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Abstract

Fourier Weighted Neural Networks (FWNNs) introduce a novel
approach to neural network architecture by leveraging Fourier trans-
formations for weight construction. This methodology significantly
reduces runtime training and memory consumption, achieving com-
putational complexity of O ((2R + 1) x #Layers), where R represents
the range of Fourier coefficients. A key advantage of FWNNs is their
ability to utilize higher learning rates facilitated by non-vanishing
and bounded gradients inherent to the cosine function. This report
presents empirical evidence demonstrating that FWNNs maintain com-
petitive performance across various classification and regression tasks
while optimizing resource utilization.
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1 Introduction

Neural networks have revolutionized various fields, from image recognition
to natural language processing. However, their extensive parameterization
often leads to high computational costs and substantial memory require-
ments, limiting their scalability and applicability in resource-constrained en-
vironments. To address these challenges, Fourier Weighted Neural Networks
(FWNNS) present an innovative architecture that integrates Fourier transfor-
mations into the weight construction process. By doing so, FWNNs achieve
a reduction in both runtime training and memory consumption without com-
promising performance.

A pivotal feature of FWNNSs is the utilization of cosine functions in weight
matrices, which ensures non-vanishing and bounded gradients. This char-
acteristic allows FWNNs to employ higher learning rates during training,
accelerating convergence and enhancing learning efficiency.

2 Methodology

3 Mathematical Derivation and Insights

In this section, we present a clean derivation of the Fourier-Weighted Neural
Network (FWNN) formulation, highlight its computational properties, and
discuss its advantages and possible extensions.

3.1 Basic Idea

Instead of directly learning a dense weight matrix W for each layer, FWNNs
generate each weight entry W, from a compact set of Fourier coefficients

{¢; }f:_ r- Formally, the connection from input index s to output index r is
defined as

R
W,s =w(r,s) = Z c;cos(jbys), 0,, = ]7\”7";51 T, (1)

j=—R

where N denotes the total number of neurons used for normalization, and R
controls the highest Fourier mode employed. This parameterization reduces
a potentially large parameter matrix into only (2R + 1) coefficients, while
enforcing smooth, low-frequency structure in the weights.



3.2 Derivation of the Weight Equation

The formulation arises naturally by seeking a smooth representation of W,
across index pairs (r, s):

1.

Phase mapping: Normalize indices to 0,, = 57 € [0, 7], which
enforces anti-diagonal structure.

Fourier expansion: Any smooth function on [0, 7] can be approxi-
mated as a truncated cosine series:

F0) = Y ¢jcos(jf). (2)
j=-R

Identifying f(0,s) with W, yields the FWNN weight definition.

Evenness: Since cos(j#) = cos((—j)f), one can equivalently write

R
Wys = co+ 2 Z ¢; cos(j0rs)- (3)

j=1
Boundedness: Because |cos(-)| < 1, entries are bounded as
R
‘Wrs‘ < Z |Cj|7 <4>
j=—R

ensuring stability and well-conditioned gradients.

3.3 Gradients

Consider one FWNN layer with pre-activations z = Wz + b, activations
a=o0(z), loss L, and error 6 = dL/0a.

1.

Activation backprop:

s =50 d(2). (5)



. Gradient w.r.t. weight entries:

L 1 (o
rs — - 5 J ED)
G = oW, " B bzl br 5, ©)
where B is the batch size.
Gradient w.r.t. Fourier coefficients: Since 2¥r= = cos(jf,,), we
have oL
ac, = ; Grs cos(70,s). (7)
Backprop to inputs:
oL _ ey (8)
or '

This demonstrates that FWNNs preserve standard backpropagation me-
chanics while reducing the parameterization.

3.4

Advantages

Parameter efficiency: Reduces O(n?) parameters to O(R) per layer.
Regularization: Implicit low-frequency bias mitigates overfitting.
Stable optimization: Weight bounds enable larger learning rates.

Faster convergence: Optimization restricted to a low-dimensional
manifold.

Structured generalization: Anti-diagonal phase maps capture smooth
global patterns.

Cache efficiency: Precomputed cosine bases can be reused across
batches.



