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Abstract

We show that the complete set of prime factorizations of 1,...,n is faithfully encoded
by a Dyck word w, of length 2n that captures the shape of a prime-multiplication tree T,.
From w,, alone and the list of primes up to n, all factorizations can be enumerated in total
time O(nloglogn) and O(n) space, which is optimal up to constants due to the output size.
We formalize admissible insertions, prove local commutativity and global confluence (any
linear extension of the ancestor poset yields T), and investigate the direct limit tree 7.
Under an explicit uniform-insertion heuristic, the pooled insertion index obeys an exact
mixture-of-uniforms law with density f(z) = —logz on (0, 1), matching simulations.
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1 Introduction

Motivation. Prime factorization across 1,...,n carries strong global structure: every integer
appears exactly once as a product of nondecreasing primes. We make this structure explicit by
organizing all factorizations into a single rooted ordered tree T,: a node m has children mp
with p prime and P;(m) < p < |[n/m], ordered by increasing p. A depth-first traversal outputs
a Dyck word wy, of length 2n. Thus T, (hence all factorizations up to n) is faithfully encoded
by 2n bits.

Epistemic message. From w, alone and a precomputed list of primes up to n (via a sieve in
O(nloglogn) time), one can reconstruct the prime factorization of every k < n in total time
©(nloglog n) using only primality /progression of primes. This matches the information-theoretic
output lower bound and yields an amortized O (loglogn) per integer.

Contributions.

o A tree/Dyck encoding T}, <> w,, that supports ©(nloglogn) total-time reconstruction of all
factorizations 1 < k < n.

e A self-similar functional system for @, leading to branched S-fractions, Mahler-type scaling,
prime-series bounds, and local Taylor schemes.

o Simple two-sided bounds and convergents (first levels of the S-fraction) that already bracket
Poo tightly and are numerically stable.

Organization. Section 2 defines the trees T,, and their Dyck encoding and proves unique-
ness/coverage properties. Section 5 develops the insertion-index model. An executable script for
testing these ideas is printed at the Appendix.
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Figure 1: Some trees.

2 The prime-multiplication tree 7,

Let Pi(1) :=1 and, for m > 2, let P;(m) denote the largest prime divisor of m.

Definition 2.1 (Local trees and the global tree). For 1 < m < n, the rooted tree T}, ;,, is defined
recursively:

e the root is the integer m;

o if there exist primes p with P;(m) < p < |n/m], then the children of m are the roots of the
trees Ty, mp over all such primes p (in increasing order of p); otherwise m is a leaf.

We set T;, :== T}, 1.

Remark 2.2 (Coverage, uniqueness, and order). Each integer 1 < m < n appears ezactly once
as a node: represent m = [[i_; p; with nondecreasing primes p; < --- < p,; then the path
1 — p1 — pip2 — --- — m respects the rule p;11 > p; = Pl(ngi p;) and yields the unique node
m. The children of m are exactly the mp with p € [P1(m), [n/m]] prime.

3 Encoding 7, as a Dyck word w,

Traverse T}, in depth-first (preorder) fashion. Output a “1” when a node is visited (opening)
and a “0” when its subtree is fully processed (closing). This yields a Dyck word w, € {1,0}?"
of length 2n. The mapping T,, <> w,, is bijective: from a Dyck word one can reconstruct the
underlying ordered rooted tree by the usual stack algorithm in O(n) time.



3.1 Triangles in the Dyck path of w,

We view the Dyck word w,, € {1,0}?" obtained from the preorder traversal of T}, as a lattice path
that starts at height 0, interprets each symbol 1 as an up-step (+1) and each 0 as a down-step
(—1), and never goes below 0.

What we count. For a Dyck word w we define the number of (isosceles right) triangles t(w)
purely combinatorially as follows, using the standard first-return decomposition. Let |A|; denote
the number of symbols 1 contained in a word A.

o t(e) :=0.
e Every nonempty Dyck word is uniquely of the form
w = 1A0B,

with A, B Dyck words (the first return to height 0). We then set

t(w) = (14+2]4]1) + t(A) + t(B). (1)

Geometric intuition. The term 1 counts the outer triangle of the mountain 1A40. Each of the |A];
inner peaks of A creates exactly two boundary triangles along the sides of that outer triangle,
hence 2|A|;. The triangles strictly inside the mountain are exactly those of A, and the triangles
to the right are those of B. These three classes are disjoint, which yields (1). For n > 1 we write
ty = t(wy).

Inserting a leaf 10 increases t by 1+ 2d. When we pass from w to w™ by inserting one
new leaf 10 at some position of the word (this is precisely what happens when we move from
Tn—1 to Ty), the insertion depth d is the height of the path at the insertion point (equivalently,
the current stack depth).

Lemma 3.1 (Linear increment). If w™ is obtained from w by inserting 10 at depth d, then
tw™) —t(w) = 1+ 2d.

Proof. We argue by induction on d using (1).

Base d = 0. Inserting at height 0 appends an additional mountain 10 to the right (or,
equivalently, modifies only the B-part in a decomposition w = 140 B). Then ¢(B) increases by
t(10) — t(e) = 1, and all other terms in (1) are unchanged. Hence At =1=1+2-0.

Induction step. Suppose d > 0 and the insertion occurs inside the A-part of the decomposition
w=1A0B. Let A" be A after the same insertion. Then |A*|; = |A]; + 1 and by (1)

Huw") = t(w) = (14 2/A% [+ (A% +4(B)) = (142 Al +HA) +4(B)) = 2+ (H(A") — (4)).

The insertion depth inside A is d — 1. By the induction hypothesis applied to A we have
t(AT)—t(A) = 1+2(d—1). Therefore t(w") —t(w) =24 (14+2(d—1)) = 1+ 2d, as claimed. [

Depth equals ). In the prime-multiplication tree, a node m has depth
depth(m) = Q(m),

the number of prime factors of m counted with multiplicity, because the unique path 1 — p; —
pip2 — -+ — m = [[;_; p; performs exactly r = Q(m) prime multiplications.
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Figure 2: Dyck path for n = 1 with numbers at corresponding levels

Theorem 3.2. Let t,, := t(w,). Then

| =t 42041 |

and consequently

n n

th = Y _(142Q(k) = n + 2)_ Q(k).

k=1 k=1

Proof. Passing from T),,_; to T}, inserts the new leaf n at depth d = Q(n). By Lemma 3.1 the
increment in the triangle count is 1 4 2d = 1 + 2Q(n), which proves the recursion. Summing the
recursion and using t; = ¢(10) = 1 yields the closed form. O

Remark 3.3. By Hardy-Ramanujan, %Zkgn Q(k) ~ loglogn. Hence t, =n+ 23, Q(k)
grows like 2n loglog n+mn. Geometrically, ¢(w) counts all (possibly nested) isosceles right triangles
whose legs are subsegments of the Dyck path; the recursion (1) matches exactly the first-return
decomposition of the path.

