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Abstract

We revisit the partition of the prime numbers into linearly indepen-
dent and linearly dependent primes, de�ned in terms of the exponent
vectors of p−1 in the basis of all primes, and we develop its arithmetic
and dynamical consequences for the successor map

Φ(p) := min{q prime : q ≡ 1 (mod p)}.

On the structural side, we show that the image of Φ is exactly the set
of linearly independent primes, and that Φ extends multiplicatively to
a map Φ: N → N whose image consists precisely of LI-numbers. This
leads to a factorisation of the Riemann zeta function

ζ(s) = G(s)H(s),

where G and H are Dirichlet series attached to LI- and LD-numbers,
respectively, and to a �dynamical� Dirichlet series

Gb(s) =
∑
n≥1

Φ(n)−s,

whose coe�cients encode the multiplicities of Φ on LI-numbers. We
give an arithmetical description of the dynamically weighted zeta func-
tion ζb(s) := Gb(s)H(s) in terms of the LI/LD�components ℓLI(n), ℓLD(n)
of an integer and the associated divisor sums LLD,LLI, and we derive
a purely arithmetical injectivity criterion for Φ in terms of LLD(Φ(n)).
Using the unimodular �Φ-lattice� we obtain explicit logarithmic repre-
sentations for p− 1 when p is LD and introduce an auxiliary operator
ψ with terminal value ψ∞(p), leading to an in�nite descent mechanism
via a map α. Finally, we de�ne a class of H-numbers by the growth
condition Φ(n) ≤ log Φ(n!), prove a quadratic upper bound Φ(n) < n2

on H-numbers and injectivity of Φ on H-primes, and discuss numerical
evidence and a heuristic that suggest the existence of in�nitely many
H-primes and an �H-dominant� regime for the dynamical zeta function.
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1 Introduction

The Euler product for the Riemann zeta function

ζ(s) =
∏
p∈P

1

1− p−s
, ℜs > 1,

expresses ζ as an in�nite product over all primes P and provides the starting
point for much of analytic number theory. In this paper we re�ne this product
by splitting the primes into two canonical, in�nite subsets

P = PLI ∪̇PLD,

the linearly independent and linearly dependent primes, according to linear
relations among the exponent vectors of p−1 in the basis of all primes. This
LI/LD�partition leads simultaneously to a nontrivial �ltration of the prime
sequence p1 = 2 < p2 = 3 < p3 = 5 < . . . and to a dynamical picture
governed by a successor map on primes.

More precisely, we consider the map

Φ(p) := min{q ∈ P : q ≡ 1 (mod p)},
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the least prime congruent to 1 modulo p. The size of Φ(p) is a classical
object of study in analytic number theory, going back to work on the least
prime in an arithmetic progression and bounds for primes in residue classes.
Under GRH, explicit bounds of the form Φ(p) ≪ p2 log2 p follow from the
work of Bach and Sorenson [4], while unconditional results of Heath�Brown,
Wagsta� and Xylouris [5, 6, 7, 8, 9] give successively sharper estimates in the
style of Linnik's theorem. On the computational side, tables of least primes
in progressions and related sequences (see, for instance, Wilson's data [2]
or the entries in OEIS) provide substantial numerical evidence about the
typical size and distribution of such least primes.

Our approach to Φ is of a di�erent �avour. Instead of focusing on upper
bounds for Φ(p), we study the structure of its image and preimage sets by
exploiting linear relations among the vectors of prime exponents in p−1. This
is reminiscent in spirit of previous work of Bach and Huelsbergen on small
generating sets of multiplicative groups modulo m [3], and of the algorithmic
viewpoint on primes in residue classes and related computations in Bach
and Shallit [1]. Here, however, we work on the level of the integers p − 1
themselves and use the resulting LI/LD�decomposition to build a �Φ�lattice�
which governs the behaviour of the successor map.

The goals of this paper are threefold:

(1) to give a self-contained account of the LI/LD notion for primes and its
consequences for the successor map Φ;

(2) to record the resulting factorisation

ζ(s) = G(s)H(s) =
∏

q∈PLI

1

1− q−s

∏
p∈PLD

1

1− p−s
, ℜs > 1,

and to reinterpret the Dirichlet seriesG andH in terms of an LI/LD�decomposition
of the integers and a �Φ�lattice�;

(3) to introduce a dynamical Dirichlet series

Gb(s) :=
∑
n≥1

Φ(n)−s,

together with an associated zeta function ζb(s) = Gb(s)H(s), and to
relate their coe�cients to the multiplicities of Φ and to certain divisor
sums built from the LI/LD�components of n.

On the dynamical side we show that the image of Φ on primes is precisely
PLI , and that each LI-prime admits a unique predecessor under Φ, whereas
LD-primes never occur as successors. Extending Φmultiplicatively to N leads
to a natural notion of LI- and LD-numbers and a structural factorisation
ζ = G · H of the Riemann zeta function into LI- and LD-zeta factors. We
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then de�ne an auxiliary operator ψ with terminal value ψ∞(p) and a map
α which together provide an in�nite descent mechanism in the Φ�lattice,
yielding explicit logarithmic representations of p − 1 in terms of (r − 1) for
LI-primes r < p when p is LD.

In the �nal part of the paper we single out a class of integers n ≥ 2
de�ned by the growth condition

Φ(n) ≤ log Φ(n!),

which we call H-numbers. For H-numbers we prove a quadratic upper bound
Φ(n) < n2, in strong contrast with the general exponential bounds known
for Φ(p), and we show that Φ is injective on the H-primes. This leads
to an �H-dominant� regime for the dynamical zeta function ζb(s) and to
a heuristic�supported by numerical data�that there should be in�nitely
many H-primes.

Throughout the paper we work analytically in the half-plane ℜs > 1: all
Euler products and Dirichlet series we introduce converge absolutely there,
and we do not claim any new analytic continuation or functional equations
for G, H, or Gb. The emphasis is on the structural interaction between
the LI/LD�decomposition, the successor map Φ, and the induced dynamical
Dirichlet series.

2 Linear independence for primes

We brie�y recall the de�nition of LI/LD primes introduced in [13].

2.1 Exponent vectors

Let (pi)i≥1 be the increasing sequence of primes:

p1 = 2, p2 = 3, p3 = 5, . . . .