3.5 Further Applications
FWNNSs can be extended beyond compact fully-connected layers:

e On-device learning: Memory-efficient deployment on edge devices.
e Time-series forecasting: Leverages natural low-frequency priors.

e Physics-informed models: Smooth spectral operators pair well with
PDE learning.

e Implicit neural representations: Compact encodings for signals
and geometry.

e Graph/sequence mixers: Variants with r — s phase maps induce
Toeplitz-like structure.

e Continual learning: Compact coefficients reduce catastrophic forget-
ting.

e Model compression: Teacher networks can be distilled into spectral
parameterizations.

3.6 Fourier Weighted Neural Networks
FWNNs employ Fourier-based weight matrices, defined as:

wir,s) = 3 ¢ cos (j- (;\f_sl w))

JEZ

where:

e w(r,s) is the weight connecting neuron r in the current layer to neuron
s in the preceding layer.

e ¢; are the Fourier coefficients.
e N is the total number of neurons across all layers in the network.

e R denotes the range of Fourier coefficients, determining the number of
terms in the summation.



The cosine function inherently provides bounded gradients, preventing
the vanishing gradient problem commonly encountered in deep neural net-
works. This property ensures that gradients remain substantial throughout
training, facilitating the use of higher learning rates without risking instabil-
ity or divergence.

3.7 Computational Complexity

The FWNN architecture reduces the computational complexity associated
with weight matrix construction and parameter storage. Specifically, the
runtime training and memory consumption scale as:

O ((2R + 1) x #Layers)

This linear scaling with respect to the number of layers and Fourier coeffi-
cients R ensures that FWNNs remain scalable even as the network depth in-
creases. Compared to traditional neural networks, which often scale quadrat-
ically with the number of neurons, FWNNSs offer a more efficient alternative,
particularly beneficial for deep architectures.

3.8 Gradient Properties and Learning Rates

A significant advantage of FWNNSs lies in their gradient properties. The use
of the cosine function in weight construction ensures that gradients are both
non-vanishing and bounded. Mathematically, the derivative of the cosine
function oscillates between fixed bounds, preventing gradients from dimin-
ishing to zero or exploding to infinity. This stability allows FWNNs to adopt
higher learning rates, which accelerates the convergence process during train-
ing.

Higher learning rates reduce the number of epochs required to reach op-
timal or near-optimal solutions, thereby decreasing overall training time.
Moreover, the bounded nature of gradients ensures that even with aggressive
learning rates, the training process remains stable and does not suffer from
gradient-related issues.



4 Experimental Setup

4.1 Datasets

The FWNN was evaluated across six diverse datasets:

e Breast Cancer Classification (load breast_cancer)

Diabetes Regression (load diabetes)

Iris Classification (load_iris)

Wine Classification (load wine)

Digits Classification (load digits)

California Housing Regression (fetch california housing)

4.2 Network Configuration

For each dataset, the FWNN was configured with specific spectral ranges R,
layer dimensions, and activation functions as detailed in Table

Table 1: FWNN Configurations Across Datasets

Dataset Spectral Ranges (R) Layer Dimensions Activations
Breast Cancer Classification 31, 31] 30, 16, 1] ReLU, Sigmoid]
Diabetes Regression 63, 63] 10, 16, 1] ReLU, Linear]

[ [ [
[ [ [
Iris Classification (3, 1] 4, 8, 1] [ReLU, Sigmoid|
[ [ [
[ [ [
[ [ [

Wine Classification 4, 1] 13, 16, 1] ReLU, Sigmoid]
Digits Classification 31, 31] 64, 32, 1] ReLU, Sigmoid]
California Housing Regression [32, 32] 8, 16, 1] ReLU, Linear]

4.3 Training Parameters

Each FWNN was trained using gradient descent with the following hyperpa-
rameters:

e Epochs: Ranged from 1,000 to 150,000 depending on the dataset.
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e Learning Rate: Varied between 1 and 5,000 based on dataset com-
plexity, leveraging higher rates facilitated by bounded gradients.

e Loss Function: Binary Cross-Entropy (BCE) for classification tasks
and Mean Squared Error (MSE) for regression tasks.

4.4 Baseline Models

Traditional Machine Learning models were trained and evaluated as bench-
marks:

e Classification: Support Vector Machine (SVM), Multi-Layer Percep-
tron (MLP), Logistic Regression, Random Forest.

e Regression: Linear Regression, Random Forest Regressor.

5 Results

The performance of FWNNs was compared against traditional models across
all datasets. Key metrics include Matthews Correlation Coefficient (MCC),
Accuracy for classification, and R? Score, Mean Squared Error (MSE) for
regression.