4 Epistemic reconstruction: from w, to all factorizations

We now show that from w,, alone we can list prime factorizations of all 1 < k < n quickly.

4.1 Data and primitives
o Input: the word w, of length 2n (equivalently the ordered rooted tree T,).
o Primitive 1: primality testing (AKS gives polylog time; in practice Miller—Rabin).

o Primitive 2: the list of primes < n, which we precompute by a sieve in time O(nloglogn)
and space O(n); we also keep the array primes[l..m(n)] and a “next prime” iterator.



Figure 3: Dyck path for n = 2 with numbers at corresponding levels

4.2 Reconstruction algorithm

Step A: parse w, to T), (linear time). Scan w, with a stack to build the ordered rooted
tree (children order inherited from the parentheses nesting). This costs O(n).

Step B: label the nodes and output factorizations. We do a single DFS over T,,. At
each node we maintain:

o the multiset (ordered list) of prime factors along the path; its last entry is Pj(m);

e the current integer value m is not needed to output the factorization, but it can be produced
on the fly as a product of small primes (fits in O(logn) bits).

For a node labeled by the path primes (p; < --- < p,), with P;(m) = p, (or 1 at the root), the
children are exactly the primes p in the interval

Z(m) := {pprime: p, <p < |n/m]},

in increasing order. We enumerate Z(m) using the precomputed prime list and create children
with factor lists (p1,...,pr,p). We output the factorization of each visited node (i.e., each
m < n) as we go.

Complexity analysis.
o Parsing wy, — T,,: O(n) time, O(n) space.
o Prime precomputation: Sieve up to n in O(nloglogn) time, O(n) space.

e Traversal and enumeration: Over the entire tree, the total number of children equals the
number of edges, n — 1. With a pointer into the prime table for each interval, we spend O(1)
amortized per child; thus O(n) total.



Figure 5: Dyck path for n = 4 with numbers at corresponding levels

o Output size lower bound: The total length of all factorizations is 3", w(k) = nloglogn +
Bn + o(n) (Hardy—Ramanujan), so the output alone costs O(nloglogn).

Theorem 4.1 (Tight asymptotics). Given the word wy, (length 2n), one can output the prime
factorization of every integer 1 < k < n in total time

’ ©(nloglogn) time and O(n) space, ‘

which is optimal up to constants due to the ©(nloglogn) output size. The amortized time
per integer is ©(loglogn); the per-integer work equals ©(w(k)) with E[w(k)] ~ loglogn and
worst-case O(logn).

5 The insertion index distribution: a mixture-of-uniforms law

5.1 Hypotheses
(U@fix) (Uniformity at a fized step) For each fixed n > 2 the insertion index

sn€{0,1,...,2(n—1)—1}



Figure 6: Dyck path for n = 5 with numbers at corresponding levels

(Jw| =12)

Figure 7: Dyck path for n = 6 with numbers at corresponding levels

is uniformly distributed over the 2(n — 1) available slots, i.e. P(s, = s) = ﬁ for all
admissible s.

(Pool) (Pooling across steps) For fixed N > 2 we first draw n uniformly from {2,..., N}
and then, conditional on n, draw S uniformly from {0,...,2(n —1) — 1} (i.e., we forget n
afterwards and look at the pooled indices).

5.2 Discrete law (exact)

Proposition 5.1 (Mixture-of-uniforms, discrete). Under (U@fix) and (Pool), for s €
{0,1,...,2(N —1) — 1} we have

1 Ea{s<2tn—1)}  Hy1—Hyp
il v D T | T R

n=2

where Hy, = Y71 7 (and Ho :=0) are the harmonic numbers.

Proof. Fix s. This value can only occur for steps with 2(n—1) > s, i.e. n > |s/2|42. Conditional
on such n, the probability of that specific s equals 1/(2(n — 1)) (by (U@fix)). Averaging over
ne€{2,...,N} gives

1 al 1 1 N1 Hyoy—Hyp
N=1 (2= 2N =1 (7 m 2(N —1)



Figure 8: Dyck path for n = 7 with numbers at corresponding levels

wy (Jw| = 16)

Figure 9: Dyck path for n = 8 with numbers at corresponding levels

Remark 5.2 (Shape). The mixture is heaviest near the middle (many steps contribute) and
lightest near the extremes (few steps contribute); the weights are governed by harmonic sums.
There are no free parameters.

5.3 Scaling limit via pooling
Let Spax :=2(N —1) and X := S/Smax € [0, 1].

Proposition 5.3 (Continuum limit). As N — oo, X converges in distribution to a continuous
law on (0,1) with CDF and density

F(z) =z(1-logz), f(z) = —logx, z € (0,1).
Moreover, the moments satisfy E[X*] = fol 2k (—logx) dx = m, in particular

7

1

Proof. For s = |[2Smax] we have Hy_1 — H|s/9| ~ log((N — 1)/[s/2]) ~ log(1/z). From
Proposition 5.1 this yields the Riemann-sum limit F(z) = [ (—logu)du = z(1 — log z), and
differentiation gives f(z) = —logz. The moments follow from fol f(—~logz)dx = (k+1)72. O

Remark 5.4 (Stochastic interpretation). Draw U ~ Unif(0, 1) and, conditional on U = u, let
X | (U =wu) ~ Unif(0,u). Then the unconditional density of X is f(z) = —logz (the continuous
mizture of uniforms).



Figure 10: Dyck path for n = 9 with numbers at corresponding levels

W10 (\w| :20)

Figure 11: Dyck path for n = 10 with numbers at corresponding levels

6 Commutativity of admissible insertions and confluence to Ty

We recall our convention: for m > 2, Pj(m) denotes the largest prime divisor of m, with
Pi(1) :=1. For N € N, the finite tree Ty has vertex set {1,2,..., N}, root 1, and edges

N
m — mp for primes p such that P;(m) <p < {—J,
m
with the children of m ordered increasingly by p.
6.1 Parent, child set, and prime rank
For m > 2 we set m
ar(m) := eN. 2
par(m) = 5 2)
Then in T the vertex m is exactly the child of par(m), and the ordered children of par(m) are
N
Chy (par(m)) = { par(m)-p: p prime, Pi(par(m)) <p < {par(m)J 3 (3)

sorted by increasing p.
It is convenient to record the prime rank of m among its siblings:

ranky(m) = 1+ #{q prime : Pj(par(m)) < ¢ < Pi(m) } (4)
Thus ranky(m) is the index of the prime P;(m) within the sorted list of allowable primes for the
parent par(m); note that ranky (m) does not depend on the upper cutoff N as long as N > m.