For each integer n ≥ 2 we de�ne the (in�nite) exponent vector

φ(n) :=
(
vp1(n− 1), vp2(n− 1), vp3(n− 1), . . .

)
∈
∏
i≥1

Z,

where vpi(·) denotes the pi-adic valuation. Only �nitely many coordinates
of φ(n) are nonzero.

For many arguments it is convenient to truncate these vectors. If N ≥ 2
is �xed, we set

φN (n) :=
(
vp1(n− 1), . . . , vpπ(N)

(n− 1)
)
∈ Zπ(N).

For primes r ≤ N we then regard φN (r) as vectors in the �nite-dimensional
space Qπ(N).
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2.2 De�nition of LI/LD primes

De�nition 2.1 (LI and LD primes). A prime q is called linearly independent

(LI) if the vector φ(q) does not lie in the Q-linear span of the vectors φ(r)
with r prime and r < q. Otherwise q is called linearly dependent (LD).

Equivalently, �x some N ≥ q and work with the truncated vectors
φN (r) ∈ Qπ(N) for all r ≤ q. Then q is LI if and only if

φN (q) /∈ spanQ{φN (r) : r < q, r prime}.

This de�nition produces two disjoint in�nite subsets of primes:

PLI := {q ∈ P : q LI}, PLD := P \ PLI.

3 The successor map Φ and its extension

3.1 De�nition on primes

For a prime p we de�ne its successor in the progression 1 mod p by

Φ(p) := min{q ∈ P : q ≡ 1 (mod p)}.

By Dirichlet's theorem on primes in arithmetic progressions, the set {q ∈ P :
q ≡ 1 mod p} is in�nite, so Φ(p) is well-de�ned for every prime p.

A basic observation, proved in detail in [13], is that Φ(p) is always LI:

Proposition 3.1 (Minimal primes in 1 mod p are LI). Let p be a prime and

let q = Φ(p) be the smallest prime with q ≡ 1 (mod p). Then q is linearly

independent.

The proof uses exactly the p-th coordinate of the exponent vectors: vp(q−
1) ≥ 1, whereas vp(r − 1) = 0 for all primes r < q by minimality of q in its
residue class.

3.2 Multiplicative extension

We extend Φ to all positive integers by declaring it completely multiplicative.

De�nition 3.2 (Multiplicative extension of Φ). We set

Φ(1) := 1,

and for any integer n ≥ 2 with prime factorization n =
∏

pe∥n p
e we de�ne

Φ(n) :=
∏
pe∥n

Φ(p)e.

Then Φ is a (completely) multiplicative map Φ : N → N, and Proposi-
tion 3.1 implies that

Φ(n) ∈ {LI-numbers}
for all n ≥ 1. In particular, any prime in the image of Φ is LI.
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4 The successor map and surjectivity onto LI primes

In this section we recall the successor map

Φ(p) := min{ q prime : q ≡ 1 (mod p) },

which is well-de�ned for every prime p by Dirichlet's theorem on primes in
arithmetic progressions. We then prove in detail that the image of Φ is
exactly the set of linearly independent primes.

Throughout we let (pk)k≥1 denote the increasing sequence of primes,

p1 = 2, p2 = 3, p3 = 5, . . . .

4.1 Linear independence via valuation vectors

For each integer n ≥ 2 we consider the exponent vector of n− 1

φ(n) :=
(
vp1(n− 1), vp2(n− 1), vp3(n− 1), . . .

)
∈
∏
i≥1

Z,

where vpi is the pi�adic valuation. Only �nitely many coordinates of φ(n)
are nonzero.

De�nition 4.1 (LI and LD primes). A prime q is called linearly independent

(LI) if φ(q) does not lie in the Q�linear span of the vectors φ(r) with r prime
and r < q. Otherwise q is called linearly dependent (LD).

Equivalently, if we �x N ≥ q and truncate to the �rst π(N) coordinates

φN (n) :=
(
vp1(n− 1), . . . , vpπ(N)

(n− 1)
)
∈ Zπ(N),

then q is LI i� φN (q) is not in the Q�span of {φN (r) : r prime, r < q}.

4.2 Minimal primes in 1 mod p are LI

We �rst show that successors of primes are always LI.

Lemma 4.2 (Minimal primes modulo p are LI). Let p be a prime, and let q
be the smallest prime with

q ≡ 1 (mod p).

Then q is linearly independent.

Proof. Since q ≡ 1 (mod p) we have p | (q − 1) and hence

vp(q − 1) ≥ 1.
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Fix N ≥ q and consider the truncated vectors φN (r) in Qπ(N). Let p = pi
for some index i. Then the i�th coordinate of φN (q) is

(φN (q))i = vp(q − 1) ≥ 1.

Now let r be any prime with r < q. By minimality of q in the progression
1 mod p there is no such r with r ≡ 1 (mod p), so p ∤ (r − 1) and thus

vp(r − 1) = 0 for all primes r < q.

Equivalently,
(φN (r))i = 0 for all primes r < q.

Suppose for contradiction that φN (q) lies in the Q�span of {φN (r) : r <
q}. Then there exist rational numbers cr (�nitely many nonzero) such that

φN (q) =
∑
r<q

cr φN (r).

Comparing the i�th coordinate on both sides gives

vp(q − 1) = (φN (q))i =
∑
r<q

cr (φN (r))i =
∑
r<q

cr · 0 = 0,

a contradiction. Hence φN (q) is not in the Q�span of {φN (r) : r < q}, and
q is LI.

As an immediate consequence we obtain:

Proposition 4.3 (LD primes are never successors). Let p be a linearly de-

pendent prime. Then p is not in the image of the successor map Φ, i.e. there
is no prime r with

Φ(r) = p.

Proof. Suppose, for contradiction, that p is LD and that there exists a prime
r with Φ(r) = p. By de�nition of Φ this means that p is the smallest prime
with p ≡ 1 (mod r), i.e. p is the minimal prime in the residue class 1 mod r.
By Lemma 4.2, p is then LI, contradicting the assumption that p is LD.
Hence no LD prime lies in the image of Φ.

Thus we already know:

im(Φ) ⊆ {LI primes}.

We now prove the converse inclusion.
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4.3 The valuation matrix and �rst occurrence indices

To describe the predecessor of an LI prime, we recall the valuation matrix
from [13].

For each integer n ≥ 1 we consider the n× n matrix

E(n) = (ei,k)1≤i,k≤n, ei,k := vpi(pk − 1).