5.1 Breast Cancer Classification

Configuration: Spectral Ranges = [31, 31|, Layer Dimensions = [30, 16, 1],
Activations = [ReLU, Sigmoid|

Training Progress: The FWNN demonstrated a consistent decrease in
loss over 15,000 epochs, converging to a loss value of 0.0232. The utilization
of a high learning rate of 50 facilitated rapid convergence without compromis-
ing training stability, attributable to the bounded gradients from the cosine
function.

Model Comparison:

5.2 Diabetes Regression

Configuration: Spectral Ranges = [63, 63|, Layer Dimensions = [10, 16, 1],
Activations = [ReLU, Linear]



Table 2: Breast Cancer Classification Metrics

Model MCC  Accuracy
SVM 0.9104  0.9561
MLP 0.9280  0.9649
Logistic Regression 0.9104  0.9561
Random Forest 0.8173  0.9123

Fourier Weighted NN 0.9280 0.9649

Training Progress: Over 1,000 epochs, the FWNN reduced the loss
from 29,224.79 to 2,574.99, indicating effective learning. The high learning
rate of 1, enabled by non-vanishing gradients, expedited the convergence
process.

Model Comparison:

Table 3: Diabetes Regression Metrics

Model R? Score MSE
Linear Regression 0.4626 2975.41
Random Forest 0.4267 3174.54

Fourier Weighted NN 0.4644 2965.42

5.3 Iris Classification

Configuration: Spectral Ranges = [3, 1], Layer Dimensions = [4, 8, 1],
Activations = [ReLU, Sigmoid]

Training Progress: The FWNN achieved a loss reduction from 0.6933
to 0.0725 over 5,000 epochs, demonstrating robust convergence. The low R
value coupled with high learning rates ensured efficient training.

Model Comparison:

5.4 Wine Classification

Configuration: Spectral Ranges = [4, 1], Layer Dimensions = [13, 16, 1],
Activations = [ReLU, Sigmoid|
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Table 4: Iris Classification Metrics

Model MCC  Accuracy
SVM 1.0000  1.0000
MLP 1.0000  1.0000
Logistic Regression 1.0000  1.0000
Random Forest 1.0000  1.0000

Fourier Weighted NN 1.0000 1.0000

Training Progress: The FWNN’s loss decreased from 0.6929 to 0.0579
over 5,000 epochs, indicating effective optimization. The manageable spec-
tral range allowed for a moderate learning rate of 10, balancing speed and
stability.

Model Comparison:

Table 5: Wine Classification Metrics

Model MCC Accuracy
SVM 1.0000 1.0000
MLP 1.0000 1.0000
Logistic Regression 1.0000 1.0000
Random Forest 0.9309 0.9722

Fourier Weighted NN 0.8619 0.9444

5.5 Digits Classification

Configuration: Spectral Ranges = [31, 31|, Layer Dimensions = [64, 32, 1],
Activations = [ReLU, Sigmoid]

Training Progress: Over 5,000 epochs, the FWNN reduced the loss
from 0.6428 to 0.0423, showcasing substantial learning efficacy. The high
learning rate of 50.0, enabled by the cosine-induced gradient properties, fa-
cilitated rapid loss minimization.

Model Comparison:
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Table 6: Digits Classification Metrics

Model MCC Accuracy
SVM 1.0000 1.0000
MLP 1.0000 1.0000
Logistic Regression 1.0000 1.0000
Random Forest 0.9607 0.9944

Fourier Weighted NN 0.9018 0.9861

5.6 California Housing Regression

Configuration: Spectral Ranges = [32, 32], Layer Dimensions = [8, 16, 1],
Activations = [ReLU, Linear]

Training Progress: The FWNN’s loss decreased from 5.6073 to 0.5329
over 10,000 epochs, indicating effective training dynamics. The exception-
ally high learning rate of 5,000, made feasible by the bounded gradients,
accelerated convergence without destabilizing the training process.

Model Comparison:

Table 7: California Housing Regression Metrics

Model R? Score MSE
Linear Regression 0.6066 0.5322
Random Forest 0.8037 0.2655

Fourier Weighted NN (0.5913 0.5529

6 Discussion

The experimental results underscore the efficacy of Fourier Weighted Neural
Networks (FWNNs) in balancing computational efficiency with performance:

6.1 Runtime Training

FWNNSs exhibit a favorable computational complexity of O ((2R + 1) x #Layers).
This linear scaling with respect to the number of layers and Fourier coeffi-
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cients R ensures that FWNNs remain scalable even as the network depth in-
creases. Compared to traditional neural networks, which often scale quadrat-
ically with the number of neurons, FWNNs offer a more efficient alternative,
particularly beneficial for deep architectures.