6.2 Admissible insertion at a fixed horizon

Fix a finite rooted ordered tree U that is a valid truncation of some T (for some M), and fix a
target horizon N > 1. For x € N, we say that x is N-admissible in U and write x € Admy(U) if

par(z) € U and x < N. (5)

10



Figure 12: Dyck path for n = 11 with numbers at corresponding levels

A & W12 (|w| = 24)
STNAAL A
P4 NONANA

Figure 13: Dyck path for n = 12 with numbers at corresponding levels

In that case we define the insertion operation
U&nx

to be the rooted ordered tree obtained from U by adjoining the new vertex x as the child of
par(z) and placing it among the children of par(z) at the unique position prescribed by the
prime rank (4), i.e. so that the child order remains increasing in the underlying prime parameter.

Remark 6.1. If U = T,, and 2 = n+ 1 then x is (n+ 1)-admissible and T, ®,4+1 (n+ 1) = Tp41.
For general x > n one must raise the horizon to N > x; the operation T,, &y x is well-defined
but (unless N =z and x = n + 1) does not yield the full Ty by itself, because other admissible
nodes y < N might still be missing.

6.3 Local commutativity for admissible insertions

We first show that two admissible insertions that do not stand in an ancestor-descendant relation
commute.

Definition 6.2 (Ancestor partial order). For u,v € N we write v < v (“u is an ancestor of v”)
if v can be reached from u by a (possibly empty) sequence of valid prime multiplications with
nondecreasing primes, i.e. if there exists £ > 0 and primes g; < --- < g such that

k
v =u-[[es and ¢ > Pi(u),
i=1
with the convention that k = 0 means v = u. We write u < v for v < v and u # v.

Lemma 6.3 (Local commutativity). Let U be a valid finite truncation and fir N. Suppose
a,b € Admy(U), i.e. par(a), par(b) € U and a,b < N, and assume a £ b and b £ a (incomparable
in the ancestor order). Then both b € Admy (U @y a) and a € Admy (U @&y b), and

(Usdna)dyb = (Udnbd) &y a. (6)

11



Figure 14: Dyck path for n = 18 with numbers at corresponding levels

ECDF vs model CDF (N=1000)

1.0
—— empirical CDF
model CDF

CDF

0.0

0 250 500 750 1000 1250 1500 1750
S

Figure 15: Empirical CDF (pooled indices S for 2 < n < 1000) versus the discrete mixture-of-
uniforms model CDF from Proposition 5.1.

Proof. We consider two cases.

Case 1: par(a) # par(b). Inserting a only modifies the child list of par(a) by appending a at
the rank (4); in particular it does not create or destroy par(b) nor affect its children. Hence b
remains N-admissible after inserting a, and symmetrically a remains admissible after inserting b.
Moreover, the two operations affect disjoint parts of the tree (two different child lists), so the
final tree does not depend on the order: (6) holds.

Case 2: par(a) = par(b) =: m. Let p, := Pi1(a) and pp := Pi(b). By admissibility we have
Pi(m) < pa,pp < |N/m]. The insertion U &y a places a into the sorted child list of m at the
unique position determined by p,; inserting b afterwards places b into the same sorted list at
the position determined by p,. Thus the final child list of m is the same multiset of children
{m-p: p € P} with P the set of primes in [P;(m), | N/m|] augmented by {pa,ps} and ordered
increasingly; hence the result does not depend on whether we insert a first or b first. All other
vertices and child lists are unaffected in either order, so (6) follows. O

Remark 6.4 (Necessity of incomparability). If a < b then par(b) does not belong to U unless a
(and all its ancestors up to par(b)) has been inserted; hence b may fail to be admissible before
inserting a. In this sense, the partial order < encodes precedence constraints that must be
respected by any valid insertion schedule.

12



CDF residuals (N=1000)
0.000 = = == e e e e e e e e e e e p e

—0.005 A

—0.010 A

—0.015 A

Empirical CDF - Model CDF

—0.020 1

0 250 500 750 1000 1250 1500 1750 2000
S

Figure 16: CDF residuals: empirical CDF minus model CDF for the pooled S at N=1000.

6.4 Global confluence: any linear extension yields Ty

Fix n < N and set
A:={n+1,n+2,...,N} (7)

Equip A with the restriction of the ancestor partial order < of Definition 6.2. A wvalid schedule
is a bijection o : {1,...,|A|} — A such that

u<v in A = o Hu) <o ),
i.e. 0 is a linear extension of (4, <). Given such o, define the iterative insertion
Up :=1T, U =Ug1@no(k) (k=1,...,]A]). (8)

Theorem 6.5 (Confluence to T). For every valid schedule o as above, the tree U 4| defined by
(8) is equal (as an ordered rooted tree) to Tn. In particular, if o and T are two linear extensions
of (A, X), then the outcomes coincide:

Fold(T,,0) = Fold(T,,7) = Tn.

Proof. We proceed by induction on |A|.

Base |A| =0. Then N =n and Uy =T,, = Tn.

Inductive step. Assume the claim for all target sets of size < |A|. Let M be the set of
<-minimal elements of A. Every valid schedule starts with some x € M. Fix any x € M.
Then par(z) € T, (because z has no strict ancestor in A), hence z is N-admissible in 7, and
U, =T, &y x is well-defined.

Consider the reduced target set A’ := A\ {«} with the induced partial order. Any linear
extension o of (4, %) with o(1) = z restricts to a linear extension o’ of (A, %), and the iterative
fold (8) for k > 2 coincides with the fold that starts from U; and inserts the ¢/(1),...,0'(|4’])
in that order. By the induction hypothesis applied to U; and the target A’, this results in Ty.

13



s histogram vs model (N=1000, bin size 33)

—8— model PMF (binned)

0.08 A empirical (binned)
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e

o

&
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e
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0 250 500 750 1000 1250 1500 1750 2000
S

Figure 17: Histogram of pooled S (bin size 33) versus the binned model PMF from Proposition 5.1
(N=1000).

It remains to check that the particular choice of the first minimal element does not matter. If
xz,y € M are two distinct minimal elements, then z and y are incomparable in <; by Lemma 6.3
we have local commutativity

(Thoonvz)dny = (Th®NY) BN .

Therefore any two valid schedules that differ only by swapping the first two entries x,y € M lead
to the same Uy; iterating this argument and using induction on the remaining |A| — 2 insertions
shows that all valid schedules yield the same final tree, which must be T by vertex count and
the defining edge/ordering rules. This completes the induction. O

6.5 Worked example: swapping 5 and 6 at horizon N =6
Start from T}y (vertices {1,2,3,4}). We have

5 5
pa‘r( ) P1(5) 5 Y 1( ) 9
so 5 is a new child of the root. Also
6 6
par( ) P]_ (6) 3 ? 1( ) I

so 6 is a new child of 2. Both parents 1 and 2 already belong to Ty, hence at horizon N = 6 we
have {5,6} C Admg(7y), and 5 and 6 are incomparable in the ancestor order. Lemma 6.3 yields

(Ty ®6 6) @65 = (T4 @6 5) Bg 6.

