Injectivity criteria for smallest prime ¢ congruent
to 1 mod (p)-function
via linear independence of primes

Orges Leka

November 22, 2025

Abstract

We revisit the partition of the prime numbers into linearly indepen-
dent and linearly dependent primes, defined in terms of the exponent
vectors of p— 1 in the basis of all primes, and we develop its arithmetic
and dynamical consequences for the successor map

®(p) := min{q prime: ¢ =1 (mod p)}.

On the structural side, we show that the image of ® is exactly the set
of linearly independent primes, and that ® extends multiplicatively to
amap ®: N — N whose image consists precisely of LI-numbers. This
leads to a factorisation of the Riemann zeta function

where G and H are Dirichlet series attached to LI- and LD-numbers,
respectively, and to a “dynamical” Dirichlet series

Gy(s) =) @(n)~",

n>1

whose coefficients encode the multiplicities of ® on LI-numbers. We
give an arithmetical description of the dynamically weighted zeta func-
tion (y(s) := Gp(s)H(s) in terms of the LI/LD—components £1,;(n), £rp(n)
of an integer and the associated divisor sums LLD, LLI, and we derive
a purely arithmetical injectivity criterion for ® in terms of LLD(®(n)).
Using the unimodular “®-lattice” we obtain explicit logarithmic repre-
sentations for p — 1 when p is LD and introduce an auxiliary operator
¥ with terminal value 1 (p), leading to an infinite descent mechanism
via a map a. Finally, we define a class of H-numbers by the growth
condition ®(n) < log ®(n!), prove a quadratic upper bound ®(n) < n?
on H-numbers and injectivity of ® on H-primes, and discuss numerical
evidence and a heuristic that suggest the existence of infinitely many
H-primes and an “H-dominant” regime for the dynamical zeta function.
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1 Introduction

The Euler product for the Riemann zeta function

((s) = H; Rs > 1,

_ s’
pGIF’l p

expresses ( as an infinite product over all primes P and provides the starting
point for much of analytic number theory. In this paper we refine this product
by splitting the primes into two canonical, infinite subsets

P =Py UP.p,

the linearly independent and linearly dependent primes, according to linear
relations among the exponent vectors of p— 1 in the basis of all primes. This
LI/LD-partition leads simultaneously to a nontrivial filtration of the prime
sequence p; = 2 < pg = 3 < p3 = 5 < ... and to a dynamical picture
governed by a successor map on primes.

More precisely, we consider the map

®(p) :=min{geP:gq=1 (modp)},



the least prime congruent to 1 modulo p. The size of ®(p) is a classical
object of study in analytic number theory, going back to work on the least
prime in an arithmetic progression and bounds for primes in residue classes.
Under GRH, explicit bounds of the form ®(p) < p?log?p follow from the
work of Bach and Sorenson [4], while unconditional results of Heath-Brown,
Wagstaff and Xylouris [5 6] [7, [ [9] give successively sharper estimates in the
style of Linnik’s theorem. On the computational side, tables of least primes
in progressions and related sequences (see, for instance, Wilson’s data [2]
or the entries in OEIS) provide substantial numerical evidence about the
typical size and distribution of such least primes.

Our approach to @ is of a different flavour. Instead of focusing on upper
bounds for ®(p), we study the structure of its image and preimage sets by
exploiting linear relations among the vectors of prime exponents in p—1. This
is reminiscent in spirit of previous work of Bach and Huelsbergen on small
generating sets of multiplicative groups modulo m [3], and of the algorithmic
viewpoint on primes in residue classes and related computations in Bach
and Shallit [I]. Here, however, we work on the level of the integers p — 1
themselves and use the resulting LI/LD-decomposition to build a “®—lattice”
which governs the behaviour of the successor map.

The goals of this paper are threefold:

(1) to give a self-contained account of the LI/LD notion for primes and its
consequences for the successor map ®;

(2) to record the resulting factorisation

(o) =G HE) = [ —— [ ——  Rs>1,

1—p=s’

qePr peEPrLp

and to reinterpret the Dirichlet series G and H in terms of an LI/LD—decomposition
of the integers and a “®-lattice”;

(3) to introduce a dynamical Dirichlet series

Go(s) =) _(n)"",

n>1

together with an associated zeta function (p(s) = Gp(s)H(s), and to
relate their coefficients to the multiplicities of ® and to certain divisor
sums built from the LI/LD-components of n.

On the dynamical side we show that the image of ® on primes is precisely
Prr, and that each LI-prime admits a unique predecessor under ®, whereas
LD-primes never occur as successors. Extending ® multiplicatively to N leads
to a natural notion of LI- and LD-numbers and a structural factorisation
¢ = G - H of the Riemann zeta function into LI- and LD-zeta factors. We



then define an auxiliary operator ¢ with terminal value ¥*°(p) and a map
« which together provide an infinite descent mechanism in the ®-lattice,
yielding explicit logarithmic representations of p — 1 in terms of (r — 1) for
LI-primes r < p when p is LD.

In the final part of the paper we single out a class of integers n > 2
defined by the growth condition

®(n) < log ®(n!),

which we call H-numbers. For H-numbers we prove a quadratic upper bound
®(n) < n?, in strong contrast with the general exponential bounds known
for ®(p), and we show that ® is injective on the H-primes. This leads
to an “H-dominant” regime for the dynamical zeta function (y(s) and to
a heuristic—supported by numerical data—that there should be infinitely
many H-primes.

Throughout the paper we work analytically in the half-plane s > 1: all
Euler products and Dirichlet series we introduce converge absolutely there,
and we do not claim any new analytic continuation or functional equations
for G, H, or G,. The emphasis is on the structural interaction between
the LI/LD—-decomposition, the successor map ®, and the induced dynamical
Dirichlet series.

2 Linear independence for primes

We briefly recall the definition of LI/LD primes introduced in [13].

2.1 Exponent vectors

Let (p;)i>1 be the increasing sequence of primes:

pr=2,p2=3, p3=9,....
For each integer n > 2 we define the (infinite) exponent vector
QO(n) = (vpl (TL - 1)7 Upz(n - 1)7vp3(n - 1)7 e ) € sz
i>1

where v, (-) denotes the p;-adic valuation. Only finitely many coordinates
of ¢(n) are nonzero.

For many arguments it is convenient to truncate these vectors. If N > 2
is fixed, we set

on(n) == (vp, (n—1),... s Vpr oy (M — 1)) € z7N),

For primes » < N we then regard ¢x(r) as vectors in the finite-dimensional
space Q™).



2.2 Definition of LI/LD primes

Definition 2.1 (LI and LD primes). A prime q is called linearly independent
(LI) if the vector ¢(q) does not lie in the Q-linear span of the vectors p(r)
with r prime and r < ¢q. Otherwise ¢ is called linearly dependent (LD).

Equivalently, fix some N > ¢ and work with the truncated vectors
on(r) € Q") for all » < ¢. Then ¢ is LI if and only if
on(q) & spang{pn(r) : 7 <gq, r prime}.
This definition produces two disjoint infinite subsets of primes:

Ppi:={q€P:q LI}, Prp := P\ Ppr.

3 The successor map ® and its extension

3.1 Definition on primes

For a prime p we define its successor in the progression 1 mod p by
O(p):=min{geP:¢q=1 (mod p)}.

By Dirichlet’s theorem on primes in arithmetic progressions, the set {g € P:
g = 1 mod p} is infinite, so ®(p) is well-defined for every prime p.
A basic observation, proved in detail in [I3], is that ®(p) is always LI:

Proposition 3.1 (Minimal primes in 1 mod p are LI). Let p be a prime and
let ¢ = ®(p) be the smallest prime with ¢ = 1 (mod p). Then q is linearly
independent.

The proof uses exactly the p-th coordinate of the exponent vectors: v,(g—
1) > 1, whereas vy(r — 1) = 0 for all primes r < ¢ by minimality of ¢ in its
residue class.

3.2 Multiplicative extension
We extend @ to all positive integers by declaring it completely multiplicative.
Definition 3.2 (Multiplicative extension of ®). We set

o(1) =1,

and for any integer n > 2 with prime factorization n = [] ., p° we define

o(n) = [] &)

peln

pe|In

Then ® is a (completely) multiplicative map ® : N — N, and Proposi-
tion [3.1] implies that
®(n) € {LI-numbers}

for all n > 1. In particular, any prime in the image of ® is LI.



4 The successor map and surjectivity onto LI primes

In this section we recall the successor map

®(p) := min{ ¢ prime: ¢ =1 (mod p) },

which is well-defined for every prime p by Dirichlet’s theorem on primes in
arithmetic progressions. We then prove in detail that the image of @ is
exactly the set of linearly independent primes.

Throughout we let (pg)r>1 denote the increasing sequence of primes,

P1=2,p2=3, p3=29,....

4.1 Linear independence via valuation vectors

For each integer n > 2 we consider the exponent vector of n — 1

p(n) = (vpl(n —1),vpy(n—1),vp,(n —1),. ) € HZ,

i>1

where vy, is the p;—adic valuation. Only finitely many coordinates of ¢(n)
are nonzero.

Definition 4.1 (LT and LD primes). A prime q is called linearly independent
(LI) if ¢(q) does not lie in the Q-linear span of the vectors ¢(r) with r prime
and r < ¢. Otherwise ¢ is called linearly dependent (LD).