6.2 Memory Consumption

The incorporation of Fourier coefficients reduces the number of unique pa-
rameters required to define the weight matrices. Instead of storing individual
weights for each neuron pair, FWNNs store a limited set of Fourier coeffi-
cients, leading to significant memory savings. This compact representation is
especially advantageous for large-scale networks and deployment on memory-
constrained devices.

6.3 Gradient Stability and Learning Rates

A standout feature of FWNNSs is their ability to utilize higher learning rates
without compromising training stability. The use of cosine functions in
weight construction ensures that gradients are non-vanishing and bounded.
This stability arises from the oscillatory nature of the cosine function, which
prevents gradients from diminishing to zero (a common issue known as the
vanishing gradient problem) or exploding to infinity.

e Non-Vanishing Gradients: The cosine function maintains gradient
magnitudes across layers, ensuring that learning signals remain strong
throughout the network. This property is crucial for training deep
networks where gradient signals can otherwise become too weak to
effect meaningful learning.

e Bounded Gradients: By limiting the range of gradients, the cosine
function prevents extreme updates during training. This boundedness
allows the network to adopt higher learning rates, accelerating the con-
vergence process without risking overshooting minima or destabilizing
the training process.

The empirical results corroborate these theoretical advantages. FWNNs
trained with higher learning rates achieved rapid convergence and maintained
stable training dynamics, as evidenced by the steady decrease in loss across
all datasets.
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6.4 Competitive Performance

Despite the reduced parameterization and optimized computational resources,
FWNNs maintain competitive performance across diverse tasks:

e In Breast Cancer Classification, FWNNs matched the performance
of MLLPs and outperformed Random Forests in both MCC and Accu-
racy.

e For Diabetes Regression, FWNNs achieved the highest R? Score and
the lowest MSE among the compared models.

e In Iris Classification, FWNNs achieved perfect scores, aligning with
traditional models.

e In Wine Classification, while traditional models outperformed FWNN,
the latter still demonstrated strong performance.

e For Digits Classification, FWNNs showed high accuracy, slightly
below the top-performing traditional models.

e In California Housing Regression, FWNNs performed compara-
bly to Linear Regression but were slightly outperformed by Random
Forests.

These outcomes highlight that FWNNs can achieve performance on par
with or exceeding traditional models while benefiting from reduced compu-
tational and memory overhead.

FWNN Capacity, Gzip Ratio, and a Kolmogorov
Heuristic

Parameterization of FWNN layers. A Fourier Weighted Neural Net-
work (FWNN) replaces dense weight matrices by a shared spectral param-
eterization. For a layer with output dimension H and Fourier rank R, the

weights are
R

Wis = Z Cj COS(j 07‘5)7 97‘5 = T,
j=—R
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where a single set of coeflicients {c; }f:_ r 1s shared across all entries (7, s) of
the layer. Hence the trainable parameters per layer are

P,=(2R+1) + H,
i.e., (2R + 1) Fourier coefficients plus the bias vector of length H. Over L
hidden layers and one head, the total becomes

L
Piotal = Z [(2R;+1) + Hi| + [(2Rnead + 1) + Huead)-
=1

With B bytes per scalar (e.g. 4 for float32), the raw storage is Size =
Ptotal - B.

Worked examples. Consider two hidden FWNN layers (H;, Ry) = (149, 100),
(Ha, Ry) = (49,100).
(a) Projection head to d =8 with Ryeaq = 24:

Phidden = (2014+149)+(201449) = 3504250 = 600, Pheaq = (49+8) =57,  Piogal = 657.

In float32: ~ 657 x 4 = 2.6 kB.
(b) Softmax classifier head over K = 2160 classes with Rpeaq = 24:

Pheaa = (49 + 2160) = 2209,  P,ta = 600 + 2209 = 28009,

i.e. & 11.0kB in float32. Note the head’s bias scales with its output dimen-
sion (d vs. K), while the spectral part still costs only 2R}eaq + 1.