By Theorem 6.5 the common result is Tg; concretely, inserting 6 first modifies only the child list
of 2 by appending 2 - 3, while inserting 5 first modifies only the child list of 1 by appending the
prime child 5. The two modifications are independent and the final ordered child lists coincide
with those in T§.

14



7 The limit tree T,

In this section we formalize the category in which our prime-multiplication trees live, construct
the direct (colimit) limit object T, relate it to the finite trees 7;,, and finally give an explicit
set—theoretic description of T.

7.1 A category of rooted ordered trees and embeddings

Definition 7.1 (Category Treeemp). An object of Treeqy, is a (possibly countably infinite)
rooted, ordered tree T'= (V, E, p, <) where

e Vs a set of vertices, F C V x V is a set of directed edges forming a tree oriented away from
the root p € V;

o for each vertex v € V| the set of children Ch(v) := {w: (v,w) € E} is endowed with a total
order =, (“plane”/ordered tree).

A morphism f: T — T in Treeeyp is an embedding, i.e. an injective map f : V — V' such that
(i) f(p) = p’ (root-preserving);

(ii) (v,w) € E < (f(v), f(w)) € E' (edge- and ancestor-preserving);

(iii) for each v € V, the order on Ch(v) is preserved: if z <, y then f(x) j/f(v) fly).

Remark 7.2. In this category, directed systems of trees with embedding transition maps have
concrete colimits given by directed unions: since the morphisms are injective and order/edge
preserving, the universal object is obtained by taking the union of vertex and edge sets and the
induced child orders.

7.2 The direct limit tree and its relation to 7,,

Recall T, is the rooted ordered tree on vertices {1,2,...,n} with root 1, where a vertex m has as
children the numbers mp < n for primes p satisfying p > P;(m) (with the convention P;(1) = 1),
ordered by increasing p.

Proposition 7.3 (Directed system (7},)). For each n, the inclusion of vertex sets {1,...,n} <
{1,...,n+ 1} induces an embedding

in,nJrl Ty = Thp
in Treeemb. Hence (Th,inn+1)n>1 95 a directed system in Treeemb.

Definition 7.4 (Direct limit T\, ). The limit tree Ty, is the colimit of the directed system
(Tn7 in,n+1) in Treeemb:
Too = hﬂ(Tn,Z’n/,H_l),

Concretely (Remark above), T, is obtained by taking the directed union of the vertex and edge
sets and the induced child orders, and the canonical embeddings j, : T;, — T are the inclusions.

Proposition 7.5 (Relationship between To, and T),). For each n, T, is precisely the induced
finite rooted ordered subtree of Too on the vertex set {1,2,...,n}. Equivalently, j, : T, — Teo
identifies T,, with that induced subtree. Moreover, (Tso, (jn)) satisfies the universal property of
the colimit: for any cocone (S, ¢pn) With ¢pi1 © inpni1 = On, there exists a unique morphism
u: Too = S with w o j, = ¢p.

15



7.3 An explicit set—theoretic description of T,

Definition 7.6 (Explicit model of T,). Let P denote the set of prime numbers and P; : N — N
the map sending m > 2 to its largest prime factor and P;(1) := 1. Define the rooted ordered tree

T = (V. E,p, =)
as follows:
o Vertices: V=N={1,2,3,...}.
e Root: p=1.
o FEdges: For each m € N, its (possibly infinite) set of children is
Ch(m) = {mp: peP, p> Pi(m)},
and E = {(m,mp) : p€P, p> Pi(m)}.

o Child order: The children Ch(m) are totally ordered by the value of the prime, i.e. if p < g
then mp < mgq.

Proposition 7.7. The explicit tree of Definition 7.6 is isomorphic (in Treeemp) to the colimit
T of Definition 7.4. Under this identification, for each n the finite tree T, is the induced
ordered subtree of Too on the vertex set {1,...,n}.

Proof sketch. By construction, T}, has vertex set {1,...,n} and edges (m, mp) whenever mp < n
and p > P;(m). Taking the directed union in n yields precisely the edge set in Definition 7.6,
and the child orders are compatible (increasing primes) and hence induce the stated total

orders on Ch(m). The universal property follows from the standard colimit property for nested
embeddings. O

Remark 7.8 (Local finiteness and truncations). Note that 7o, has countably infinite outdegree
at every vertex (all sufficiently large primes are allowed), hence it is not locally finite. For any
finite cutoff n, the truncation obtained by deleting vertices > n recovers T),; for any prime cutoff
B, the induced subtree on edges with child-prime < B is finite over each vertex and stabilizes as
n — oo.

8 Abstract properties of the limit tree 7T,

Recall the explicit model of the limit tree T, = (V, E, p, =) from Definition 7.6: V =N, p =1,
and for each m € N the set of children is

Ch(m) = {mp: p prime, p > Pi(m) },

where P;(m) denotes the largest prime factor of m (with the convention P;(1) = 1); the children
are ordered by increasing prime p.

8.1 Unique path property: arithmetic determinism

Proposition 8.1 (Unique path from the root). For every node m € N, there exists a unique
simple path in T, from the root 1 to m.
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Proof. Ezistence. Write the prime factorization of m as

k

m=[[pi with p1 <py<--- <pp.
i=1

Define the chain mg := 1, m; := Hé.:lpj for 1 <4 < k. Then m; — m;y+1 = m;-p;+1 is an edge of
Too because Pi(m;) = p; and p;y1 > p; by construction. Hence 1 = mg — my — -+ = mp =m
is a valid path.

Uniqueness. Let 1 = ng — n; — -+ — ny = m be any path in T,,. By definition of edges,
for each i there exists a prime ¢;+1 such that n;41 = n; - ¢i+1 and gi41 > Pi(n;). Therefore
m= ngl gj, so the multiset {q1,...,q/} equals the multiset of prime factors of m. Moreover
the monotonicity constraint implies g;+1 > Pi(n;) = max{qi,...,q}, hence 1 < g2 <--- < qp.
Since there is only one nondecreasing listing of a fixed multiset of primes, the path is uniquely
determined and coincides with the one constructed above. ]

Corollary 8.2 (Acyclicity and connectedness). T, is a connected acyclic graph; in particular it
is a (rooted, ordered) tree.

Proof. By Proposition 8.1, every vertex is joined to the root by a path (connectedness) and
there is a unique simple path between any two vertices (no cycles). O

8.2 Recursive self-similarity

For m € N, write T (m) for the full rooted ordered subtree of T, induced by the descendants
of m.