The k�th column of E(n) is exactly the truncated valuation vector

V
(n)
k :=


vp1(pk − 1)
vp2(pk − 1)

...
vpn(pk − 1)

 = φn(pk) ∈ Zn.

Note that if pi divides pk−1, then necessarily pi < pk, so i < k. In particular
the diagonal entries ek,k = vpk(pk − 1) are all zero.

As in [13], linear independence of pn is equivalent to a rank jump of E(n)
when we pass from n− 1 to n.

Next we introduce the �rst occurrence index of each prime pi as a divisor
of some pk − 1.

De�nition 4.4 (First occurrence index). For each i ≥ 1 de�ne

t(i) := min{ k ≥ 1 : vpi(pk − 1) ≥ 1 },

if this set is nonempty, and set t(i) :=∞ otherwise.

If t(i) < ∞, then pi | (pt(i) − 1) and, as noted above, we automatically
have t(i) ≥ i+ 1.

The following rank formula is proved in [13, Prop. 4.2] and we recall it
for completeness.

Proposition 4.5 (Rank of the valuation matrix). For each n ≥ 1 we have

rankE(n) = #{ i ∈ {1, . . . , n} : t(i) ≤ n }.

Proof. Let

In := { i ∈ {1, . . . , n} : t(i) ≤ n }, r(n) := #In.

Lower bound. List the elements of In as i1, . . . , ir(n) in such a way that

t(i1) < t(i2) < · · · < t(ir(n)).

Consider the r(n)×r(n) submatrixM ofE(n) with rows indexed by i1, . . . , ir(n)
and columns indexed by t(i1), . . . , t(ir(n)).
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By de�nition of t(iℓ), in row iℓ all entries in columns k < t(iℓ) are zero,
and the entry in column t(iℓ) is

vpiℓ

(
pt(iℓ) − 1

)
≥ 1.

Since t(i1) < · · · < t(ir(n)), this means that M is (up to permutation of rows
or columns) triangular with nonzero diagonal entries. Hence detM ̸= 0 and
rankM = r(n). Therefore

rankE(n) ≥ r(n).

Upper bound. If i /∈ In, i.e. t(i) > n, then by de�nition vpi(pk − 1) = 0
for all k ≤ n. Thus the i�th row of E(n) is identically zero and does not
contribute to the rank. Hence the row space of E(n) is spanned by the rows
with i ∈ In, so

rankE(n) ≤ #In = r(n).

Combining both inequalities yields the claimed equality.

4.4 Every LI prime has a predecessor

We now use Proposition 4.5 to show that every LI prime arises as a successor
of a smaller prime.

Lemma 4.6 (First occurrence attached to an LI prime). Let q = pn be a

linearly independent prime. Then there exists at least one prime pi dividing
q − 1 such that

t(i) = n,

i.e. q is the �rst prime for which pi divides pk − 1.

Proof. Since q = pn is LI, the vector V
(n)
n = φn(pn) is not in the Q�span

of the previous columns V
(n)
1 , . . . , V

(n)
n−1. Equivalently, the rank of E(n) is

strictly larger than the rank of the (n − 1) × (n − 1) principal submatrix
E(n− 1):

rankE(n) > rankE(n− 1).

By Proposition 4.5 we have

rankE(n) = #{i : t(i) ≤ n}, rankE(n− 1) = #{i : t(i) ≤ n− 1}.

Thus the strict inequality implies that there exists an index i with

t(i) = n.

By de�nition of t(i) this means vpi(pn− 1) ≥ 1, i.e. pi | (pn− 1) = q− 1.

For such a prime divisor pi we now identify q as the minimal prime
1 mod pi.
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Lemma 4.7 (Predecessor of an LI prime). Let q = pn be linearly indepen-

dent, and choose a prime p = pi with t(i) = n as in Lemma 4.6. Then q is

the smallest prime with

q ≡ 1 (mod p),

i.e. by de�nition

Φ(p) = q.

Proof. Since t(i) = n, we have vpi(pn − 1) ≥ 1, so pi | (q − 1) and hence
q ≡ 1 (mod p)i.

If there were a smaller prime r < q with r ≡ 1 (mod p)i, then pi | (r−1).
By the de�nition of t(i) as the �rst index k with pi | (pk−1), we would then
have t(i) ≤ index(r) < n, contradicting t(i) = n.

Thus no smaller prime r < q satis�es r ≡ 1 (mod p)i, so q is indeed
the minimal prime in the residue class 1 mod pi. By the de�nition of the
successor map, Φ(pi) = q.

Combining Lemma 4.6 and Lemma 4.7 gives:

Proposition 4.8 (Every LI prime is a successor). For every linearly inde-

pendent prime q there exists a prime p < q such that

Φ(p) = q.

In particular, every LI prime lies in the image of Φ.

Together with Proposition 4.3 we obtain the following structural descrip-
tion of the successor map.

Corollary 4.9 (Image of Φ). The image of the successor map Φ is exactly

the set of linearly independent primes:

im(Φ) = { q prime : q is LI }.

Equivalently, Φ induces a surjective map from the set of all primes onto the

set of LI primes, and no LD prime occurs as a successor.

Remark 4.10. Note that none of the arguments in this section uses Hy-
pothesis (H) or any upper bound of the form Φ(p) ≪ p2. The only input
from analytic number theory is Dirichlet's theorem (to guarantee that Φ(p)
is de�ned for every prime p). All statements above are purely structural and
unconditional.

5 LI- and LD-zeta functions and product decompo-
sition

5.1 LI- and LD-zeta functions

We now de�ne Dirichlet series attached to LI- and LD-numbers.
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De�nition 5.1 (LI- and LD-numbers). A positive integer n is called an LI-
number if all its prime divisors lie in PLI, and an LD-number if all its prime
divisors lie in PLD.

The indicator functions of LI- and LD-numbers are multiplicative, so
their Dirichlet series admit Euler products.

De�nition 5.2 (LI- and LD-zeta functions). For ℜs > 1 we set

G(s) :=
∑
n≥1
n LI

1

ns
=
∏

q∈PLI

1

1− q−s
,

and

H(s) :=
∑
m≥1
m LD

1

ms
=
∏

p∈PLD

1

1− p−s
.

By absolute convergence of these Euler products for ℜs > 1, both G and
H are holomorphic in the half-plane ℜs > 1.