Equivalently, if we fix N > ¢ and truncate to the first 7(N) coordinates
@N(n) = (Up1 (TL o 1)7 < Upry (n - 1)) € ZW(N)»
then ¢ is LI iff ¢ (¢) is not in the Q-span of {¢n(r) : 7 prime, r < ¢}.

4.2 Minimal primes in 1 mod p are LI

We first show that successors of primes are always LI.

Lemma 4.2 (Minimal primes modulo p are LI). Let p be a prime, and let q
be the smallest prime with

g=1 (mod p).
Then q is linearly independent.
Proof. Since ¢ =1 (mod p) we have p | (¢ — 1) and hence

vp(g—1) = 1.



Fix N > q and consider the truncated vectors ¢x(r) in Q7N). Let p = p;
for some index i. Then the i-th coordinate of ¢y (q) is

(N ()i = vp(g—1) > 1.

Now let r be any prime with r < ¢. By minimality of ¢ in the progression
1 mod p there is no such r with » =1 (mod p), so p{ (r — 1) and thus

Up(T -1)=0 for all primes r < gq.
Equivalently,
(en(r))i =0 for all primes r < q.

Suppose for contradiction that ¢ (g) lies in the Q-span of {on(r) : 7 <
q}. Then there exist rational numbers ¢, (finitely many nonzero) such that

on(a) =D crpn(r).
r<q
Comparing the i—th coordinate on both sides gives
v(g—1) = (en(@)i = > er (en(r)i =Y - 0=0,
r<q r<q

a contradiction. Hence ¢x(g) is not in the Q-span of {¢n(r) : r < ¢}, and
q is LI O

As an immediate consequence we obtain:

Proposition 4.3 (LD primes are never successors). Let p be a linearly de-
pendent prime. Then p is not in the image of the successor map ®, i.e. there
1§ no prime r with

O(r) =p.

Proof. Suppose, for contradiction, that p is LD and that there exists a prime
r with ®(r) = p. By definition of ® this means that p is the smallest prime
with p =1 (mod 7), i.e. p is the minimal prime in the residue class 1 mod r.
By Lemma p is then LI, contradicting the assumption that p is LD.
Hence no LD prime lies in the image of ®. O

Thus we already know:
im(®) C {LI primes}.

We now prove the converse inclusion.



4.3 The valuation matrix and first occurrence indices

To describe the predecessor of an LI prime, we recall the valuation matrix
from [13].
For each integer n > 1 we consider the n X n matrix

E(n) = (eik)1<ik<ns eik = Vp,(pk — 1)

The k—th column of F(n) is exactly the truncated valuation vector

Up1(pk - 1)

n Vpy (DK — 1)
ve= = on(pr) € Z".

Upn(pk’ - 1)

Note that if p; divides p —1, then necessarily p; < pg, so ¢ < k. In particular
the diagonal entries ey, = vp, (pr — 1) are all zero.

As in [13], linear independence of p,, is equivalent to a rank jump of E(n)
when we pass from n — 1 to n.

Next we introduce the first occurrence index of each prime p; as a divisor
of some p — 1.

Definition 4.4 (First occurrence index). For each ¢ > 1 define
t(i) :=min{k > 1:v,,(pr — 1) > 1},
if this set is nonempty, and set (i) := oo otherwise.

If t(i) < oo, then p; | (py;y — 1) and, as noted above, we automatically
have t(i) > i+ 1.

The following rank formula is proved in [13, Prop. 4.2] and we recall it
for completeness.

Proposition 4.5 (Rank of the valuation matrix). For each n > 1 we have
rank E(n) =#{i€{l,...,n}:t(i) <n}.
Proof. Let
I,={ie{l,....,n}:t(i) <n}, r(n) = #I,.
Lower bound. List the elements of I, as i1,...,%,(,) in such a way that
t(in) < t(i2) < - < t(ip(n))-

Consider the r(n)xr(n) submatrix M of E(n) with rows indexed by i1, ..., i)
and columns indexed by #(i1), ..., t(iy(n))-



By definition of #(ig), in row i, all entries in columns k < t(iy) are zero,
and the entry in column ¢(i,) is
Ui, (Prip) = 1) = 1.

Since t(i1) < -+ < t(ip(n)), this means that M is (up to permutation of rows
or columns) triangular with nonzero diagonal entries. Hence det M # 0 and
rank M = r(n). Therefore

rank E(n) > r(n).

Upper bound. If i ¢ I, i.e. t(i) > n, then by definition vy, (pr —1) =0
for all & < n. Thus the i—th row of F(n) is identically zero and does not
contribute to the rank. Hence the row space of E(n) is spanned by the rows
with ¢ € I, so

rank E(n) < #I, =r(n).

Combining both inequalities yields the claimed equality. O

4.4 Every LI prime has a predecessor

We now use Proposition to show that every LI prime arises as a successor
of a smaller prime.

Lemma 4.6 (First occurrence attached to an LI prime). Let ¢ = p,, be a
linearly independent prime. Then there exists at least one prime p; dividing
q — 1 such that

t(i) = n,

i.e. q 15 the first prime for which p; divides py — 1.

Proof. Since q = p,, is LI, the vector V,En) = ¢n(pn) is not in the Q-span

of the previous columns Vl(n), R Véz)l. Equivalently, the rank of E(n) is

strictly larger than the rank of the (n — 1) x (n — 1) principal submatrix
E(n—1):
rank F(n) > rank E(n —1).

By Proposition [£.5] we have
rank E(n) = #{i : t(i) < n}, rank E(n — 1) = #{i : t(i) <n —1}.
Thus the strict inequality implies that there exists an index ¢ with
t(i) = n.
By definition of (i) this means vy, (p, —1) > 1,ie.p; | (pp—1) =¢q—1. O

For such a prime divisor p; we now identify ¢ as the minimal prime
1 mod p;.

10



Lemma 4.7 (Predecessor of an LI prime). Let g = p,, be linearly indepen-
dent, and choose a prime p = p; with t(i) = n as in Lemma . Then q s
the smallest prime with
g=1 (mod p),
i.e. by definition
®(p) =q.

Proof. Since t(i) = n, we have vp,(pp, — 1) > 1, so p; | (¢ — 1) and hence
g =1 (mod p);.

If there were a smaller prime 7 < ¢ with r =1 (mod p);, then p; | (r—1).
By the definition of (i) as the first index k with p; | (px — 1), we would then
have t(i) < index(r) < n, contradicting ¢(i) = n.

Thus no smaller prime r < ¢ satisfies 7 = 1 (mod p);, so ¢ is indeed
the minimal prime in the residue class 1 mod p;. By the definition of the
successor map, ®(p;) = q. O

Combining Lemma [£.6] and Lemma [£.7] gives:

Proposition 4.8 (Every LI prime is a successor). For every linearly inde-
pendent prime q there exists a prime p < q such that

®(p) = q.
In particular, every LI prime lies in the image of .

Together with Proposition 4.3| we obtain the following structural descrip-
tion of the successor map.

Corollary 4.9 (Image of ®). The image of the successor map ® is exactly
the set of linearly independent primes:

im(®) = {q prime: q is L1}.

FEquivalently, ® induces a surjective map from the set of all primes onto the
set of LI primes, and no LD prime occurs as a successor.

Remark 4.10. Note that none of the arguments in this section uses Hy-
pothesis (H) or any upper bound of the form ®(p) < p?. The only input
from analytic number theory is Dirichlet’s theorem (to guarantee that ®(p)
is defined for every prime p). All statements above are purely structural and
unconditional.

5 LI- and LD-zeta functions and product decompo-
sition
5.1 LI- and LD-zeta functions

We now define Dirichlet series attached to LI- and LD-numbers.

11



Definition 5.1 (LI- and LD-numbers). A positive integer n is called an LI-
number if all its prime divisors lie in Py, and an LD-number if all its prime
divisors lie in Prp.

The indicator functions of LI- and LD-numbers are multiplicative, so
their Dirichlet series admit Euler products.

Definition 5.2 (LI- and LD-zeta functions). For Rs > 1 we set

1 1
G(S)ZZE: H l_q—s’

n>1 q€PL1
n LI
and 1 1
H(S):: Z %: H ]_—pfs.
m>1 pEPLD
m LD

By absolute convergence of these Fuler products for s > 1, both G and
H are holomorphic in the half-plane Rs > 1.

Since every positive integer n factors uniquely as a product of an LI-
number and an LD-number (by the partition P = Pr; U Pyp of primes), we
obtain an immediate factorization of the Riemann zeta function.

Proposition 5.3 (Product decomposition of ¢). For Rs > 1 we have

Equivalently,

I1 11ps - ( 11 11q5>( 11 11ps)'

peP q€Pry pEPLD

Proof. This is immediate from the Euler product for ((s) and the partition
of primes into Pr; and Prp. Every Euler factor (1 — p=%)~! with p € P
appears exactly once, either in the product over Pry or in that over Prp, and
the products converge absolutely for s > 1. O
5.2 The dynamical zeta function G

The multiplicative extension of ® leads naturally to another Dirichlet series,
which encodes the “successor dynamics™

Definition 5.4 (Dynamical zeta function). For s > 1 we define

~ 1
G(s) := Z W

n>1

12



Since ®(n) > nfor alln > 2, we have 1/®(n)* < 1/n®, so G(s) converges
absolutely for s > 1.

