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1 Goldbach and the prime counting function, 06.01.2022

In this report we summarize de�nitions and results concerning the Hilbert�Poincaré series ap-
proach to the prime counting function, following [1, 2, 3]. We denote by

V :=
⊕
n∈N

Vn, Vn := ⟨log(1), . . . , log(n)⟩Q,

and use that:

1. log(n) =
∑

p|n vp(n) log(p),

2. the family {log(p) : p prime} is linearly independent over Q.

It follows that
π(n) = dimQ(Vn),

and the Hilbert�Poincaré series

H(t) =
∞∑
n=1

π(n)tn

has radius of convergence 1 by the Prime Number Theorem. Writing H(t) = f(t)/(1− t) with

f(t) =
∑

p prime

tp,

one de�nes the sequence (bn)n≥−1 by

f ′(t)

f(t)
=

∞∑
n=−1

bnt
n,

so that for each prime p,

p = 2 +
∑
q<p

bp−1−q.

1.1 Examples

The �rst coe�cients bn are given by

2t−1 + 1− t+ 4t2 − 5t3 + 11t4 − 16t5 + 22t6 − 37t7 + 67t8 − · · ·

hence b−1 = 2, b0 = 1, b1 = −1, b2 = 4, . . ., and for instance:

3 = 2 + b0, 5 = 2 + b2 + b1, 7 = 2 + b4 + b3 + b1.

Recurrence for an,k

Let an,k be the number of ordered representations of n as a sum of k primes. Then one shows

nan,k = k

n∑
v=0

av,kbn−1−v,

leading to

an,k =
k

n− 2k

n−1∑
v=0

av,kbn−1−v.
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Moreover if {αm} are the nonzero roots of f(t), then for n ≥ 0

bn = −
∑
m

1

αn+1
m

.

One real root is
γ = −0.629233 · · ·

(see [4]). Numerical evidence suggests

lim
n→∞

bn
bn+1

= γ,

which could characterize γ once existence of the limit and f(γ) = 0 are shown.

Question 1.1 (Q1). Is there an approach to prove existence of the above limit and that f(γ) = 0?

1.2 Goldbach and convolutions

De�ne

π∗(n) =
n∑

k=0

π(k)π(n− k).

Using series multiplication yields

an,2 = π∗(n)− 2π∗(n− 1) + π∗(n− 2),

so Goldbach can be phrased as

∀n ≥ 2 : π∗(2n)+π∗(2n−2)
2 > π∗(2n− 1).

A short computation shows this holds for n ≤ 39. One then relates π∗ and bn to express the
nth prime via π∗.

Question 1.2 (Q2). Can one derive an explicit formula for the nth prime in terms of the values

of π∗ using the above relations?

Convexity conjecture

In general, for x1, . . . , xn ∈ N with integer mean,

1

n

n∑
i=1

π∗(xi) ≥ π∗( 1
n

∑
i

xi
)

is conjectured.

Question 1.3 (Q3). Is there a proof of the above convexity-type inequality for π∗? (Note that

for x1 = 2n, x2 = 2n− 2 a strict version gives Goldbach.)

1.3 Appendix: Derivation of recurrence

For k>=1:

log(f(t)^k)' = k f'(t)/f(t) = sum_{n=-1}^oo k b_n t^n.

Also f(t)^k = sum_{n=0}oo a_{n,k} t^n, so

log(f(t)^k)' = (sum n a_{n,k} t^{n-1})/(sum a_{n,k} t^n).

Multiplying and comparing coefficients yields

n a_{n,k} = k sum_{v=0}^n a_{v,k} b_{n-1-v}.

Hence a_{n,k} = k/(n-2k) sum_{v=0}^{n-1} a_{v,k} b_{n-1-v}.
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