Proposition 8.3 (Self-similarity via prime filtering). Let r := Pi(m). Consider the auziliary
rooted ordered tree T. (r) defined by:

o vertices V! = {k € N: every prime factor of k is > r } with root 1;
o edges k — k- p for primes p > max{r, Pi(k)}, ordered by increasing p.

Then the map
¢ : T (1) — Too(m), o(k)=m-k,

is an isomorphism of rooted ordered trees.

Proof. Well-definedness and bijectivity. If k € V', then every prime factor of k is > r = P;(m),
hence Py(mk) = max{Pi(m), Pi(k)} = Pi(k), so ¢(k) = mk is a descendant of m. Conversely,
any descendant z of m has the form x = m - k with all prime factors of k > P;(m), thus k € V.
Hence ¢ is a bijection V' — V(T (m)).

Edge preservation. In T (r), we have an edge k — k- p iff p > max{r, P1(k)}. Since
r = Pi(m) and all primes of k are > r, we have P;(mk) = Pi(k). In Tso(m), there is an edge
o(k) = mk — ¢(k-p) = mk-p iff p > Pi(mk) = Pi(k). Thus the edge condition is identical
under ¢.

Order preservation. Children are ordered by increasing p in both trees; ¢ leaves p unchanged,
hence preserves the child order. ]

8.3 Order structure vs. divisibility

Let u < v denote the ancestor relation in T, (i.e. u lies on the unique root-to-v path).

Proposition 8.4 (Ancestor implies divisibility; strictness). If u < v in Too, then u | v. The
converse fails in general: there exist u | v with u # v.
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Proof. If u < v, the unique path u = ng — n; — --- — ny = v multiplies by primes at each step,
hence v = u - [[}_; ¢; and u | v.

For failure of the converse, take u = 3 and v = 12. Although 3 | 12, the unique path to 12 is
1 —2—4— 12 (primes 2,2, 3 in nondecreasing order). There is no edge 3 — 6 using prime 2
because the edge rule requires a prime > P;(3) = 3. Thus 3 £ 12. O

The ancestor relation admits a precise arithmetic characterization.

Proposition 8.5 (Characterization of ancestry). Let u,v € N. Write v =wu-t if u | v, and list
the prime factors of t in nondecreasing order as g1 < --- < qs (with t = 1 interpreted as s =0).
Then

uxv <= ul|lv and q > Pi(u) (vacuously true if s = 0).

Equivalently, u < v iff u | v and every prime factor of v/u is at least Py(u).

Proof. =: If u < v, then along the unique path from w to v we multiply by a nondecreasing
sequence of primes each > Pj(u); hence u | v and all primes dividing v/u are > Pj(u).

<: If u | v and every prime factor of t = v/u is > Pj(u), list them as ¢; < --- < gs. Then
the chain v — uq; — uq1g2 — - - - — v is a valid path because at each step the edge rule requires
multiplying by a prime at least as large as the current largest prime factor, and ¢; > P;(u) while
gi+1 > q;- By Proposition 8.1, this is the unique path; hence u < v. O

8.4 Topological and degree properties

Proposition 8.6 (Basic graph-theoretic properties). The tree To is connected and acyclic
(Corollary 8.2). Moreover, for every vertex m one has |Ch(m)| = Vg, i.e. the out-degree of every
vertex is countably infinite. In particular Ty is not locally finite.

Proof. Connectedness and acyclicity were proved in Corollary 8.2. For the degree, fix m. Then
Ch(m) = {mp: p prime, p > P;(m) }. By Euclid’s theorem there are infinitely many primes
exceeding any given bound, hence Ch(m) is infinite; in fact it is countably infinite. Since every
vertex has infinite out-degree, the graph is not locally finite. O

Remark 8.7 (Consequences for random processes). The failure of local finiteness implies
that certain probabilistic processes (e.g. simple random walk started at the root) behave
differently than on locally finite trees; for instance, transition probabilities out of a vertex are
not normalizable by uniform choice over children. One can nevertheless build natural dynamics
using size-biased or intensity-biased selections over primes p > Pi(m).

9 An abstract divisor-ordered setting for the factorization tree

We now isolate the minimal axioms under which our “prime-multiplication tree” construction
(§?77) still works. The key point is that we only ever used: (i) divisibility, (ii) a notion of “prime
atom”, (iii) a total order on those atoms, (iv) and the rule that you are only allowed to multiply
by atoms that are not smaller than your current largest atom.

This can be formulated abstractly without reference to the integers.

9.1 Ordered unique-factorization monoids

Definition 9.1 (Ordered UFM). An ordered unique-factorization monoid (ordered UFM) is a
quadruple
(Xa E 11 S)

satisfying the following axioms:
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(A1) Commutative cancellative monoid. (X,-, 1) is a commutative monoid with identity 1.
Cancellation holds: if a-b=a - c then b = c.

(A2) Atoms, unique factorization. There is a distinguished subset P C X \ {1} of atoms
(think: “primes”) such that: every x € X can be written as a finite product

T = Hpep(ff),

peEP

where e,(xz) € N and e,(xz) = 0 for all but finitely many p. Moreover, this multiset
{(p,ep(x)) : p € P} is unique. In particular, 1 is the empty product (all e,(1) = 0).

(A3) Divisibility. Define a | b iff 3t € X with b = a -¢t. This induces a partial order (the
divisibility poset).

(A4) Covers are “multiply by one atom”. If z < y is a cover in the divisibility poset (i.e.
x|y, x #y, and no z satisfies = | z | y except z = z,y), then

y=x-p fora unique atom p € P.

Conversely, for every x € X and atom p € P, x < x - p is a cover.

(A5) Total order on atoms. We are given a total order < on P. We extend notation and also
write < for this order on atoms.!

(A6) Least element. 1 is the unique |-minimal element of X (and thus the root we will use).

Remark 9.2. Axioms (A2) and (A4) say abstractly: the divisibility poset (X, |) looks like a
free commutative monoid on the atom set P, and each cover x < y corresponds to “multiply x
by exactly one more copy of a single atom”. Axiom (A5) gives us a total order on atoms, so we
can meaningfully say “the largest atom dividing «”.

Definition 9.3 (Largest atom dividing an element). For z # 1, define
Pi(z) == max< {peP:eyx)>1} €P,

i.e. the <-largest atom that divides x. By convention set P;(1) := 1, where 1 is regarded as
“smaller than every atom”. This is well-defined because each x has only finitely many atoms with
ep(z) > 0, and < is a total order on P.

9.2 The abstract prime-restricted growth tree

Definition 9.4 (Global tree Tx). Let (X, -, 1,<) be an ordered UFM. We define the rooted,
ordered tree
Tx = (V,E,p,=)

as follows:
e Vertices: V := X.
e Root: p:=1.

o Directed edges: for each z € X, for each atom p € P with p > Pj(x) (in the total order on
atoms), we draw a directed edge
T —>x-D.