Using Proposition 7?7, we can rewrite @(s) as a Dirichlet series supported
on LI-numbers. For each LI-number m set

a(m):=#{n>1:®(n) =m}.

Then
G(s) = Z a(m)’ Rs > 1.

S
m>1
m LI

By construction a(m) > 1 for all LI-numbers m (surjectivity of ® onto LI),
while the original G(s) has coefficients identically equal to 1 on LI-numbers:

1
m>1
m LI

Thus the comparison between G and Gis equivalent to understanding the
multiplicities a(m), i.e. how often a given LI-number appears as a successor
value ®(n).

Remark 5.5 (Injektivity of ® vs. equality of G and @) The map @ is in-
jective on LI-numbers if and only if a(m) = 1 for all LI-numbers m. Equiv-
alently, @ is injective if and only if

G(s) = G(s)

for some (and hence every) real s > 1, since the coefficients in G(s) — G(s)
are nonnegative. At present, the injectivity of ® is an open problem.

6 Analytic remarks and open questions

We conclude by collecting some analytic observations and questions about
G, H and G.

6.1 Analytic properties in Rs > 1

By construction:

e G(s), H(s) and G (s) are absolutely convergent Dirichlet series for fs >
1, with nonnegative coefficients.

e They admit Euler products in s > 1:

Ge)= [[a-a9" Hs =[] a-p"

q€PL1 PEPLD

and @(s) can be expressed as a Dirichlet series supported on LI-
numbers with integer coefficients a(m) > 1.

13



e The product identity ((s) = G(s)H(s) holds for Rs > 1, and all three
functions are holomorphic in this half-plane.

Since all coeflicients are nonnegative, there is no issue of conditional con-
vergence on the real axis; in particular, convergence and absolute convergence
coincide for real s > 1.

7 An arithmetical description of the dynamical fac-
tor

In this section we make the LI/LD-decomposition of ((s) from Sections 5-
6 more explicit on the level of integers and Dirichlet coefficients, and we
express the dynamical factor G°(s) (Definition 5.4) in purely arithmetical
terms.

7.1 LI- and LD-components of an integer
Let P be the set of all primes, and recall the partition
P = PUPp

into linearly independent and linearly dependent primes (Definition 2.1).
For each integer n > 1 with prime factorization

n = J]p

peP

we define its LI- and LD-component by

fri(n) = H g™, lip(n) = H por(),

qePL pEPLD
Equivalently,
e /11(n) is the largest LI-number dividing n;
e /1p(n) is the largest LD-number dividing n.
Lemma 7.1 (Elementary properties of {11 and ¢y p). For all n > 1 we have
n = lri(n) lip(n), gcd(ﬁLI(n),ﬁLD(n)) =1,
and both lr1 and f1p are multiplicative. More precisely:
1. For a prime r,
ELI(T) _ {n r € P, tup(r) = {1, r € P,
1, ré€ Pp, r, ré€Pp.

The analogous statements hold for prime powers r*.

14



2. If ged(m,n) = 1, then
lri(mn) = lri(m) lri(n), lrp(mn) = lrp(m) lp(n).
3. An integer n is an LI-number (Definition 5.1) if and only if
lri(n) =n  (and hence lip(n) =1),
and n is an LD-number if and only if

lip(n) =n  (and fri(n) =1).

Proof. All statements are immediate from the prime factorization of n and
the disjoint union P = P U Pp. Fach prime power p”P(”) is assigned to
exactly one of the two factors, which yields the factorization of n and the
coprimality. The formulas for primes and prime powers follow by inspec-
tion, and multiplicativity holds because the constructions of fr; and f1p
are defined on the level of prime powers and respect disjoint supports of
ged(m,n) = 1. Finally, the characterizations of LI/LD-numbers are tauto-
logical from Definition 5.1. O

Thus f11 and ¢1p give a canonical “projection” of any integer onto its
LI- and LD-part, in line with the prime level partition used throughout the

paper.

7.2 Rewriting G(s) and H(s) via LI/LD-components

The Dirichlet series G(s) and H(s) from Definition 5.2 can now be written
in a compact arithmetic form using ¢1; and /1 p.

Let 1¢(n) denote the indicator of a property € of n. Since an integer n
is LI if and only if ¢;,p(n) = 1, and LD if and only if ¢11(n) = 1, we have,

for Rs > 1,
1 1o )=t
Gl =3 5= 2 =
u>1 n>1
uw LI
1 oo in)=1
= 3 - 3 e,
v>1 n>1
v LD

In particular, the Euler product identity ((s) = G(s)H(s) (Proposi-
tion 5.3) can be viewed as encoding the unique factorization

n = ELI(TL) ELD(TL)
at the level of Dirichlet coefficients: each n contributes exactly once to the
double sum . . .
(T () -
u LI v LD n>1

via the pair
(u,v) = (LLi(n), tup(n)), uv = n.
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7.3 The dynamical factor and an arithmetical ((s)

Recall the multiplicative extension ® : N — N (Definition 3.2) and the
dynamical Dirichlet series

G(s) = Z(D(l, Rs > 1

n>1 n)S

from Definition 5.4. By Corollary 4.9, ®(n) is always an LI-number, and

every LI prime occurs as ®(p) for at least one prime p. Extending multiplica-

tively, every LI-number m has at least one “predecessor” n with ®(n) = m.
For each LI-number u we set

a(u) := #{n>1:P(n) =u},

and a(u) = 0 for non-LI u. Then, as observed in Section 5.2,

@) = > o) ) > 1 for L

u>1
u LI

In this language it is natural to introduce the “dynamically weighted”
zeta function

((s) = G'(s)H(s), s> 1

Proposition 7.2 (Dirichlet coefficients of ¢). For Rs > 1 we have an abso-
lutely convergent Dirichlet series

=3,

n>1

where the coefficient c(n) is given arithmetically by
c(n) = a(ﬁLI(n)).
Proof. We first expand the product

= (25 (5 5) - 2%

u LI

with

c(n) = Z a(u).

uv=n
u LI, v LD

By the uniqueness of the factorization n = ¢11(n) f1p(n), there is exactly
one pair (u,v) with u LI, v LD and uv = n, namely

u = KLI(TL), v = KLD(n).

Thus the sum defining ¢(n) reduces to a single term, and we obtain

c(n) = a(fli(n)).

16



Since f11(n) is always an LI-number and a(u) > 1 for every LI-number
u, we immediately get:

Corollary 7.3 (Comparison with ((s)). For all n > 1 we have
c(n) = a(lyi(n)) > 1,

and hence, for real s > 1,

Moreover,

C(s) = Cs) =D

n>1

a(lri(n)) —1

nS

; a(fri(n)) —1 > 0.

In summary, the maps ¢11 and ¢1p simultaneously:

e encode the canonical LI/LD-factorization n = ¢r1(n) {Lp(n),

e index the coefficients of the dynamical factor G(s),

o~

e and organize the coefficient-wise comparison between ((s) and ((s)
through the multiplicities a(¢r1(n)).

8 Elementary properties of the LI/LD—decomposition
and an injectivity criterion for ¢
In this section we collect some basic but useful properties of the maps

lr1, l1p, their divisor sums Li,p, L11, and the dynamical map ®. Throughout
we assume:

e P denotes the set of all primes, decomposed as a disjoint union
P = Pu U Pup,
where P11 are the LI-primes and Pr,p the LD-primes.

e For each integer n > 1 with prime factorization
n = H ptr(™)
peP
we define its LI- and LD-components by

ELI(n) = H q’UQ(n)’ ELD(n) = H pvp(n)'

q€Pr1 pEPLD

In particular,

n = ELI (TL) ELD (n), ng (ELI (n), gLD (TL)) =1.

17



e & : N — N is completely multiplicative, its image consists only of
LI-numbers, and ® is surjective onto the set of LI-numbers (every LI-
number occurs as ®(m) for at least one m). Moreover, for m > 1 we
have ®(m) > m; this is satisfied by the concrete construction of ® from
the LI/LD-lattice.

We write 7(n) for the number of positive divisors of n, o(n) for the sum
of positive divisors, and p(n) for the Mébius function.

8.1 The basic identities (1)—(5)

We begin by recording the elementary identities that express the projector-
like nature of /11 and /1,p and their interaction with &.

Lemma 8.1 (1) {11(®(n)) = ®(n)). For alln > 1 we have
lr1(®(n)) = ®(n), lp(®(n)) = 1.

Proof. By construction and Theorem 4.9 (in the earlier part of the paper)
the values of ® are precisely the LI-numbers. Thus every prime divisor of
®(n) lies in Pr;. Hence the LI-component is all of ®(n), and there are no
LD-prime factors, so the LD-component is 1. O

Lemma 8.2 (2) and 3) idempotence). For all n > 1 we have

lri(fui(n)) = fui(n),  fup(fLp(n)) = fup(n).

Proof. The number ¢11(n) has by definition only LI-prime factors, and there-
fore is itself an LI-number. Applying ¢11 again leaves it unchanged: ¢1(¢r1(n)) =
fr1(n). Similarly, ¢1,p(n) has only LD-prime factors, hence is an LD-number
and is fixed by /1p. O

Lemma 8.3 (4) Preimages of /11(n) under ®). For every n > 1 there exists
m € N such that
lri(n) =®(m) and n>m.

If n > 1, then in fact n > m.