Gzip Ratio as a Practical Heuristic

Let Siexs be the compressed (gzip) size of the training corpus, and Speqge the
compressed size of the learned model (checkpoints). Define

If p 21 (ie., Smodel S Stext), the model cannot simply store a verbatim copy
of the corpus; it must encode reusable structure. Conversely, if Syoqe >
Stext, the model capacity suffices to memorize, so overfitting risk increases.
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Kolmogorov motivation. Kolmogorov complexity K (x) is the length of
the shortest program producing z. In practice K(x) is uncomputable, but
compression gives an actionable proxy. If a fixed decoder (training + sam-
pler) plus the model checkpoint can reconstruct the corpus, their combined
description length must lower bound K (text). Thus targeting Smoder S Stext
is a conservative way to bias the architecture toward genuine pattern learning
rather than rote storage.

Capacity boundary. With L hidden layers of common width H and
shared Fourier rank R per layer (including the head), the trainable parameter
count is

Potal = (L +1)(2R+ 1) + L H + Hyeaa.

Matching the (compressed) text size Siexy at bytes-per-scalar B yields the
capacity boundary
Ptotal -B = Stext'

Case A (fixed R, fixed L). Solve for the common hidden width:

1 Stext
H~ -~ —(L+1)(2R+1) — Hyg | |
L (St - L DR D - Hi

clamped to Hyin < H < Hpjax.
Case B (balanced spectral vs. width). Define a target balance r :=

i;l with 7pin < 7 < rmax (6.8, 0.5 < r < 2). Solving the boundary with
this balance gives

Stcxt
Hz?_Hhead’ R~ rH — 1 ’
L+r(L+1) 2

and both H and R are clamped to admissible ranges. This avoids the two
extremes of a single neuron with unbounded R or infinitely many neurons
with tiny R.

Capacity boundary for time-efficient training. For an FWNN with L
hidden layers of common width H and shared rank R (including the head),
the trainable parameters are

Piotal = (L+1)2R+ 1) + L H + Hyeaq-
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2> 1 by matching

~

Target a gzip ratio p,

Stext
Ptotal B~ )

P

where B is bytes per scalar and S is the gzipped corpus size.

Case A (fizred R and L). Solve for a single hidden width:

1 Stext
H~ = —(L+1)(2R+1) — Hpea | ,
L (B - (L DR - Hi

then clamp and round to hardware-friendly sizes. This keeps depth and rank
small and thus reduces both time per step and optimization steps.

Case B (balanced rank vs. width). Define r := (2R + 1)/H € [Fmin, "max]
(e.g. 0.5-1.5) and solve jointly:

- %_Hhead - TH—l
T L+r(L+1) 2 |

This avoids extremes (single neuron with huge R or very wide layers with
tiny R) and keeps per-step cost low while stabilizing optimization.

Time-oriented defaults. Use a projection head when K is large (small
Hyeaa), keep L € {1,2}, start with R € [24,64], compute H from the bound-
ary, and employ warmup, cosine decay, large batches, layer-wise LR scaling
(Me = Ngiobar/ (2R + 1)), and gradient clipping. Recheck p after a few epochs;
if validation improves and p drops far below 1, scale H down; if underfitting,
scale H up.

Summary. FWNNs compress each layer to (2R + 1) shared spectral pa-
rameters plus a bias of size H. This leads to memory and runtime scaling
of O((2R + 1) x #Layers) with strong low-frequency regularization. A gzip-
ratio near 1 provides a practical, Kolmogorov-inspired target for capacity
selection; with constant rank and depth, adjust widths until validation im-
proves without pushing p far below 1.

7 Conclusion

Fourier Weighted Neural Networks present a promising advancement in neu-
ral network architecture, offering a balanced trade-off between computational
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efficiency and predictive performance. By leveraging Fourier transformations
for weight construction, FWNNs achieve linear scaling in runtime and mem-
ory consumption relative to the number of layers and Fourier coefficients. A
critical advantage is their ability to utilize higher learning rates, facilitated
by non-vanishing and bounded gradients derived from the cosine function,
which accelerates training without sacrificing stability.

Empirical evaluations across multiple datasets demonstrate that FWNNs
not only conserve computational resources but also maintain competitive,
and in some cases superior, performance compared to traditional machine
learning models. Future work may explore optimizing Fourier coefficient
ranges, integrating FWNNs with more complex architectures, and extending
their applicability to a broader spectrum of tasks.
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