Since every positive integer n factors uniquely as a product of an LI-
number and an LD-number (by the partition P = PLI ∪ PLD of primes), we
obtain an immediate factorization of the Riemann zeta function.

Proposition 5.3 (Product decomposition of ζ). For ℜs > 1 we have

ζ(s) = G(s)H(s).

Equivalently, ∏
p∈P

1

1− p−s
=
( ∏
q∈PLI

1

1− q−s

)( ∏
p∈PLD

1

1− p−s

)
.

Proof. This is immediate from the Euler product for ζ(s) and the partition
of primes into PLI and PLD. Every Euler factor (1 − p−s)−1 with p ∈ P
appears exactly once, either in the product over PLI or in that over PLD, and
the products converge absolutely for ℜs > 1.

5.2 The dynamical zeta function Ĝ

The multiplicative extension of Φ leads naturally to another Dirichlet series,
which encodes the �successor dynamics�:

De�nition 5.4 (Dynamical zeta function). For ℜs > 1 we de�ne

Ĝ(s) :=
∑
n≥1

1

Φ(n)s
.
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Since Φ(n) > n for all n ≥ 2, we have 1/Φ(n)s ≤ 1/nℜs, so Ĝ(s) converges
absolutely for ℜs > 1.

Using Proposition ??, we can rewrite Ĝ(s) as a Dirichlet series supported
on LI-numbers. For each LI-number m set

a(m) := #{n ≥ 1 : Φ(n) = m}.

Then

Ĝ(s) =
∑
m≥1
m LI

a(m)

ms
, ℜs > 1.

By construction a(m) ≥ 1 for all LI-numbers m (surjectivity of Φ onto LI),
while the original G(s) has coe�cients identically equal to 1 on LI-numbers:

G(s) =
∑
m≥1
m LI

1

ms
.

Thus the comparison between G and Ĝ is equivalent to understanding the
multiplicities a(m), i.e. how often a given LI-number appears as a successor
value Φ(n).

Remark 5.5 (Injektivity of Φ vs. equality of G and Ĝ). The map Φ is in-
jective on LI-numbers if and only if a(m) = 1 for all LI-numbers m. Equiv-
alently, Φ is injective if and only if

Ĝ(s) = G(s)

for some (and hence every) real s > 1, since the coe�cients in Ĝ(s) −G(s)
are nonnegative. At present, the injectivity of Φ is an open problem.

6 Analytic remarks and open questions

We conclude by collecting some analytic observations and questions about
G, H and Ĝ.

6.1 Analytic properties in ℜs > 1

By construction:

� G(s), H(s) and Ĝ(s) are absolutely convergent Dirichlet series for ℜs >
1, with nonnegative coe�cients.

� They admit Euler products in ℜs > 1:

G(s) =
∏

q∈PLI

(1− q−s)−1, H(s) =
∏

p∈PLD

(1− p−s)−1,

and Ĝ(s) can be expressed as a Dirichlet series supported on LI-
numbers with integer coe�cients a(m) ≥ 1.
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� The product identity ζ(s) = G(s)H(s) holds for ℜs > 1, and all three
functions are holomorphic in this half-plane.

Since all coe�cients are nonnegative, there is no issue of conditional con-
vergence on the real axis; in particular, convergence and absolute convergence
coincide for real s > 1.

7 An arithmetical description of the dynamical fac-
tor

In this section we make the LI/LD�decomposition of ζ(s) from Sections 5�
6 more explicit on the level of integers and Dirichlet coe�cients, and we
express the dynamical factor G♭(s) (De�nition 5.4) in purely arithmetical
terms.

7.1 LI- and LD-components of an integer

Let P be the set of all primes, and recall the partition

P = PLI ⊔ PLD

into linearly independent and linearly dependent primes (De�nition 2.1).
For each integer n ≥ 1 with prime factorization

n =
∏
p∈P

pvp(n)

we de�ne its LI- and LD-component by

ℓLI(n) :=
∏

q∈PLI

qvq(n), ℓLD(n) :=
∏

p∈PLD

pvp(n).

Equivalently,

� ℓLI(n) is the largest LI-number dividing n;

� ℓLD(n) is the largest LD-number dividing n.

Lemma 7.1 (Elementary properties of ℓLI and ℓLD). For all n ≥ 1 we have

n = ℓLI(n) ℓLD(n), gcd
(
ℓLI(n), ℓLD(n)

)
= 1,

and both ℓLI and ℓLD are multiplicative. More precisely:

1. For a prime r,

ℓLI(r) =

{
r, r ∈ PLI,

1, r ∈ PLD,
ℓLD(r) =

{
1, r ∈ PLI,

r, r ∈ PLD.

The analogous statements hold for prime powers rk.
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2. If gcd(m,n) = 1, then

ℓLI(mn) = ℓLI(m) ℓLI(n), ℓLD(mn) = ℓLD(m) ℓLD(n).

3. An integer n is an LI-number (De�nition 5.1) if and only if

ℓLI(n) = n (and hence ℓLD(n) = 1),

and n is an LD-number if and only if

ℓLD(n) = n (and ℓLI(n) = 1).

Proof. All statements are immediate from the prime factorization of n and
the disjoint union P = PLI ⊔ PLD. Each prime power pvp(n) is assigned to
exactly one of the two factors, which yields the factorization of n and the
coprimality. The formulas for primes and prime powers follow by inspec-
tion, and multiplicativity holds because the constructions of ℓLI and ℓLD
are de�ned on the level of prime powers and respect disjoint supports of
gcd(m,n) = 1. Finally, the characterizations of LI/LD-numbers are tauto-
logical from De�nition 5.1.

Thus ℓLI and ℓLD give a canonical �projection� of any integer onto its
LI- and LD-part, in line with the prime level partition used throughout the
paper.

7.2 Rewriting G(s) and H(s) via LI/LD-components

The Dirichlet series G(s) and H(s) from De�nition 5.2 can now be written
in a compact arithmetic form using ℓLI and ℓLD.

Let 1E(n) denote the indicator of a property E of n. Since an integer n
is LI if and only if ℓLD(n) = 1, and LD if and only if ℓLI(n) = 1, we have,
for ℜs > 1,

G(s) =
∑
u≥1
u LI

1

us
=
∑
n≥1

1{ℓLD(n)=1}

ns
,

H(s) =
∑
v≥1
v LD

1

vs
=
∑
n≥1

1{ℓLI(n)=1}

ns
.