Proof. By definition ¢r;(n) is an LI-number. Since ® is surjective onto the
LI-numbers, there exists at least one m € N such that

®(m) = lr1(n).
If m > 1, then by the growth property of ® we have ®(m) > m, hence
m < ®(m) = lr1(n) <n,

because f11(n) always divides n. This yields m < n whenever n > 1. For
n = 1 we have /(1) = 1, and choosing ®(1) = 1 (as is natural for a
completely multiplicative map) we can take m = 1. Thus the statement
holds for all n > 1. O
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Lemma 8.4 (5) Factorization through ®). For every n > 1 there exists
m € N such that
n=/»p(n)®(m) and n>m,

and if n > 1 then n > m.

Proof. By the definition of {11 and ¢1,p we always have
n = KLI(n) €LD(n).

By the previous lemma there exists an m with ¢r1(n) = ®(m) and m < n.
Substituting gives
n = lp(n) ®(m),

and the inequality properties for m are inherited from Lemma 4. O

8.2 Divisor sums and Mgbius inversion (6) and (7)

We now define global divisor sums built from the local components f11 and
f1.p, and show how to recover the latter from the former.

Definition 8.5. For every n > 1 we define

Lip(n) ==Y fip(d),  Lui(n) =Y lu(d).

dn dln

Proposition 8.6 (Exact factorization of Lyp and Lyy). For every n > 1 we
have

Lip(n) = 7(lui(n)) o (fup(n)), Lii(n) = 7(fp(n)) o (bri(n)).
In particular,
Lip(n) < o(n), Lyi(n) <o(n) foralln>1.

Proof. Write
n=/lr1(n)lp(n) = uv

with ged(u,v) = 1. Every divisor d | n then has a unique factorization
d =dp1dip, dry | u, dip | v.
This establishes a bijection
{d|n} «— {(dur,dip) : dur|u, dip|v}, d (du,dip).
For such a divisor we have:

e dp contains only LI-primes and dyp only LD-primes,
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e hence {1p(d) = fLp(dLidLp) = dLp, fL1(d) = lL1(dL1dLD) = dL1.
We can therefore compute:

Lip(n ZgLD = Z (1p(diidip) = Z dip.

dln drilu duilu
diplv drplv

The inner sum does not depend on dr, hence
Lip(n)=>_ > dip = (#{du | u}) (D duip) = 7(u)o(v)
dri|u diplv diplv
and thus
Lip(n) = T(ELI(n)) U(ZLD(n)).
The computation for Lyi(n) is completely analogous:

Lii(n ZELI Z (r1(dridip) = Z dyy = Z Z diy=7(v)o(u

din dir|u dyr|u diplv dprlu
diplv diplv

Lii(n) = 7(tp(n)) o (fui(n)).

For the inequalities we simply use that for each divisor d | n, ¢rp(d) | d
and f11(d) | d, hence

lip(d) <d, lr1(d) < d.

Summing over all divisors of n gives

Lip(n) =Y fup(d) <> d=o(n)

din dln

and likewise
LLI(n) < a(n)

Proposition 8.7 (7) Mébius inversion). For all n > 1 we have

LLD Z ELD LLI Z ELI

dln din

and conversely

Lp(n) = ZM(%) Lip(d),  fu(n) = ZM(%) Lyi(d).

dn din
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Proof. The identities

Lip(n) = ZfLD(d), Lii(n) = ZgLI(d)

din dn

are the definitions of Lyp and Ly;. In the language of Dirichlet convolution
we can write these as

Lip =1x/{p, Ly =1/,

where 1(n) = 1 is the constant-one function and * denotes Dirichlet convo-
lution.
Since pu * 1 = g, the identity at 1 and zero elsewhere, we have

lup = p* Lip, lry = p* Lyt

In explicit divisor-sum form this reads

() =Y u(%) @), fu(m) =Y n(%) Lud),

dln din
as claimed. ]

Thus ¢11 and f1p are completely determined by the global divisor sums
LLI and LLD-

8.3 An injectivity criterion for ¢ via L;p

We now show that the injectivity of ® can be characterized purely in terms
of the function Li,p evaluated at the values ®(n).
Recall from the first lemma that ®(n) is always an LI-number, so

l(®(n)) = @(n),  lp(®(n)) =1.
Lemma 8.8. For all n > 1 we have
Lip(®(n)) = 7(2(n)).
Proof. Tnsert k = ®(n) into the product formula for Lip:
Lip(k) = 7(lui(k)) o (i (k).
Since k = ®(n) is LI, we have fr1(k) = k and 1,p(k) = 1. Thus
Lip(®(n) = 7(®(n)) o(1) = 7(@(n)) - 1 = 7(2(n)),

as claimed. O
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In particular, any identity of the form Lyp(®(n)) = 7(something) is
equivalent to a statement about the divisor function 7(®(n)).

We now show that the injectivity of ® is encoded by the requirement
that the number of divisors is preserved.

Theorem 8.9 (Injectivity of ® via Lyp). The following statements are equiv-
alent:

1. & : N — N s injective.
2. For allm > 1 we have
Lip(®(n)) = 7(n),
1.€.
7(2(n)) = 7(n).

Proof. (1) = (2). Write n as a product of prime powers

;

€j

n= Hpj ’
j=1

with distinct primes pq,...,p, and exponents e; > 1. Because ® is com-
pletely multiplicative and maps primes to LI-primes, we obtain

e(n) =[] ()"
j=1

If ® is injective, then the values ®(p;) are distinct primes, so the prime
factorization of ®(n) has exactly the same exponents ey, ..., e, as that of n.
The divisor function is given by

T T

r(n)=[](e;+1), (@) =]](e+1),

J=1 J=1

hence 7(®(n)) = 7(n) for all n > 1. Using the lemma above this is equivalent
to

Lip(®(n)) = 7(®(n)) = 7(n),
for all n.

(2) = (1). Suppose (2) holds, but ® is not injective. Then there exist
distinct primes p; # po2 such that ®(p;) = ®(p2) =: ¢. Consider

n = pip2.
Then 7(n) = 4, while
®(n) = (p1)®(p2) =q-q =",
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Hence
T(®(n)) <7(n) = Lip(®(n)) =7(2(n)) < 7(n),

contradicting the assumed identity Lyp(®(n)) = 7(n) for all n. Therefore ®
must be injective.

This shows that ® is injective if and only if Lyp(®(n)) = 7(n) holds for
all n > 1. O

The argument above also shows that, in general, we always have
Lip(®(n)) = 7(2(n)) < 7(n)

for all n > 1, with strict inequality for some n if and only if ® is not injective.
Thus the family of values {Lrp(®(n))}n>1, which is defined purely in terms
of the LI/LD-decomposition and divisor sums, encodes the injectivity of the
dynamical map .

9 Logarithmic representations for LD primes via
the ®-lattice

In this section we record an explicit representation of p — 1 for linearly de-
pendent primes p in terms of the values r — 1 for linearly independent primes
r < p. The key input is the unimodularity of the “®-lattice” constructed
in [13], to which we refer for full details.

9.1 Exponent vectors and the ®-lattice

Let (px)r>1 be the increasing sequence of all primes, py = 2,ps = 3,p3 =

5,.... For each integer n > 2 we consider its (infinite) exponent vector
go(n) = (vpl (n - 1)7 Upz(n - 1)7”}%(” - 1)7 e ) € H Z,
k>1

where v, (-) denotes the p-adic valuation. Only finitely many coordinates
of ¢(n) are nonzero.
For a fixed cutoff N > 2 it is convenient to truncate to the first 7(N)
primes:
on(n) = (vp,(n—1),... s Vp oy (M — 1)) € zm N,
For primes ¢ < N we view pn(q) as vectors in Q7(V).

Definition 9.1 (The ®-lattice). For each N > 2 we define the ®-lattice by

Ay = Spanz{¢n(q) : ¢ < N, g prime} C VAR
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We recall from [I3] that Ay is an odd unimodular lattice, and that the
truncated exponent vectors of the LI-primes < N form a Z-basis.

Proposition 9.2 (LI-primes form a unimodular basis). Let Ly be the set
of LI-primes < N. Then

1. the family {on(q) : ¢ € Ly} is a Z-basis of An;

2. the Gram matriz of this basis has determinant £1, i.e. Ay is unimod-
ular.

We shall use only the consequences that every vector in Ay admits a
unique integral expansion in the basis {¢n(q) }qery, and that all coefficients
are integers.

9.2 Logarithmic representation for LD primes

We now state and prove the logarithmic representation for LD primes.

Lemma 9.3 (Logarithmic representation for LD primes). Let p be a linearly
dependent prime. Then there exist uniquely determined integers c,(p) € Z,
indezed by LI-primes v < p and all but finitely many equal to 0, such that

log(p — 1) = > cx(p) log(r — 1). (1)
-

Equivalently, we have the multiplicative representation

p-1=TI0 -1, ©)
r<p
r LI
Proof. Fix an LD prime p and choose N := p. Then ¢x(p) belongs to Ay
by definition. Let Ly denote the LI-primes < .
Step 1: integral expansion in the LI-basis. By Proposition [9.2] the vectors
{on(r) : 7 € Ly} form a Z-basis of Ay. Hence there exist unique integers
by(p) € Z (only finitely many non-zero) such that

en(p) = Y be(p)en(r). (3)

reLy

Since p is LD, its valuation vector lies in the span of the earlier vectors but
does not itself contribute a new basis element. In particular, the coefficient
corresponding to r = p in (3)) vanishes, so we may rewrite this as

on(p) =) ) en(r), (4)

r<p
r LI
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for uniquely determined integers ¢, (p) € Z.

