint , isprime , primerange , nextprime
from sympy.combinatorics.permutations import Permutation
import numpy as np
import math
import random
import matplotlib.pyplot as plt

---------- helpers ----------
def P1(n: int) -> int:

""" Largest prime divisor (P1 (1) =1)."""
if n == 1:

return 1
f = factorint(n)
return max(f.keys())

def sorted_prime_divisors(n: int):
""" Prime divisors with multiplicity , sorted nondecreasing ."""
f = factorint(n)
out = []
for p in sorted(f.keys()):

out.extend ([p] * f[p])
return out

def encode(n: int , start: int = 1) -> str:

29

""" Reference encoder of the tree T_n as a Dyck word (1= open , 0=
close)."""

children are mp where p runs over primes in [P1(start), n// start]
low = P1(start)
high = n // start
children = [start * p for p in primerange(low , high + 1)]
if not children:

return "10"
w = "".join(encode(n, start=c) for c in children)
return "1" + w + "0"

---------- incremental word update (inserting "10") ----------
def nextWord(wn: str) -> str:

""" Given w_n (as ’01’ string), return w_{n+1} by inserting ’10’ at
index s_n."""

if wn == "":
return "10"

n = len(wn) // 2
sp = sorted_prime_divisors(n + 1)
Mp = sp[-1]
myM = (n + 1) // Mp

simulate the DFS queue (m, current_prime_bound)
qq = [(+1, 2)]
cnt = 0
wn_list = list(wn)
s = None

for ch in wn_list [1:]:
cnt += 1
if ch == ’1’:

m, p = qq[0]
qq.insert(0, (m * p, p))

else: # ch == ’0’
m, p = qq.pop (0)
if qq:

qq[0] = (qq[0][0] , nextprime(qq [0][1]))
if myM == m and s is None:

s = cnt - 1
break

if s is None:
fallback : append (should not happen in typical traces)
s = len(wn) - 1

wn1 = wn[: (s + 1)] + "10" + wn[(s + 1) :]
return wn1

---------- separation via stable sort and cycle count ----------
def stable_separator_cycle_count(w: str) -> int:

"""
Build the stable sorting permutation that moves all ’0’s first ,

then ’1’s,
preserving relative order within each block; return number of

cycles .
"""
m = len(w)
current positions are 0..m-1

30

zeros = [i for i, ch in enumerate(w) if ch == ’0’]
ones = [i for i, ch in enumerate(w) if ch == ’1’]
target_order = zeros + ones # desired positions in separated word
Permutation in SymPy uses images in one -line notation : p(i) =

images [i]
We want permutation pi such that pi maps new index j to old index

target_order [j].
images = list(range(m))
for newpos , oldpos in enumerate(target_order):

images[newpos] = oldpos
pi = Permutation(images) # maps j -> images [j]
return len(pi.cyclic_form)

---------- main experiment ----------
def run_experiment(N=350, show_plots=True):

wn = ""
Z_list = []
s_norm = []

for n in range(1, N + 1):
s = 0
if wn != "":

wn_next = nextWord(wn)
index of first difference :
for i in range(len(wn)):

if wn[i] != wn_next[i]:
s = i
break

wn = nextWord(wn)
sanity : optional equality check with full encode (n)
assert wn == encode (n), " Mismatch at n={}". format (n)

build separator permutation and measure cycles
C = stable_separator_cycle_count(wn)
Z = len(wn) - C # our statistic
Z_list.append(Z - 2 * n) # centered at 2n as in the

question
s_norm.append(s / max(1, 2 * n - 1))

if n % 100 == 0:
print(n, Z - 2 * n)

normalize Z_list to mean 0, variance 1 for hist
Z_arr = np.array(Z_list , dtype=float)
mu = Z_arr.mean()
sd = Z_arr.std(ddof =0)
if sd == 0.0:

sd = 1.0
Z_norm = (Z_arr - mu) / sd

print("Z␣-␣2n:␣mean␣=", mu, "␣stddev␣=", sd)
print("s_norm:␣mean␣=", np.mean(s_norm), "␣stddev␣=", np.std(s_norm

, ddof =0))

if show_plots:
fig , ax = plt.subplots(1, 2, figsize =(10 ,4))
ax[0]. hist(Z_norm , bins=30, density=True)
ax[0]. set_title("Normalized␣(Z-2n)")

31

ax[1]. hist(s_norm , bins=30, density=True)
ax[1]. set_title("Normalized␣insertion␣index␣s_n/(2n)")
plt.tight_layout ()
plt.show()

if __name__ == "__main__":
run_experiment(N=350, show_plots=True)

32

	Introduction
	The prime-multiplication tree Tn
	Encoding Tn as a Dyck word wn
	Triangles in the Dyck path of w_n

	Epistemic reconstruction: from wn to all factorizations
	Data and primitives
	Reconstruction algorithm

	The insertion index distribution: a mixture-of-uniforms law
	Hypotheses
	Discrete law (exact)
	Scaling limit via pooling

	Commutativity of admissible insertions and confluence to T_N
	Parent, child set, and prime rank
	Admissible insertion at a fixed horizon
	Local commutativity for admissible insertions
	Global confluence: any linear extension yields T_N
	Worked example: swapping 5 and 6 at horizon N=6

	The limit tree T∞
	A category of rooted ordered trees and embeddings
	The direct limit tree and its relation to Tn
	An explicit set–theoretic description of T∞

	Abstract properties of the limit tree T∞
	Unique path property: arithmetic determinism
	Recursive self-similarity
	Order structure vs. divisibility
	Topological and degree properties

	An abstract divisor–ordered setting for the factorization tree
	Ordered unique-factorization monoids
	The abstract prime-restricted growth tree
	Uniqueness of paths and basic properties
	Finite truncations and Dyck encoding
	Examples

	Rational functions attached to the trees
	Example values of p(Tn,x)

	Factorization trees, the p(Tn,x) recursion, and the link to (n)
	Definitions and basic setup
	Part (a): recursion in n and the branched continued fraction
	Part (b): the identity for c(n) and bounds by (n)

	SymPy/Numpy/Matplotlib script replicating the experiments