In particular, the Euler product identity ζ(s) = G(s)H(s) (Proposi-
tion 5.3) can be viewed as encoding the unique factorization

n = ℓLI(n) ℓLD(n)

at the level of Dirichlet coe�cients: each n contributes exactly once to the
double sum (∑

u LI

1

us

)(∑
v LD

1

vs

)
=
∑
n≥1

1

ns

via the pair
(u, v) =

(
ℓLI(n), ℓLD(n)

)
, uv = n.
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7.3 The dynamical factor and an arithmetical ζ̂(s)

Recall the multiplicative extension Φ : N → N (De�nition 3.2) and the
dynamical Dirichlet series

G♭(s) =
∑
n≥1

1

Φ(n)s
, ℜs > 1

from De�nition 5.4. By Corollary 4.9, Φ(n) is always an LI-number, and
every LI prime occurs as Φ(p) for at least one prime p. Extending multiplica-
tively, every LI-number m has at least one �predecessor� n with Φ(n) = m.

For each LI-number u we set

a(u) := #{n ≥ 1 : Φ(n) = u},

and a(u) = 0 for non-LI u. Then, as observed in Section 5.2,

G♭(s) =
∑
u≥1
u LI

a(u)

us
, a(u) ≥ 1 for LI u.

In this language it is natural to introduce the �dynamically weighted�
zeta function

ζ̂(s) := G♭(s)H(s), ℜs > 1.

Proposition 7.2 (Dirichlet coe�cients of ζ̂). For ℜs > 1 we have an abso-

lutely convergent Dirichlet series

ζ̂(s) =
∑
n≥1

c(n)

ns
,

where the coe�cient c(n) is given arithmetically by

c(n) = a
(
ℓLI(n)

)
.

Proof. We �rst expand the product

ζ̂(s) =

(∑
u LI

a(u)

us

)(∑
v LD

1

vs

)
=
∑
n≥1

c(n)

ns
,

with
c(n) =

∑
uv=n

u LI, v LD

a(u).

By the uniqueness of the factorization n = ℓLI(n) ℓLD(n), there is exactly
one pair (u, v) with u LI, v LD and uv = n, namely

u = ℓLI(n), v = ℓLD(n).

Thus the sum de�ning c(n) reduces to a single term, and we obtain

c(n) = a
(
ℓLI(n)

)
.

16



Since ℓLI(n) is always an LI-number and a(u) ≥ 1 for every LI-number
u, we immediately get:

Corollary 7.3 (Comparison with ζ(s)). For all n ≥ 1 we have

c(n) = a
(
ℓLI(n)

)
≥ 1,

and hence, for real s > 1,

ζ̂(s) =
∑
n≥1

c(n)

ns
≥
∑
n≥1

1

ns
= ζ(s).

Moreover,

ζ̂(s)− ζ(s) =
∑
n≥1

a(ℓLI(n))− 1

ns
, a(ℓLI(n))− 1 ≥ 0.

In summary, the maps ℓLI and ℓLD simultaneously:

� encode the canonical LI/LD-factorization n = ℓLI(n) ℓLD(n),

� index the coe�cients of the dynamical factor G♭(s),

� and organize the coe�cient-wise comparison between ζ̂(s) and ζ(s)
through the multiplicities a(ℓLI(n)).

8 Elementary properties of the LI/LD�decomposition
and an injectivity criterion for Φ

In this section we collect some basic but useful properties of the maps
ℓLI, ℓLD, their divisor sums LLD, LLI, and the dynamical map Φ. Throughout
we assume:

� P denotes the set of all primes, decomposed as a disjoint union

P = PLI ⊔ PLD,

where PLI are the LI-primes and PLD the LD-primes.

� For each integer n ≥ 1 with prime factorization

n =
∏
p∈P

pvp(n)

we de�ne its LI- and LD-components by

ℓLI(n) :=
∏

q∈PLI

qvq(n), ℓLD(n) :=
∏

p∈PLD

pvp(n).

In particular,

n = ℓLI(n) ℓLD(n), gcd
(
ℓLI(n), ℓLD(n)

)
= 1.
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� Φ : N → N is completely multiplicative, its image consists only of
LI-numbers, and Φ is surjective onto the set of LI-numbers (every LI-
number occurs as Φ(m) for at least one m). Moreover, for m > 1 we
have Φ(m) > m; this is satis�ed by the concrete construction of Φ from
the LI/LD-lattice.

We write τ(n) for the number of positive divisors of n, σ(n) for the sum
of positive divisors, and µ(n) for the Möbius function.

8.1 The basic identities (1)�(5)

We begin by recording the elementary identities that express the projector-
like nature of ℓLI and ℓLD and their interaction with Φ.

Lemma 8.1 (1) ℓLI(Φ(n)) = Φ(n)). For all n ≥ 1 we have

ℓLI(Φ(n)) = Φ(n), ℓLD(Φ(n)) = 1.

Proof. By construction and Theorem 4.9 (in the earlier part of the paper)
the values of Φ are precisely the LI-numbers. Thus every prime divisor of
Φ(n) lies in PLI. Hence the LI-component is all of Φ(n), and there are no
LD-prime factors, so the LD-component is 1.

Lemma 8.2 (2) and 3) idempotence). For all n ≥ 1 we have

ℓLI(ℓLI(n)) = ℓLI(n), ℓLD(ℓLD(n)) = ℓLD(n).

Proof. The number ℓLI(n) has by de�nition only LI-prime factors, and there-
fore is itself an LI-number. Applying ℓLI again leaves it unchanged: ℓLI(ℓLI(n)) =
ℓLI(n). Similarly, ℓLD(n) has only LD-prime factors, hence is an LD-number
and is �xed by ℓLD.

Lemma 8.3 (4) Preimages of ℓLI(n) under Φ). For every n ≥ 1 there exists

m ∈ N such that

ℓLI(n) = Φ(m) and n ≥ m.
If n > 1, then in fact n > m.

Proof. By de�nition ℓLI(n) is an LI-number. Since Φ is surjective onto the
LI-numbers, there exists at least one m ∈ N such that

Φ(m) = ℓLI(n).