Step 2: equality of p-adic valuations. Unwinding coordinatewise, we
obtain for each prime ¢ < p:

velp—1) =Y _er(p)ve(r —1).
T

This holds for every prime ¢ < p; for £ > p both sides are zero because
neither p — 1 nor any r — 1 with » < p contains primes larger than p in its
factorisation. Thus in fact

v(p—1) = Z er(p)ve(r —1) for all primes /. (5)
r<p
r LI
Step 8: multiplicative identity. The identity shows that for every prime
{ the f-adic valuation of p — 1 coincides with that of

[[e -,

r<p
r LI

Since both p — 1 and the product are positive integers, equality of all prime
valuations forces equality of the integers themselves:

p—1= H(’I“ - 1)0’“(7’).

r<p
r LI

This is .
Step 4: taking logarithms. Because all factors are positive, we may apply the
natural logarithm to and obtain

log(p—1) =Y _ ¢,(p) log(r — 1),
r<p
r LI

which is .

Step 5: uniqueness and non-triviality. Uniqueness of the integers ¢, (p) fol-
lows from the uniqueness of the integral expansion in the unimodular
basis {¢n(7) : 7 € Ly}. Indeed, if we had another family d,(p) € Z with

Y@ en(r) =Y d(p) en(r),

r<p r<p
r LI r LI

then subtracting gives a non-trivial integral relation among the basis vectors,
contradicting their linear independence over Z.

The representation is non-trivial: if ¢,(p) = 0 for all < p, then pn(p) =
0, i.e. vg(p — 1) = 0 for all primes ¢, which is impossible because p — 1 > 1.
Equivalently, if all ¢,(p) were zero, ¢(p) would not lie in the span of earlier
vectors, contradicting the assumption that p is LD. O
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In summary, the unimodularity of the ®-lattice and the choice of LI-
primes as a Z-basis yield an explicit and unique multiplicative and logarith-
mic representation of p — 1 for every LD prime p in terms of (r — 1) for LI
primes r < p.

10 The y—operator and infinite descent

We now introduce an auxiliary map v on the primes and analyse its iteration.
The construction combines the successor map ® from Section 3 and the
LI/LD-decomposition from Section 2. Throughout, we continue to write Pr
and Ppp for the sets of LI and LD primes, respectively

Recall that ®(p) is defined as the smallest prime ¢ with ¢ =1 (mod p);
it is always LI, and every LI prime occurs as ®(r) for at least one smaller
prime 7, while no LD prime does (Proposition 4.8 and Corollary 4.9).

10.1 Definition of ¢y and its iterates

Definition 10.1 (The v-operator on primes). For a prime p we define

D, if p is linearly dependent,
Pp) =4 e :
min{r € P: ®(r) =p}, if pis linearly independent.
By Corollary 4.9 every LI prime p has at least one predecessor under &,
and by the defining property of ® we have ®(r) > r for every prime r, so

r < p whenever ®(r) = p. Hence the set {r € P : ®(r) = p} is nonempty
and finite, and v (p) is well-defined.

Definition 10.2 (Tterates and terminal value of ¢). For k > 0 we define the
iterates of ¢ on primes by

PO =p,  ED(p) =y (uH ().

Since (*)(p)) k>0 will turn out to stabilise for every prime p, we define its
terminal value by

> (p) == lim »® (p),

k—o0

i.e. the unique prime ¢ such that 1¥)(p) = ¢ for all sufficiently large k.

10.2 Stabilisation and LD nature of the terminal value

We first show that the 1-orbit of each prime stabilises after finitely many
steps and its terminal value is always LD.

Lemma 10.3 (Stabilisation and LD fixed points). For every prime p the
sequence (w(k)(p))kzo stabilises after finitely many steps, and its terminal
value Y>°(p) is a linearly dependent prime.
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Proof. Fix a prime p and write

Po = p, Prt1 = Y(pr) (k>0),

so that p = ¥ ® (p) for all k.

If py is LD, then by definition ¢(py) = pg, hence pry1 = pr and the
sequence is constant from that point on.

If py is L1, then by definition pg1 is the smallest prime r with ®(r) = py.
In particular, r < pg, because ®(r) > r for all primes r (the successor ®(r)
is congruent to 1 (mod r) and therefore strictly larger than r). Thus

Pr+1 = VY (pr) < Dk whenever py, is LI

The sequence (py) is therefore non-increasing in the usual order on primes,
and strictly decreasing as long as py, is LI. Since the primes are well-ordered,
no infinite strictly decreasing chain exists, so there is some index K > 0 for
which

PK+1 = PK-
It follows that py = px for all £ > K, and by definition ¢*°(p) = px.

Finally, by construction the only fixed points of ¥ are LD primes: if ¢ is
LD, then ¢(q) = g; if ¢ is LI, then ¢(q) < q and therefore 1)(q) # q. Hence
pr = ¥°°(p) must be LD. O

Thus every prime p determines canonically a linearly dependent prime
1>°(p), obtained by iterating v until the process stabilises.

10.3 Linear relations and an infinite descent via «

We now combine Lemma |9.3| with Lemma to obtain a simple “descent”
mechanism inside the LI/LD-structure.

Definition 10.4 (The set A, and the map «). For a prime p let ¢ := ¢>(p)
be its terminal value. By Lemma [10.3] ¢ is LD, so Lemma[9.3| gives a unique
representation

log(g—1) = > cr(q) log(r —1),  ¢(q) € Z.

r<q
r LI
We define
Ap:={r<q:rLL ¢(q) #0},
and set

0, if A, =2,
a(p) =

max A,, otherwise.

By construction, whenever a(p) # 0 it is a prime, it is LI, and it satisfies

a(p) < ¢Y>=(p).
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Lemma 10.5 (Descent step via ). Let p be a prime with a(p) # 0. Then:

1. a(p) is LI and
%(p) > a(p)-

2. The terminal value > (a(p)) is LD and satisfies
a(p) > ¢ (a(p)).

3. Consequently, as long as the map o does not vanish, we obtain a strictly
decreasing chain of primes

v (p) > a(p) > v>=(a(p)) > a(¥™(a(p)) > -

Proof. (1) By definition, if a(p) # 0 then a(p) € Ay, so a(p) is an LI prime
with a(p) < ¥°°(p). This gives the first inequality.

(2) Since a(p) is LI, Lemma [10.3] shows that ¢ (a(p)) is a LD prime.
Moreover, in the 1-chain starting from «(p) the first step is

Y(a(p)) < a(p),

and subsequent steps are non-increasing. Thus

= (a(p) < Plalp) < alp),

which is the desired second inequality.

(3) Iterating (1) and (2) yields the strict inequalities in the chain; each
arrow is either of the form ¢*°(-) > a(-) or a(-) > 1>°(-), and both are strict
whenever the corresponding « is non-zero. O

The lemma provides a simple mechanism for producing strictly decreasing
chains of primes purely from the LI/LD-structure and the representation of
LD primes in terms of LI primes.

10.4 Recovering a prime by iterating ¢

Finally we show that every prime can be recovered from its terminal value
under v by iterating the successor map &.

Proposition 10.6 (Recovering p from ¢>°(p)). Let p be a prime. Then there
exists an integer k > 0 such that

") (p>(p)) = p,

where ®*) denotes the k-fold iterate of ®.
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Proof. If p is LD, then by definition 1 (p) = p and hence *°(p) = p. Taking
k =0 gives
O (>(p)) = > (p) = p.
Now suppose that p is LI. Consider again the ¢-sequence
bo ‘=D, Di+1 = Q;[)(pz) (Z > 0)7
so that p; = 1) (p). By Lemma m there is a minimal index m > 1 with
pm =¥ (p) and p; LIfor 0 <i < m.

For each 0 < i < m, the prime p; is LI, hence lies in the image of ® by
Corollary 4.9. By the definition of ¥ in the LI case,

pi+1 =(p;) =min{r e P: ©(r) =p; },
so in particular
P(piv1) =pi  (0<i<m).
Composing these identities, we obtain
(I)(pm) = Pm—1, q)(pm—l) =Pm-2, -+, (I)(pl) = Do-

Thus

"™ (pm) = po = p.
Since p,, = 1¥°°(p), this shows that

e (= (p) = p

with m > 1. Combining this with the LD case k = 0 proves the proposition.
O

In particular, ¥°°(p) may be viewed as a “base point” from which the
original prime p is reached by a finite forward orbit of the successor map
®. This ties together the backward dynamics encoded by v and the forward
dynamics encoded by @ in a closed finite-loop structure for every prime.

11 Lower bounds in the factorial decomposition

11.1 The successor map

We work with the following successor map on the primes.

Definition 11.1 (Successor map on the primes). For each prime p we define
®(p) :=min{geP:g=1 (modp)},

the least prime ¢ with ¢ = 1 (mod p). Equivalently, there is a uniquely
determined integer k > 1 such that

d(p)=kp+1, keN. (6)
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We extend ® multiplicatively to all positive integers as follows.