We do not require < to be compatible with multiplication globally. We only require it to totally order the
atoms.
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e Child order: for a fixed parent x, we order its children x - p by the total order on atoms p.
So “smaller atom first” means “left child first.”

This is exactly the same rule we used over the integers: from z you are only allowed to
multiply by atoms p that are not smaller than your current largest atom Pj(z), and among
those children we sort by p.

9.3 Uniqueness of paths and basic properties

Proposition 9.5 (Canonical nondecreasing-atom path). For every x € X there is a unique
simple directed path in Tx from 1 to x.

Proof. Existence. By unique factorization (A2), write

xr = Hpep(ff)‘

peEP

List each atom p exactly e,(x) times, and sort these atoms in nondecreasing order with respect
to <:
p1 < p2 < o0 S Dge

Now define

To — 1, xX; = (Hpj) (1§Z§k’)
7=1

We claim x;_; — z; is an edge of Tx. Indeed, x; = x;_1 - p;. Since p; > P1(1) = 1, the first
edge 1 — p; is allowed. For ¢ > 1, the largest atom dividing x;_; is exactly p;—1 because by
construction we multiplied by atoms in nondecreasing order. Therefore P;(z;—1) = pi—1 < p;.
Thus p; > Pi(x;-1), so z;—1 — x; is allowed by Definition 9.4. Hence

l=2g—=21 = - —zp=2

is a directed path in Tx.

Uniqueness. Suppose we have any directed path in T,
l=yo—=y1 = =y=ur
By the edge rule, for each step there is some atom ¢; such that

Vi =Yi—1-¢ and ¢ > Pi(yi-1).

In particular ¢; divides y;. Since Pj(y;—1) is the largest atom dividing y;—1, and ¢; > Py (yi—1),
we get
g < ¢ < --- < ¢/ in the total order on P.

Multiplying along the path,
T = Yo = q192- - qe.

By unique factorization, the multiset {q1, ..., g/} (counting multiplicities) must equal the multiset
of atoms {p1,...,pr} from the sorted factorization of x above. Moreover, because both (g;)
and (p;) are nondecreasing lists of the same multiset, they must agree as sequences, not just as
multisets. Therefore k = ¢, and y; = x; for all . So the path we constructed is the only possible
path. ]

Corollary 9.6. Tx is a connected acyclic directed graph with distinguished root 1 and a unique
root-to-x path for each x € X. In particular, Tx is an (infinite) rooted ordered tree.
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Proposition 9.7 (Ancestry vs. divisibility). Let u,v € X. Then u is an ancestor of v in Tx
(i.e. u lies on the unique path from 1 to v) if and only if

ulv and every atom dividing v/u is > Pi(u).

FEquivalently, write v =wu- q1qo - - - qs with the atoms q1 < --- < qs. Then u is an ancestor of v
iff @ = Pr(u).

Proof. Exactly as in the integer setting. (=) If u is on the path 1 — --- — v, then by
concatenating the segment from u to v we see v = u - q1---qs for a weakly nondecreasing
sequence of atoms ¢;, each satisfying ¢; > P;(current node) > P;(u). Thus each prime factor
of v/u is > Pi(u). (<) Conversely, suppose u | v and every atom of v/u is > Pi(u). Sort
those atoms nondecreasingly as q; < --- < ¢s. Then, starting at v and multiplying successively
by q1,...,qs, the edge rule is always satisfied, so we build a directed path u — --- — v. By
uniqueness of the root-to-v path, this shows u is on it. ]

9.4 Finite truncations and Dyck encoding

In applications we work not with all of X but with a finite “horizon”—for the integers, this was
{1,2,...,n}.

Definition 9.8 (Finite horizon / truncation). A finite subset B C X is called a divisibility ideal
if whenever z € B and y | x, then y € B. Given such a B, we define T'x[B] to be the induced
rooted ordered subtree of T'x with vertex set B, keeping only edges © — x - p that stay inside B.

For X =N and B ={1,...,n}, this is precisely the finite tree T,, we studied. For any such
finite rooted ordered tree, a standard depth-first traversal (“write 1 when you enter a node,
write 0 when you finish its subtree”) produces a Dyck word of length 2| B|, and conversely any
Dyck word of length 2|B| reconstructs that ordered rooted tree in O(|B|) time. All proofs of
correctness carry over verbatim because they use only tree structure, not arithmetic of N.

9.5 Examples
We now list two concrete families that satisfy the axioms above and which can be visualized in

computer algebra systems.

Example 1: The classical integer case. Take
X =N>1, - =ordinary multiplication, 1=1, P = {prime numbers},

and let < be the usual order on primes (2 <3 <5< 7 < ---). Then Axioms (A1)—(A6) hold:

commutative cancellative monoid, unique factorization into primes, divisibility is the usual

divisibility, covers are m < mp for a prime p, the primes are totally ordered by their numeric

size, and 1 is the global minimum. The resulting Tx is exactly the prime-multiplication tree T,

defined earlier: each node m has children m - p for primes p > P;(m), ordered increasingly by p.
Finite truncations B = {1,2,...,n} give the finite trees T;, from §77.

Example 2: Monomials in two variables. Let X be the set of all monomials in two
commuting variables x, y:

X ={z%":a,b e N}, (z%9) - (z°y?) := z2TeqybTd, 1:=2%°.
This is a commutative cancellative monoid. The atoms are

P ={xz, y}.
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Figure 18: Trees at {2}

Every monomial z%® factors uniquely as z%°, so unique factorization holds. Divisibility is
:U“yb\xcyd < a<candb<d,

and covers are exactly “multiply by one more x” or “multiply by one more y”. To make this an
ordered UFM, we choose a total order on {z,y}. For instance, declare

x < .
Then Py (z%°) is
« P(1) =1
e Pi(z%)=2xif b=0;
o Pi(2%’) =y if b> 0, because y > .
The edge rule in Ty says: from z%® you may multiply by any atom > Py(z%®). Concretely:
e From 1: P;(1) =1, so both x and y are allowed. Children: 1 — z, 1 — y, ordered as = < y.

o From z: Pi(x) = x, so you may multiply by any atom > x, i.e. x or y. Children: z — 22,
T — xy.

o From y: Pi(y) =¥, so you may only multiply by atoms > y, i.e. only y. Child: y — v
« From zy: Pi(zy) =y, so only y is allowed. Child: zy — zy?.