If m > 1, then by the growth property of Φ we have Φ(m) > m, hence

m < Φ(m) = ℓLI(n) ≤ n,

because ℓLI(n) always divides n. This yields m < n whenever n > 1. For
n = 1 we have ℓLI(1) = 1, and choosing Φ(1) = 1 (as is natural for a
completely multiplicative map) we can take m = 1. Thus the statement
holds for all n ≥ 1.
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Lemma 8.4 (5) Factorization through Φ). For every n ≥ 1 there exists

m ∈ N such that

n = ℓLD(n) Φ(m) and n ≥ m,

and if n > 1 then n > m.

Proof. By the de�nition of ℓLI and ℓLD we always have

n = ℓLI(n) ℓLD(n).

By the previous lemma there exists an m with ℓLI(n) = Φ(m) and m ≤ n.
Substituting gives

n = ℓLD(n) Φ(m),

and the inequality properties for m are inherited from Lemma 4.

8.2 Divisor sums and Möbius inversion (6) and (7)

We now de�ne global divisor sums built from the local components ℓLI and
ℓLD, and show how to recover the latter from the former.

De�nition 8.5. For every n ≥ 1 we de�ne

LLD(n) :=
∑
d|n

ℓLD(d), LLI(n) :=
∑
d|n

ℓLI(d).

Proposition 8.6 (Exact factorization of LLD and LLI). For every n ≥ 1 we

have

LLD(n) = τ
(
ℓLI(n)

)
σ
(
ℓLD(n)

)
, LLI(n) = τ

(
ℓLD(n)

)
σ
(
ℓLI(n)

)
.

In particular,

LLD(n) ≤ σ(n), LLI(n) ≤ σ(n) for all n ≥ 1.

Proof. Write
n = ℓLI(n) ℓLD(n) =: u v

with gcd(u, v) = 1. Every divisor d | n then has a unique factorization

d = dLI dLD, dLI | u, dLD | v.

This establishes a bijection

{d | n} ←→
{
(dLI, dLD) : dLI | u, dLD | v

}
, d 7→ (dLI, dLD).

For such a divisor we have:

� dLI contains only LI-primes and dLD only LD-primes,
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� hence ℓLD(d) = ℓLD(dLIdLD) = dLD, ℓLI(d) = ℓLI(dLIdLD) = dLI.

We can therefore compute:

LLD(n) =
∑
d|n

ℓLD(d) =
∑
dLI|u
dLD|v

ℓLD(dLIdLD) =
∑
dLI|u
dLD|v

dLD.

The inner sum does not depend on dLI, hence

LLD(n) =
∑
dLI|u

∑
dLD|v

dLD =
(
#{dLI | u}

) (∑
dLD|v

dLD
)
= τ(u)σ(v)

and thus
LLD(n) = τ

(
ℓLI(n)

)
σ
(
ℓLD(n)

)
.

The computation for LLI(n) is completely analogous:

LLI(n) =
∑
d|n

ℓLI(d) =
∑
dLI|u
dLD|v

ℓLI(dLIdLD) =
∑
dLI|u
dLD|v

dLI =
∑
dLD|v

∑
dLI|u

dLI = τ(v)σ(u),

so
LLI(n) = τ

(
ℓLD(n)

)
σ
(
ℓLI(n)

)
.

For the inequalities we simply use that for each divisor d | n, ℓLD(d) | d
and ℓLI(d) | d, hence

ℓLD(d) ≤ d, ℓLI(d) ≤ d.

Summing over all divisors of n gives

LLD(n) =
∑
d|n

ℓLD(d) ≤
∑
d|n

d = σ(n),

and likewise
LLI(n) ≤ σ(n).

Proposition 8.7 (7) Möbius inversion). For all n ≥ 1 we have

LLD(n) =
∑
d|n

ℓLD(d), LLI(n) =
∑
d|n

ℓLI(d),

and conversely

ℓLD(n) =
∑
d|n

µ
(n
d

)
LLD(d), ℓLI(n) =

∑
d|n

µ
(n
d

)
LLI(d).
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Proof. The identities

LLD(n) =
∑
d|n

ℓLD(d), LLI(n) =
∑
d|n

ℓLI(d)

are the de�nitions of LLD and LLI. In the language of Dirichlet convolution
we can write these as

LLD = 1 ∗ ℓLD, LLI = 1 ∗ ℓLI,

where 1(n) ≡ 1 is the constant-one function and ∗ denotes Dirichlet convo-
lution.

Since µ ∗ 1 = ε, the identity at 1 and zero elsewhere, we have

ℓLD = µ ∗ LLD, ℓLI = µ ∗ LLI.

In explicit divisor-sum form this reads

ℓLD(n) =
∑
d|n

µ
(n
d

)
LLD(d), ℓLI(n) =

∑
d|n

µ
(n
d

)
LLI(d),

as claimed.

Thus ℓLI and ℓLD are completely determined by the global divisor sums
LLI and LLD.

8.3 An injectivity criterion for Φ via LLD

We now show that the injectivity of Φ can be characterized purely in terms
of the function LLD evaluated at the values Φ(n).

Recall from the �rst lemma that Φ(n) is always an LI-number, so

ℓLI(Φ(n)) = Φ(n), ℓLD(Φ(n)) = 1.

Lemma 8.8. For all n ≥ 1 we have

LLD(Φ(n)) = τ(Φ(n)).

Proof. Insert k = Φ(n) into the product formula for LLD:

LLD(k) = τ
(
ℓLI(k)

)
σ
(
ℓLD(k)

)
.

Since k = Φ(n) is LI, we have ℓLI(k) = k and ℓLD(k) = 1. Thus

LLD(Φ(n)) = τ
(
Φ(n)

)
σ(1) = τ

(
Φ(n)

)
· 1 = τ

(
Φ(n)

)
,

as claimed.
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In particular, any identity of the form LLD(Φ(n)) = τ(something) is
equivalent to a statement about the divisor function τ(Φ(n)).

We now show that the injectivity of Φ is encoded by the requirement
that the number of divisors is preserved.

Theorem 8.9 (Injectivity of Φ via LLD). The following statements are equiv-

alent:

1. Φ : N→ N is injective.

2. For all n ≥ 1 we have

LLD(Φ(n)) = τ(n),

i.e.

τ
(
Φ(n)

)
= τ(n).

Proof. (1) ⇒ (2). Write n as a product of prime powers

n =

r∏
j=1

p
ej
j ,

with distinct primes p1, . . . , pr and exponents ej ≥ 1. Because Φ is com-
pletely multiplicative and maps primes to LI-primes, we obtain

Φ(n) =
r∏

j=1

Φ(pj)
ej .