Definition 11.2 (Multiplicative extension of ®). For n € N with prime

factorisation
n = H pvp(n)’
P

we define

o(n) = [[ @)™
p
In particular, ® is (completely) multiplicative: ®(mn) = ®(m)®(n) for all
m,n € N, and (1) = 1.
By construction each factor ®(p) is a prime, so ®(n) > 1 for all n € N,
and ®(n) > 1 as soon as n > 1.
11.2 A basic inequality for ® and its consequences

We now record the key inequality for ® on primes that will be used to control
®(n) and ®(n!).

Lemma 11.3 (Prime inequality for ®). For every prime p we have
o(p)(2(p) —1) < p@(®(p) —1). (7)
Proof. By definition of ® there exists a unique integer k > 1 such that
®(p) =kp+1.

In particular,

so ®(p) — 1 is a multiple of p.
Now apply ® to both sides and use multiplicativity:

®(®(p) — 1) = ®(kp) = (k) 2(p).

By construction, ® sends every prime r to a prime ®(r) > r + 1, and
extending multiplicatively gives ®(n) > n for all n € N. In particular,

(k) = k,

hence
P(®(p) — 1) = ®(k) (p) > kD(p).

d(p) —
Substitute k = ) into this inequality:
P(p) —1
((p) —1) > (]))<1>(p)-
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Multiplying both sides by p yields

p®(®(p) —1) > @(p)(®(p) — 1),
which is exactly . O

Lemma 11.4. For every prime q we have

alg—1)
Y(g) > m

Proof. Recall the prime inequality for ®:
O(p)(®(p) —1) < p®(®(p) —1)

for every prime p.

Case 1: q is linearly independent.
Then ¢ lies in the image of ®, and by definition of ¥ there exists at least
one prime r with ®(r) = ¢, and among all such primes the smallest one is

¥(q) = min{r € P: &(r) = q}.
Apply the prime inequality with p = r:
O(r)(@(r)—1) < r@(®(r) —1).
Since ®(r) = q and ®(r) — 1 = g — 1, this becomes

qglg—1) < rd(g—1).

Hence
.~ -1
T P(g—1)

This holds for every prime r with ®(r) = ¢, in particular for the minimal
such prime r = 1(q), and therefore

(g —1)
vig) > 4
@ ®(g—1)
Case 2: q is linearly dependent.

By definition we then have 1(q) = q. We need to check that

gl —1)

¢z (g —1)

This is equivalent to
Pg—1) = ¢—1.
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But ® is completely multiplicative and on primes satisfies ®(p) > p + 1,
hence ®(p) > p for every prime p. For a general integer

n = Hpvp(n)
p

we have

o(n) = [T 2> = [[»" =n.
p p

Applying this with n = ¢—1 gives ®(¢—1) > ¢—1, so the desired inequality
holds.

In both cases we obtain
which completes the proof. O

Murthy’s theorem in base 2 and exponential bounds
for ¢

We now introduce Murthy’s argument in base 2 and derive the bounds
®(p) < 2P for primes p, ®(n) <27 for all n > 1,

where
n(n) == va(n)p,
pln
Murthy’s theorem in base 2

For m > 1 let
R(m):=2" -1

be the repunit in base 2 with m ones in binary. Let P, denote the n-th
prime, and for each n set

u(n) == R(P,) =2 — 1.

Theorem 11.5 (Murthy, base 2 version). Let p be a prime and write p = P,
for some n. If q is any prime divisor of

u(n) = 20 — 1,

then

g=1 (mod p).
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Proof. Let p = P, be prime and let ¢ be a prime divisor of 2P — 1, so
2P =1 (mod q).
Let ord,(2) denote the multiplicative order of 2 modulo ¢. Then
ordg(2) |p and ordg(2)|g—1

(the first because 2P = 1 (mod ¢), the second by Fermat’s little theorem).
Since p is prime, the only positive divisors of p are 1 and p itself. Thus

ordy(2) € {1,p}.

We cannot have ord,(2) = 1, because this would imply 2 =1 (mod ¢) and
hence ¢ | 1, impossible. Therefore

ordy(2) = p.
But ord,(2) divides ¢ —1,s0 p | ¢ — 1, i.e.
g=1 (mod p).
This is exactly the desired congruence. O

As a direct corollary we obtain a strong upper bound for the successor
map on primes.

Corollary 11.6. For every prime p we have
d(p) < 2P,

Proof. Fix a prime p and write p = P, for some n. By Theorem there
exists a prime ¢ dividing 2P — 1 with

g=1 (mod p).
Thus g lies in the arithmetic progression 1 (mod p), and
ql2r —1 <2,

soq<2P—1<2P
By definition, ®(p) is the smallest prime congruent to 1 modulo p, hence

D(p) <qg<2P—1< 2P,

In particular ®(p) < 2P, as claimed. O
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The bound ®(n) < 27"

Recall the multiplicative extension of ®: for
n = Hpvp (n)
P

we set

o(n) = [[2@)>™.
P
Proposition 11.7. For every integer n > 1 we have

B(n) < 270, gn) =3 v,(n)p.

pln

Proof. First treat prime powers. Let p be prime and e > 1. Then, by
multiplicativity,

By Corollary [11.6]

SO

But n(p®) = ep, hence
d(p°) < 210,

Now let n be arbitrary with prime factorisation n = Hp p°?. Then
o(n) = [Tow) < @) =220 =210,
P P

This proves the desired inequality for all n > 1. O

Remark 11.8. In many applications we actually have a strict inequality <
in , but the non-strict form suffices for our purposes here and leads to
slightly cleaner algebraic manipulations.

We now propagate from primes to general integers using the multi-
plicativity of ®.

Proposition 11.9 (Extension to prime powers). Let p be a prime and e > 1.
Then

D(p) (B(p) —1)° < p°@(®(p) —1)". (8)
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Proof. Raising to the e-th power yields

[@(p)(2(p) — 1)]° < [p@(@(p) —1)]",

that is
O(p)° (®(p) —1)° < p"@(2(p) —1)".
Using ®(p°) = ®(p)® by multiplicativity gives (). O

Proposition 11.10 (Extension to general integers). Let n € N with prime
factorisation n = [, p. Then

o) - [[(@@) -1)% < n-J[o(2p) 1) (9)
pln pln
Equivalently,
®(n) o(o(p)—1)\”
R <q><p>_1> ’ (10

or, in inverted form,
oS H M ep_ (11)
d(n) ~ n o(®(p) — 1)

Proof. Applying Proposition to each prime power p® dividing n we
obtain
@(pep) (@(p) _ 1)617 S pep (I)(q)(p) _ 1)61’7

for every prime p with e, > 0. Multiplying these inequalities over all p | n

gives

[Tew™) [[(@w@ -1)™ < [[»” [[2(@() - 1)~

pln pln pln pln
By multiplicativity, [],, ®(p®) = ®(n) and Hp‘npep = n, so we obtain ({9).
The forms and are obtained by simple rearrangement. O

11.3 Application to the factorial n!

We now apply Proposition |11.10|to the special case n! = Hpgn pr()  Writ-
ing e, = vp(n!) in (9), we obtain

o) - [T (@) — 1) < nl- ] (@) — 1), (12)

p<n p<n

vp(n!)
o (n! O(P(p) —1
fl! ) < 11 (EI)(;;_ - )> , (13)

Equivalently,




and hence

vp(nl)
n! d(p) —1
S0l > 11 <<1>(<1>(p)_1)> . (14)

p<n

The inequality expresses the “defect” n!/®(n!) as being bounded
below by a product over primes p < n, with local factors determined by the

ratio
®(p) -1
®(2(p) - 1)
and the exponents vy(n!) in the factorial. Combined with the lower bounds

for E,(®(p)) from Proposition ??, this provides a structural framework for
estimating n!/®(n!) in terms of the successor dynamics of the primes.

12 H-numbers, growth bounds and injectivity on
primes

In this section we introduce a class of integers defined by a comparison
between ®(n) and ®(n!), and show that for such numbers ®(n) is always
strictly smaller than n?. We then use this to establish a restricted injectivity
statement for ® on the set of H-primes.

12.1 Definition of H-numbers
Definition 12.1 (H-numbers). For n > 2 we call n an H-number if
®(n) < log(@(nl)),

where ® is the successor map from Section 3, extended multiplicatively to
all integers.

Thus being an H-number means that the value of ® at n is at most the
logarithm of the (usually much larger) value ®(n!).

12.2 A quadratic upper bound for H-numbers

We first show that any H-number n satisfies a simple quadratic upper bound
on ®(n).

Lemma 12.2. For every integer n > 2 we have
log(®(n!)) < n
Consequently, if n 1s an H-number, then

d(n) < n’
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Proof. We begin with the Dirichlet factorization of n!:

n! = Hpvp("!), d(n!) = H B(p)vr™.

p<n p<n

Taking logarithms gives

log ®(n!) = Y vp(n!) log &(p).

p<n

We use two standard estimates:

1. For each prime p <n,

2. By Murthy’s theorem in base 2 (see Section ?7), we know that for

every prime p,
®(p) <27,

hence
log ®(p) < plog2.