This produces an infinite rooted ordered tree where “once you have used y, you are forever
locked to y only,” but along the z-only branch you can still branch into z or y.
A finite horizon is, for example,

By :={z%’:a+b<d},

which is clearly downward closed under divisibility. Then T'x[By] is a finite ordered rooted tree
you can draw in Sage.
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Figure 19: Trees at {2,3}

Example 3: Monomials in three variables. Similarly, take X = {2%"2¢ : a,b,c € N},
a,b.c

P = {x,y, 2}, and impose a total order x < y < z. Then P;(x%y"z°) is:

r ifb=ec¢=0,
Pi(z%’2¢)={y ife=0butb>0,
z ife>0,

and edges from a monomial allow you to multiply only by atoms > Pj(that monomial). Again,
choosing a finite “degree ball”

By = {2%’z¢ :a+b+c < d}

gives a finite tree.

In both monomial examples:

Axiom (A1l): obvious (commutative cancellative monoid under multiplication of monomials).

A2

unique factorization into variables x,y (or z,y, z) with exponents.

A3): divisibility is coordinatewise <.

o>

A5): we impose a total order on the variables, e.g. x < y < z.

(
(
. (
(
(

):
)
4): covers correspond to multiplying by exactly one more factor of one variable.
):
):

e (A6): 1 =2%°20 is minimal under divisibility.

Therefore these monomial worlds are valid ordered UFMs in our sense, and Ty is well-defined
and has unique root-to-node paths, just like in the integer case.
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Figure 20: Trees at {2,3,5}

10 Rational functions attached to the trees

We work with the prime-multiplication tree described earlier. For a node v with numeric value
val(v) € N, and for 2 > 0, define recursively

zval(v) v leaf,
val(v) .
p(v;x) = z . otherwise, p(Ty, x) := p(root; x), Poo(x) := nll_)II;Op(Tn,x).
> p(w;z)
v—w

We prove that ps(z) = 0.
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10.1 Example values of p(T,, z)

We list the exact expressions for p(7),,z) forn =1,...,20:

n=1:x
1
n=2:—
T
T
nzB:ﬁ
x> +x
x
X +P
T
=0t s s T
x° +x +972
T
n==~06: . . o
2 +x +z6+x4
T
n="="7:
x7—i—:c5—|—x3—|—x6+m4
T
n=28: o
7+ x5+ a3 4
x+w—4
x
n=9: - 5 g I
' +x +x6+i4+m76
x
x
n=10: - 5 ) Il
AT gy L s
T
n=11: m - 5 > il
T+ T+t T t+ %
I10+$6+Ij T
x
n=12: m - . o T
rrt+ax 4+t +
$10_'_4364_2312Z+z8 x
T
n=13: ——— 22 1
re ettt + At e — t 5
T +x0+ —5—g
xté+tx
T
n=14: -0 22 1
P+t a0+ . — 1+ =%
I14+I10+x6+zlgz+18 xT
T
n=15: 13 11 7 5 z3 x2
P +xt +al +x0+
15429 x14+x10+366+1121j_18
T
n=16: 13 11 7 5 3 z2
TP+t +r +x +~’015+1’9+x14+x10+m6+ T
x +—8
x
T
n=17: 17 13 11 7 5 z3 x2
A S A N A A +m15+$9+z14+x10+x6+ T
x +—8
xT
x
n=18: 23 22
rrt+re ottt a0+ +
15429 x14+x10+w12ﬂfi +ty

26 a8



11 Factorization trees, the p(7,,z) recursion, and the link to
m(n)

This section distills the content of the MathOverflow question “Factorization trees and (continued)
fractions?” and the answer by Weber into a self-contained proof of two statements:

(a) a recursion in n for the root weight p(7,,, ) together with the branched “continued—fraction”
representation coming from the tree structure;

(b) the exact identity c(n) := m = > p<n P(Tnp, 1) and the bounds 7(n) — 7(y/n) < ¢(n) <

m(n), which imply ¢(n) ~ 7 (n).

11.1 Definitions and basic setup

For m > 2 let P;(m) denote the largest prime divisor of m, with the convention P;(1) = 1. For
integers 1 < m < n we define the rooted ordered tree 75, ,, as follows: the root is m; its children
are the numbers mp with p prime and P;(m) < p < |n/m], ordered by increasing p. If no such
prime exists, m is a leaf. We write T,, := T, ;. For a node v with numeric value val(v) and
parameter = > 0 set

zval(v), if v is a leaf,

p(Thp, ) = —xval(v) , otherwise, p(Tn, @) := p(To 1, ).
Z P(Lows )
v—w

This is exactly the weighting used in the MO discussion.

11.2 Part (a): recursion in n and the branched continued fraction
Step 1: a locality lemma for the update n — n+1

Let n > 1 and write the prime factorization of n+1 in nondecreasing order as n+1 = p1ps - - - oy
(r > 1). The unique root-to-(n+1) path in 7),; is

l=v9—vi=pr—=v2=pip2 ==V =p1---pr =n+1L

Consequently, from T, to T, 1 the only structural change in the child list of the root occurs
either by appending the prime child n+1 (when r = 1), or by modifying the subtree rooted at
the single prime child p; (when r > 2). No other root child is affected.

Step 2: the n—recursions for p(7T,,z)

Let
x
Sp(z) = Z p(Thp, ), so that p(Th,x) = )
Sn(x)
p<n
p prime
Then:
o n+1 prime. A new root child n+1 appears and is a leaf, hence S, 11(z) = Sp(x) + ™" and
therefore
x
P(Thi1,2) = —5— 77 - (9)
P o
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o n+1 composite. Let s := spf(n+1) be the smallest prime dividing n+1. By the locality lemma
only the subtree at the root child s changes; all other prime children are unchanged. Thus

Sn—i—l(x) = Sn(x) _p(Tn,Sax) +p(Tn+1,s>x)a

and hence

X

p(TnJrla x) = r (10)

s T (0T, 0) = p(Tns, @)

Both formulas follow directly from the definition of p(-) and the description of which child sums
change when n increases by one.

Step 3: “branched continued—fraction” representation

The defining rule for an internal node m, p(Ty, m,x) = 2™/ >, P(Th v, x), together with the
leaf rule p(T}, m,x) = 2™, shows by induction on the number of nodes in a finite subtree that
P(Th,m, ) is obtained from the leaf monomials by repeatedly applying the operations (finite sum
over children) and (take reciprocal and multiply by =™ ). Equivalently:

Lemma 11.1 (branched S-fraction along the tree). For every finite rooted subtree U C T,
p(U,x) is a rational expression built from the leaves VW) by alternating finite sums and
reciprocals according to the tree structure. In particular p(T,,x) admits a nested (branched)
Stieltjes continued—fraction erpansion dictated by T, .