If Φ is injective, then the values Φ(pj) are distinct primes, so the prime
factorization of Φ(n) has exactly the same exponents e1, . . . , er as that of n.
The divisor function is given by

τ(n) =
r∏

j=1

(ej + 1), τ(Φ(n)) =
r∏

j=1

(ej + 1),

hence τ(Φ(n)) = τ(n) for all n ≥ 1. Using the lemma above this is equivalent
to

LLD(Φ(n)) = τ(Φ(n)) = τ(n),

for all n.

(2) ⇒ (1). Suppose (2) holds, but Φ is not injective. Then there exist
distinct primes p1 ̸= p2 such that Φ(p1) = Φ(p2) =: q. Consider

n := p1p2.

Then τ(n) = 4, while

Φ(n) = Φ(p1)Φ(p2) = q · q = q2,
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so
τ(Φ(n)) = τ(q2) = 3.

Hence

τ(Φ(n)) < τ(n) =⇒ LLD(Φ(n)) = τ(Φ(n)) < τ(n),

contradicting the assumed identity LLD(Φ(n)) = τ(n) for all n. Therefore Φ
must be injective.

This shows that Φ is injective if and only if LLD(Φ(n)) = τ(n) holds for
all n ≥ 1.

The argument above also shows that, in general, we always have

LLD(Φ(n)) = τ(Φ(n)) ≤ τ(n)

for all n ≥ 1, with strict inequality for some n if and only if Φ is not injective.
Thus the family of values {LLD(Φ(n))}n≥1, which is de�ned purely in terms
of the LI/LD-decomposition and divisor sums, encodes the injectivity of the
dynamical map Φ.

9 Logarithmic representations for LD primes via
the Φ-lattice

In this section we record an explicit representation of p − 1 for linearly de-
pendent primes p in terms of the values r−1 for linearly independent primes
r < p. The key input is the unimodularity of the �Φ-lattice� constructed
in [13], to which we refer for full details.

9.1 Exponent vectors and the Φ-lattice

Let (pk)k≥1 be the increasing sequence of all primes, p1 = 2, p2 = 3, p3 =
5, . . . . For each integer n ≥ 2 we consider its (in�nite) exponent vector

φ(n) :=
(
vp1(n− 1), vp2(n− 1), vp3(n− 1), . . .

)
∈
∏
k≥1

Z,

where vpk( · ) denotes the pk-adic valuation. Only �nitely many coordinates
of φ(n) are nonzero.

For a �xed cuto� N ≥ 2 it is convenient to truncate to the �rst π(N)
primes:

φN (n) :=
(
vp1(n− 1), . . . , vpπ(N)

(n− 1)
)
∈ Zπ(N).

For primes q ≤ N we view φN (q) as vectors in Qπ(N).

De�nition 9.1 (The Φ-lattice). For each N ≥ 2 we de�ne the Φ-lattice by

ΛN := SpanZ
{
φN (q) : q ≤ N, q prime

}
⊂ Zπ(N).
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We recall from [13] that ΛN is an odd unimodular lattice, and that the
truncated exponent vectors of the LI-primes ≤ N form a Z�basis.

Proposition 9.2 (LI-primes form a unimodular basis). Let LN be the set

of LI-primes ≤ N . Then

1. the family {φN (q) : q ∈ LN} is a Z-basis of ΛN ;

2. the Gram matrix of this basis has determinant ±1, i.e. ΛN is unimod-

ular.

We shall use only the consequences that every vector in ΛN admits a
unique integral expansion in the basis {φN (q)}q∈LN

, and that all coe�cients
are integers.

9.2 Logarithmic representation for LD primes

We now state and prove the logarithmic representation for LD primes.

Lemma 9.3 (Logarithmic representation for LD primes). Let p be a linearly

dependent prime. Then there exist uniquely determined integers cr(p) ∈ Z,
indexed by LI-primes r < p and all but �nitely many equal to 0, such that

log(p− 1) =
∑
r<p
r LI

cr(p) log(r − 1). (1)

Equivalently, we have the multiplicative representation

p− 1 =
∏
r<p
r LI

(r − 1)cr(p). (2)

Proof. Fix an LD prime p and choose N := p. Then φN (p) belongs to ΛN

by de�nition. Let LN denote the LI-primes ≤ N .

Step 1: integral expansion in the LI-basis. By Proposition 9.2, the vectors
{φN (r) : r ∈ LN} form a Z-basis of ΛN . Hence there exist unique integers
br(p) ∈ Z (only �nitely many non-zero) such that

φN (p) =
∑
r∈LN

br(p)φN (r). (3)

Since p is LD, its valuation vector lies in the span of the earlier vectors but
does not itself contribute a new basis element. In particular, the coe�cient
corresponding to r = p in (3) vanishes, so we may rewrite this as

φN (p) =
∑
r<p
r LI

cr(p)φN (r), (4)
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for uniquely determined integers cr(p) ∈ Z.
Step 2: equality of p-adic valuations. Unwinding (4) coordinatewise, we
obtain for each prime ℓ ≤ p:

vℓ(p− 1) =
∑
r<p
r LI

cr(p) vℓ(r − 1).

This holds for every prime ℓ ≤ p; for ℓ > p both sides are zero because
neither p − 1 nor any r − 1 with r ≤ p contains primes larger than p in its
factorisation. Thus in fact

vℓ(p− 1) =
∑
r<p
r LI

cr(p) vℓ(r − 1) for all primes ℓ. (5)

Step 3: multiplicative identity. The identity (5) shows that for every prime
ℓ the ℓ-adic valuation of p− 1 coincides with that of∏

r<p
r LI

(r − 1)cr(p).

Since both p− 1 and the product are positive integers, equality of all prime
valuations forces equality of the integers themselves:

p− 1 =
∏
r<p
r LI

(r − 1)cr(p).

This is (2).

Step 4: taking logarithms. Because all factors are positive, we may apply the
natural logarithm to (2) and obtain

log(p− 1) =
∑
r<p
r LI

cr(p) log(r − 1),

which is (1).