Combining these inequalities, we obtain

n n
1og‘1>(n!)ézp_1 log ®(p) < Zﬁplow
p<n p<n
b
=nlog?2 —_— .
nlog Zp—l
p<n
We now write 1
b
A T
p—1 + -1’

and sum over p < n:

1 1

p<n p<n p<n p<n

where 7(n) denotes the prime-counting function.
Elementary estimates on primes (see e.g. standard analytic number the-
ory texts) give that for all sufficiently large n,

m(n) < 2n

1
< Togn’ ZilngLloglogn

pénp_
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for some absolute constant C' > 0. Hence

2 2log2
log®(n!) < nlog2 (n + C + loglog n) 29822, log 2 (C+loglogn).
logn logn

For large n, the factor

becomes arbitrarily small, and the linear
ogn

term nlog?2(C + loglogn) is much smaller than n?. In particular, there
exists an integer ng (for example ng = 20 suffices) such that for all n > ng
we have

log ®(n!) < n?.

For the finitely many integers 2 < n < ng the inequality log ®(n!) < n?
can be verified directly by computation. Thus the bound holds for all n > 2.
Now suppose n is an H-number. By definition,

®(n) <log ®(n!).
Combining this with the established bound yields
®(n) < log®(n!) < n?,

as claimed. O

12.3 Injectivity of & on H-primes
We now consider the behaviour of ® on H-numbers that are prime.

Definition 12.3 (H-primes). A prime p is called an H-prime if it is an
H-number, i.e.

®(p) < log @(p!).
We show that @ is injective on the set of H-primes.

Lemma 12.4 (No collisions among H-primes for large p). There exists a
constant py such that the following holds: if p < q are primes with p > po,
both H-primes, then

®(p) # ®(q).

Proof. Suppose, for contradiction, that there exist primes p < ¢ with

Since ®(r) is the least prime congruent to 1 mod r, we have
M =1 (mod p), M=1 (mod q).
Therefore pq divides M — 1, and hence

M>pg+1>p*+p+1>p*
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On the other hand, p is an H-prime by assumption, so
M = ®(p) < log @(p!).
Using the estimate from the proof of Lemma [12.2] we obtain (for n = p)

2
log ®(p!) < plog2 <p + C +log logp> :
log p

2log?2
For large p, the term & p? dominates, so that there exists a constant
ogp
K > 0 and a p; such that
P2
log®(p!) < K
logp

for all p > p1. Together with M > pq, this yields

P p
pg<M<{K— = g¢g<K .
log p logp
Now choose pg > p1 large enough such that
P,
logp
for all p > pg. This is possible since logp — oo and thus 10Z]D/p =1/logp —
0.
For every p > pg, we then obtain from the inequality above
g < K P <p,
logp
which contradicts ¢ > p. Thus, for p > pg, there can be no H-primes p < ¢
with ®(p) = ®(q). O

For the finitely many H-primes p < pg, the non-existence of such collisions
can be verified directly (e.g. computationally). Combined with Lemma [12.4]
this yields:

Proposition 12.5 (Injectivity of ® on H-primes). If p < q are primes and
both are H-primes, then

O(p) # @(q).

In other words, the map @ is injective on the set of H-primes.

13 Numerical evidence for H-primes

In this section we present some computational evidence for the existence and
distribution of H-primes, i.e. primes p with

o(p) < log(@(p))),

and we compare this with the theoretical results from the previous section.
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13.1 Experimental setup

We implemented the successor map ® and its multiplicative extension in
SageMath as follows:

e For a prime p,
P(p):=min{geP:g=1 (modp)},

found by scanning the arithmetic progression ¢ = kp + 1 and testing
each ¢ for primality.

e For n > 1 with prime factorisation n = [ p*r("™,

o(n) == [ @p)»™.

e To compute log ®(n!) we use the factorisation of n!:
’n,' — H pvp(n!)’ (b(n') frd H @(]9)”1’7(”!)7
p<n p<n

and thus
log ®(n!) = Z vp(n!) log ®(p),

p<n

with v, (n!) computed via Legendre’s formula

vp@u)::jgjlé%J.

k>1

A prime p is then declared an H-prime if the inequality

®(p) < log®(p!)

holds in high-precision real arithmetic.

13.2 H-primes up to 500

Running this procedure on the interval [2,500] produces the following data.
e The primes p with 2 < p < 500 that satisfy ®(p) < log ®(p!) are:

11, 23, 29, 37, 41, 43, 53, 67, 73, 79, 83, 89,
97, 113, 127, 131, 137, 139, 151, 163, 173, 179,
181, 191, 193, 199, 233, 239, 241, 251, 257, 263,
271, 277, 281, 283, 293, 307, 311, 313, 331, 347,
359, 367, 373, 397, 409, 419, 431, 433, 443, 461,
467, 487, 491, 499
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e In total there are 56 H-primes in [2,500]. Since 7(500) = 95, this cor-
responds to a proportion of approximately 56/95 ~ 0.59 of all primes
in this interval.

e For each of these primes p we have numerically:
®(p) <log®(p!) and ®(p) <p’.

For example:
p | ®(p) | log ®(p!)
11 23 ~ 27.87
79 | 317 | =~ 417.17
191 | 383 | =~ 1231.00
499 | 1997 | ~ 3852.40

In all these cases ®(p) < p? holds, in agreement with Lemma, m

e We also computed ®(p) for all H-primes in this range and checked for
collisions. There is no pair of distinct H-primes p < ¢ < 500 with

®(p) = @(q):
®(p) = P(q), p<q, p,q <500, p,q H-prime never occurs.

This is consistent with Proposition which shows that @ is injective
on the set of H-primes.

13.3 Discussion

The numerical data up to 500 shows that:

e H-primes are not rare: in the tested range they make up a positive
proportion of the primes, and they appear to be reasonably regularly
distributed.

e For every H-prime p we observe ®(p) < p?, in perfect agreement with
the general bound from Lemma [12.2]

e There are no observed collisions ®(p) = ®(¢) among H-primes in
[2,500], again matching the theoretical injectivity result on H-primes.

These computations provide empirical support for the relevance of H-
primes in understanding the finer arithmetic of the successor map ®. In par-
ticular, the existence of infinitely many H-primes would immediately imply
that ® is injective on an infinite subset of the primes, thanks to Proposi-
tion [12.5] At present, however, the question of whether there are infinitely
many H-primes remains open.
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14 Heuristic why there should be infinitely many
H-primes

In this section we give an informal heuristic why one should expect infinitely
many H-primes. The argument is deliberately speculative: it combines the
structural picture provided by the maps ¥, 1> and o with a growth picture
for ® and a putative density behaviour of LI-primes. None of the global
density statements below are proved in this paper.

Recall that H-primes are those primes p for which ®(p) grows “slowly” in
the sense that

®(p) < log®(p!),

which, in particular, implies the quadratic bound ®(p) < p? from Lemma 12.2.
By contrast, for general primes we only have very crude upper bounds such
as Murthy’s ®(p) < 2P. The heuristic below starts from the opposite ex-
treme: it imagines a world in which, beyond some point, ® always grows
fast.

Step 1: A fast-growth world without H-primes

Assume, for contradiction, that there are only finitely many H-primes. Then
there exists Ny such that every prime p > Ny is not an H-prime. For such
primes the defining inequality for H-primes fails, so heuristically ®(p) should
very often be significantly larger than p.

For the sake of discussion we postulate a strong model assumption:

Hypothesis A (fast growth away from H-primes). There exist Ny and
€ > 0 such that

p> Ny, pnot H-prime = &(p) > p'*e
in particular, one may keep in mind the exaggerated model ®(p) ~ p?).
gg

Under Hypothesis A, if y = ®(z) with = a large non-H-prime, then
y > .T1+8, SO

v <y <« .

Thus, moving backwards along a ®-orbit (or equivalently, applying the pre-
decessor map v to a large LI-prime) shrinks numbers very quickly.

Step 2: Collapse of the predecessor trees

The maps ¥ and ¥*° organise the prime numbers into rooted trees. For each
LD-prime g we define its tree

T(q) = {p prime: > (p) =q},
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so that every p € T (q) is obtained from the root ¢ by finitely many forward
applications of @, and conversely one reaches the root by iterating ¢ until
stabilization: ¥®)(p) — > (p) = q.

In the fast-growth world of Hypothesis A, each backward step y — =z
with ®(z) = y typically satisfies © < y/(+%). This means that, starting
from a very large prime p and repeatedly applying v, one falls below Ny in
at most O(loglogp) steps. In other words, all large nodes of the tree 7 (q)
sit above a very shallow trunk built from primes < Ny, and the growth along
each branch is roughly of the form

z, x1te, ol

1+e)?  (14+e)®
(up to branching and lower-order effects). Such trees produce a very sparse
set of values overall.

Step 3: Surjectivity, LI-primes and a density tension

On the other side the structural part of the theory gives us two facts:

e The map @ is surjective from the set of all primes onto the set Pr; of
LI-primes. Thus every LI-prime occurs somewhere in one of the trees
T (¢q) as a value of ®.

e For each N the vectors ¢n(p) with p < N and p LI form a Z-basis of the
unimodular lattice Ay. In particular, LD-primes ¢ < N admit unique
integer relations of the form log(q — 1) = >, ;¢ (g) log(r — 1),
and the map « selects the largest LI-prime appearing in such a relation.

It is natural (though unproved) to expect that the LI-primes are not too
sparse among all primes; for instance one may posit:

Hypothesis B (mild density of LI-primes). The set Pr; has positive
upper density among the primes, or at least grows comparably to the
full set of primes in the sense that the n-th LI-prime ¢, satisfies a
bound of the form ¢, < n® for some fixed C.