11.3 Part (b): the identity for ¢(n) and bounds by 7(n)

Define
1

c(n) = pi(Tn, 0

At z = 1 the root formula reads p(T,,1) = 1/3°,<,, p(Tnp, 1), because the root children are
precisely the primes < n. Therefore

C(n) = Z p(Tn,pvl)' (11)

p<n
p prime

Upper bound c¢(n) < 7(n)

We show p(T,,m,1) <1 for every non-leaf node m. By Bertrand’s postulate there is a prime g
with 5= < ¢ < 7. Then mgq is a child of m and satisfies mq > n/2, hence mq has no further
children (any additional prime factor would push it above n), i.e. mq is a leaf and p(T}, g, 1) = 1.
Since the denominator of p(T;, m, 1) is a sum over the children and contains at least this 1, we
get p(Ty,m,1) < 1. Applying this at the root to the children m = p (primes) gives

c(n) = Zp(Tmp,l) < Zl = m(n).

p<n p<n

Lower bound c¢(n) > 7(n) — w(y/n)

If p > \/n is prime, then p is a leaf of T, (since p? > n), hence p(T,,,1) = 1. Counting such
primes yields

cn) > #{p<n:p>vn} = w(n)—n(Vn)
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Asymptotics and an n—recurrence for c(n)

Combining the bounds,
7(n) = w(v) < e(n) < n(n),

and using 7(y/n) = o(w(n)) (e.g. by the prime number theorem) gives ¢(n) ~ m(n). Moreover,
from (11) we read off the exact increment:

o if n+1 is prime, a new root child (a leaf) of weight 1 is added, so ¢(n+1) = ¢(n) + 1;

o if n+1 is composite with s = spf(n+1), then the only changed root subtree is that rooted at
s, hence

C(n+1) - C(n) = p(Tn+1,sa 1) - p(Tn,sa 1)

In summary, (a) establishes the precise n—recursions (9)—(10) and the branched continued—fraction
structure of p(T,,z); (b) proves the identity (11) together with the bounds sandwiching c¢(n)
between m(n) and m(n) — w(y/n), and derives the exact update rule for c.
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A  SymPy/Numpy/Matplotlib script replicating the experiments

What it does. Builds w, incrementally via the nextWord logic, records the insertion index
Sn, constructs the stable separating permutation, computes C(co), then Z = |w| — C(0), and
plots/prints normalized histograms.

# prime_tree_exzperiments.py (pure SymPy/NumPy/Matplotlib)

from sympy import factorint, isprime, primerange, nextprime
from sympy.combinatorics.permutations import Permutation
import numpy as np

import math

import random

import matplotlib.pyplot as plt

# ——m—————- helpers ---—-—-—-----
def P1(n: int) -> int:
"""Largest prime divisor (P1(1)=1)."""
if == 1:
return 1
f = factorint(n)
return max (f.keys ())

def sorted_prime_divisors(n: int):
"""Prime divisors with multiplicity, sorted mnondecreasing. """
f = factorint (n)
out = []
for p in sorted(f.keys()):
out.extend ([p] * f[pl)
return out

def encode(n: int, start: int = 1) -> str:
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"""Reference encoder of the tree T_n as a Dyck word (1=open, 0=
close). """

# children are mp where p runs over primes in [P1(start), n//start]

low = Pi(start)

high = n // start

children = [start * p for p in primerange(low, high + 1)]

if not children:
return "10"

w = "". join(encode(n, start=c) for c in children)

return "1" + w + "O"

—————————— incremental word update (inserting "10") —----------

def nextWord(wn: str) -> str:

mnngiven w_n (as ‘01° string), return w_{n+1} by inserting ’10° at
indexr s_n."""

if wn == "":
return "10"

n = len(wn) // 2

sp = sorted_prime_divisors(n + 1)

Mp = spl-1]

myM = (n + 1) // Mp

# simulate the DFS queue (m, current_prime_bound)
qq = [(+1, 2)]

cnt = 0
wn_list = list (wn)
s = None

for ch in wn_list([1:]:

cnt += 1
if ch == ’1’:
m, p = qql0]
qq.insert (0, (m * p, p))
else: # ch == ’0’
m, p = qq.pop (0)
if qq:
qq[0] = (qql[0]l[0], nextprime(qql[0][11))
if myM == m and s is None:
s = cnt - 1
break

if s is None:
# fallback: append (should not happen in typical traces)
s = len(wn) - 1

wnl = wnl[: (s + 1)] + "10" + wnl[(s + 1) :]
return wnl

---------- separation via stable sort and cycle count ----------

def stable_separator_cycle_count(w: str) -> int:

nnn

Build the stable sorting permutation that moves all ’0’s first,
then ’1°’s,

preserving relative order within each block; return number of
cycles.

mann

m = len(w)

# current positions are 0..m-1

30



zeros = [i for i, ch in enumerate(w) if ch == ’0°]
ones [i for i, ch in enumerate(w) if ch == ’1°]
target_order = zeros + ones # desired positions in separated word
# Permutation in SymPy uses images in one-line notation: p(i) =
images [1]
# We want permutation pi such that pi maps new index j to old index
target_order[j].

images = list(range(m))

for newpos, oldpos in enumerate(target_order):
images [newpos] = oldpos

pi = Permutation(images) # maps j -> images[j]

return len(pi.cyclic_form)

———————— main exrperiment —---------

run_experiment (N=350, show_plots=True):
nn

wn =
Z_list = []
s_norm = []

for n in range(l, N + 1):

s =0
if wn I= "":
wn_next = nextWord(wn)

# index of first difference:
for i in range(len(wn)):

if wn[i] != wn_next[i]:
s = i
break
wn = nextWord (wn)
# sanity: optiomnal equality check with full encode(n)
# assert wn == encode(n), "Mismatch at n={}". format (n)

# build separator permutation and measure cycles

C = stable_separator_cycle_count (wn)

Z = len(wn) - C # our statistic

Z_list.append(Z - 2 * n) # centered at 2n as in the
question

s_norm.append(s / max(1, 2 * n - 1))

if n % 100 == O:

print(n, Z - 2 * n)

# normalize Z_list to mean 0, wvariance 1 for hist
Z_arr = np.array(Z_list, dtype=float)
mu = Z_arr.mean ()
sd = Z_arr.std(ddof=0)
if sd == 0.0:
sd 1.0
Z _norm (Z_arr - mu) / sd

print ("Z,-,2n: mean,,=", mu, ", stddev, =", sd)
print ("s_norm:_ mean,,=", np.mean(s_norm), ", stddev, =", np.std(s_norm
, ddof=0))

if show_plots:
fig, ax = plt.subplots(l, 2, figsize=(10,4))
ax [0] .hist (Z_norm, bins=30, density=True)
ax[0].set_title("Normalized, (Z-2n)")
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ax[1] .hist(s_norm, bins=30, density=True)
ax[1].set_title("Normalized_ insertion_ indexys_n/(2n)")
plt.tight_layout ()

plt.show ()

if __name == "__main

run_experiment (N=350, show_plots=True)
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