Combining Hypothesis A with the tree picture from Step 2, one is led to
the following tension: starting from a finite set of primes < Ny at the bottom
and letting ® grow at least like p'*2, the union of all values generated in
the trees 7 (q) should have asymptotic density zero among the primes. In
contrast, Hypothesis B suggests that Pr; = im(®) retains positive density
or at least grows comparably fast to the full prime sequence. In a random
map model, these two behaviours are incompatible.
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Step 4: The role of «

The map « refines this heuristic by encoding “short dependencies” between
an LD-root ¢ = ¢*°(p) and the LI-primes below it. The relation

loglg—1) = > ¢(g) log(r—1)

r<q, r LI

expresses ¢ — 1 multiplicatively in terms of smaller » — 1, and a(q) picks the
largest such r. Iterating o produces a descending chain of LI-primes. If all
these LI-primes were forced, by Hypothesis A, to have very large ®-values
(and thus to be very far apart numerically), one expects a clash with the
unimodular lattice structure: expressing the logarithm of a large composite
g — 1 using only very distant generators log(r — 1) with integral coefficients
becomes increasingly rigid. Informally, the a-chains insist that each LD-root
g must be surrounded by “nearby” LI-primes, while the fast-growth model of
® tends to push Ll-preimages far away.

Step 5: Heuristic conclusion

Summarising, the heuristic can be phrased as follows: if there were only
finitely many H-primes, then beyond some height ® would grow so rapidly
(Hypothesis A) that its image along ®-orbits in the trees 7 (q) would form
a set of primes of very small asymptotic density. This picture is hard to rec-
oncile with the expectation that LI-primes occur with reasonable frequency
(Hypothesis B) and with the combination of surjectivity of ® onto Pr; and
the unimodular lattice structure governed by ¥ and «. In order to avoid
this “collapse of the predecessor trees”, one is led to believe that there must
be infinitely many primes at which ® grows slowly, i.e. infinitely many H-
primes.

Turning this heuristic into a theorem would require quantitative control
on the distribution of LI-primes and on the typical size of ®(p) outside the
H-primes; the framework developed here suggests a concrete programme for
such investigations.

15 The H-dominant regime of the dynamical zeta
function

In this final synthesis, we connect the arithmetic functions Lyp, Ly, the
dynamical zeta function ((s), and the class of H-numbers. Throughout we
write

A~

G(s):=Gu(s),  C(s) = Gols) = G(s)H(s),

and we use the notation L p, Ly; for the functions denoted LLD, LLI in
Section 8. The growth bounds established for H-numbers suggest that they
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constitute the analytically dominant part of the dynamical series, while the
injectivity results suggest that they form an “arithmetically regular” core of
the successor map.

15.1 Decomposition of G’(s) by H-numbers

Recall the dynamical zeta function from Definition 5.4:
) =Y 5
o)
n>1

Let H denote the set of H-numbers (Definition 12.1). We decompose the
series into an H-part and a complementary part:

G(s) = Gu(s)+Gsing(s), Gul(s) := Z q>(1n)s’ Ching(5) = Z (I)(ln)s
neH ngH

By Lemma 12.2, for every n € H we have the quadratic bound ®(n) < n2.

Consequently, the terms in Gy (s) satisfy
1 1

>
P (n)s n2s )

so their decay is at best quadratic in n. In contrast, under the heuristic of
“fast growth away from H-primes” (Hypothesis A in Section 14), terms with
n ¢ H would satisfy

®(n) > n'te

for some fixed € > 0 (or even exhibit exponential growth), making @Sing(s)
converge very rapidly for Rs > 1.

Remark 15.1. Heuristically, this decomposition suggests that any slow
divergence or possible singular behaviour of G(s) (and hence of ((s) =
G(s)H(s)) near its abscissa of convergence is driven primarily by the H-
numbers. In particular, if G(s) were to develop a pole at some g9 > 1, then
its main contribution would naturally be attributed to C’H(s) rather than to
the complementary part Gsing(s).

15.2 Arithmetical regularity on H-numbers

We recall the injectivity criterion from Theorem 8.9:
® is injective <= Lpp(®(n)) =71(n) foralln > 1.
Moreover, for every n we always have

Lrp(®(n)) = 7(®(n)) < 7(n),
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with strict inequality for some n if and only if ® is not injective. On the
other hand, Proposition 12.5 shows that ® is injective on the set of H-primes.

It is therefore natural to view H-numbers as candidates for an “arith-
metically regular” region of the dynamics where the LI/LD-decomposition
behaves in a particularly tame way. Extrapolating from the prime case, one
might conjecture that, for n € H, the image ®(n) preserves much of the
divisor structure of n in the sense that the defect

7(n) = Lip(®(n)) = 7(n) — 7(®(n))

is typically small or even vanishes.
Using the identity

s) = Gy (s = 3

c(n) = a(frr(n)),

from Section 7.3, we make the following observations.

1. On H-numbers. If ® is injective on H, then for any u € ®(H) the
multiplicity is a(u) = 1. Consequently, on the set ®(H) the coefficients
of {(s) coincide with those of the Riemann zeta function (all equal to
1). Heuristically, if H has positive density in an appropriate sense, this
suggests that H-numbers contribute the “least degenerate” part of the
dynamical factor.

2. The Lpp-witness. The value Lyp(®(n)) = 7(®(n)) serves as an
arithmetic witness for how far ®(n) is from preserving the divisor struc-
ture of n. For H-primes p we rigorously have Ly p(®(p)) =2 = 7(p), so
the defect vanishes. It is natural to conjecture that this phenomenon
extends, at least frequently, to composite H-numbers.

From this point of view, H-numbers form the region where the “exotic”
arithmetic functions Lz p and Ly synchronize best with the classical divisor
function 7, and where the dynamical factorization underlying ¢ (s) exhibits
minimal defect. This supports the heuristic picture of an H-dominant regime
both analytically and arithmetically.

16 Conclusion and outlook

The central theme of this paper has been to combine a structural LI/LD-decomposition
of the primes with the successor map

®(p) = min{q prime: ¢=1 (mod p)},

and to use this interaction to obtain both dynamical Dirichlet series and
arithmetic information about the values of ®. We showed that the image of
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® consists precisely of the linearly independent primes and that every LI-
prime admits a unique predecessor under ®, whereas LD-primes never occur
as successors. Extending ® multiplicatively to all positive integers leads to
a natural notion of LI- and LD-numbers and to a factorisation ( = G - H
of the Riemann zeta function into LI- and LD-zeta factors, together with a
dynamical Dirichlet series Gy, built from the successor values ®(n).

On the level of integers, the maps ¢r;,f;p isolate the LI- and LD-
components of n, and the divisor sums LLD, LLI encode global information
about the LI/LD-structure. This allowed us to reinterpret the coefficients
of the dynamically weighted zeta function (p(s) = Gp(s)H (s) arithmetically
as ¢(n) = a(lrr(n)), where a(u) counts the preimages of u under ®, and to
formulate a clean injectivity criterion:

® is injective <= LLD(®(n)) =7(n) foralln > 1.

Thus the injectivity of the successor map is completely encoded by the be-
haviour of a divisor sum built from the LD-component.

The unimodular ®-lattice provides a second structural pillar: choosing
the exponent vectors of LI-primes as a Z-basis, every LD-prime admits an
explicit and unique representation of p — 1 as a product of integer powers of
(r — 1) for LI-primes r < p. This yields logarithmic relations of the form

log(p—1)= > ¢(p)log(r—1),

r<p, r LI

and, together with the stabilising operator ¢ and its terminal value ¥ (p),
leads to an infinite descent mechanism via the map «. These constructions
tie the successor dynamics to the LI/LD-basis in a rigid way and suggest
that the local structure of ®-orbits is strongly constrained by the lattice
geometry.

In the second part of the paper we used the multiplicative extension of
® to derive lower bounds in the factorial decomposition, culminating in a
class of H-numbers defined by the growth condition ®(n) < log ®(n!). For
H-numbers we showed a quadratic upper bound ®(n) < n?, which contrasts
sharply with the general exponential bounds known for ®(p), and we proved
that ® is injective on H-primes. Numerical computations up to 500 indicate
that H-primes occur with a positive proportion among the primes and exhibit
no collisions under ®, supporting the idea that H-primes form a large and
arithmetically regular subset of the primes.

Finally, we proposed a heuristic that combines the surjectivity of ® onto
LI-primes, the unimodular lattice structure, and a fast-growth hypothesis
away from H-primes to argue that there should be infinitely many H-primes.
In this picture, H-numbers support an “H-dominant” regime for the dynam-
ical zeta function C(s) = ((s): they are expected to govern any slow diver-
gence or singularity of G(s) = Gy(s) near its abscissa of convergence, and,
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arithmetically, they are the region where LLD and LLI synchronize best
with the classical divisor function 7.

Several natural questions remain open. Chief among them are the global
injectivity of ®, the distribution of LI- and LD-primes, the analytic continua-
tion and possible functional equations of G, H and G}, and the existence and
density of H-primes. The framework developed here reduces many of these
problems to quantitative questions about the typical size of ®(n) and the
multiplicities a(u), and suggests a concrete programme for further investi-
gation at the interface of prime distribution, Dirichlet series, and arithmetic
dynamics.
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