Step 5: uniqueness and non-triviality. Uniqueness of the integers cr(p) fol-
lows from the uniqueness of the integral expansion (4) in the unimodular
basis {φN (r) : r ∈ LN}. Indeed, if we had another family dr(p) ∈ Z with∑

r<p
r LI

cr(p)φN (r) =
∑
r<p
r LI

dr(p)φN (r),

then subtracting gives a non-trivial integral relation among the basis vectors,
contradicting their linear independence over Z.

The representation is non-trivial: if cr(p) = 0 for all r < p, then φN (p) =
0, i.e. vℓ(p− 1) = 0 for all primes ℓ, which is impossible because p− 1 ≥ 1.
Equivalently, if all cr(p) were zero, φ(p) would not lie in the span of earlier
vectors, contradicting the assumption that p is LD.
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In summary, the unimodularity of the Φ-lattice and the choice of LI-
primes as a Z-basis yield an explicit and unique multiplicative and logarith-
mic representation of p − 1 for every LD prime p in terms of (r − 1) for LI
primes r < p.

10 The ψ�operator and in�nite descent

We now introduce an auxiliary map ψ on the primes and analyse its iteration.
The construction combines the successor map Φ from Section 3 and the
LI/LD-decomposition from Section 2. Throughout, we continue to write PLI

and PLD for the sets of LI and LD primes, respectively
Recall that Φ(p) is de�ned as the smallest prime q with q ≡ 1 (mod p);

it is always LI, and every LI prime occurs as Φ(r) for at least one smaller
prime r, while no LD prime does (Proposition 4.8 and Corollary 4.9).

10.1 De�nition of ψ and its iterates

De�nition 10.1 (The ψ-operator on primes). For a prime p we de�ne

ψ(p) :=

{
p, if p is linearly dependent,

min{ r ∈ P : Φ(r) = p }, if p is linearly independent.

By Corollary 4.9 every LI prime p has at least one predecessor under Φ,
and by the de�ning property of Φ we have Φ(r) > r for every prime r, so
r < p whenever Φ(r) = p. Hence the set {r ∈ P : Φ(r) = p} is nonempty
and �nite, and ψ(p) is well-de�ned.

De�nition 10.2 (Iterates and terminal value of ψ). For k ≥ 0 we de�ne the
iterates of ψ on primes by

ψ(0)(p) := p, ψ(k+1)(p) := ψ
(
ψ(k)(p)

)
.

Since (ψ(k)(p))k≥0 will turn out to stabilise for every prime p, we de�ne its
terminal value by

ψ∞(p) := lim
k→∞

ψ(k)(p),

i.e. the unique prime q such that ψ(k)(p) = q for all su�ciently large k.

10.2 Stabilisation and LD nature of the terminal value

We �rst show that the ψ-orbit of each prime stabilises after �nitely many
steps and its terminal value is always LD.

Lemma 10.3 (Stabilisation and LD �xed points). For every prime p the

sequence (ψ(k)(p))k≥0 stabilises after �nitely many steps, and its terminal

value ψ∞(p) is a linearly dependent prime.
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Proof. Fix a prime p and write

p0 := p, pk+1 := ψ(pk) (k ≥ 0),

so that pk = ψ(k)(p) for all k.
If pk is LD, then by de�nition ψ(pk) = pk, hence pk+1 = pk and the

sequence is constant from that point on.
If pk is LI, then by de�nition pk+1 is the smallest prime r with Φ(r) = pk.

In particular, r < pk, because Φ(r) > r for all primes r (the successor Φ(r)
is congruent to 1 (mod r) and therefore strictly larger than r). Thus

pk+1 = ψ(pk) < pk whenever pk is LI.

The sequence (pk) is therefore non-increasing in the usual order on primes,
and strictly decreasing as long as pk is LI. Since the primes are well-ordered,
no in�nite strictly decreasing chain exists, so there is some index K ≥ 0 for
which

pK+1 = pK .

It follows that pk = pK for all k ≥ K, and by de�nition ψ∞(p) = pK .
Finally, by construction the only �xed points of ψ are LD primes: if q is

LD, then ψ(q) = q; if q is LI, then ψ(q) < q and therefore ψ(q) ̸= q. Hence
pK = ψ∞(p) must be LD.

Thus every prime p determines canonically a linearly dependent prime
ψ∞(p), obtained by iterating ψ until the process stabilises.

10.3 Linear relations and an in�nite descent via α

We now combine Lemma 9.3 with Lemma 10.3 to obtain a simple �descent�
mechanism inside the LI/LD-structure.

De�nition 10.4 (The set Ap and the map α). For a prime p let q := ψ∞(p)
be its terminal value. By Lemma 10.3, q is LD, so Lemma 9.3 gives a unique
representation

log(q − 1) =
∑
r<q
r LI

cr(q) log(r − 1), cr(q) ∈ Z.

We de�ne
Ap :=

{
r < q : r LI, cr(q) ̸= 0

}
,

and set

α(p) :=

{
0, if Ap = ∅,

maxAp, otherwise.

By construction, whenever α(p) ̸= 0 it is a prime, it is LI, and it satis�es
α(p) < ψ∞(p).
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Lemma 10.5 (Descent step via α). Let p be a prime with α(p) ̸= 0. Then:

1. α(p) is LI and
ψ∞(p) > α(p).

2. The terminal value ψ∞(α(p)) is LD and satis�es

α(p) > ψ∞(α(p)).

3. Consequently, as long as the map α does not vanish, we obtain a strictly

decreasing chain of primes

ψ∞(p) > α(p) > ψ∞(α(p)) > α
(
ψ∞(α(p))

)
> · · · .

Proof. (1) By de�nition, if α(p) ̸= 0 then α(p) ∈ Ap, so α(p) is an LI prime
with α(p) < ψ∞(p). This gives the �rst inequality.

(2) Since α(p) is LI, Lemma 10.3 shows that ψ∞(α(p)) is a LD prime.
Moreover, in the ψ-chain starting from α(p) the �rst step is

ψ(α(p)) < α(p),

and subsequent steps are non-increasing. Thus

ψ∞(α(p)) ≤ ψ(α(p)) < α(p),

which is the desired second inequality.
(3) Iterating (1) and (2) yields the strict inequalities in the chain; each

arrow is either of the form ψ∞(·) > α(·) or α(·) > ψ∞(·), and both are strict
whenever the corresponding α is non-zero.

The lemma provides a simple mechanism for producing strictly decreasing
chains of primes purely from the LI/LD-structure and the representation of
LD primes in terms of LI primes.

10.4 Recovering a prime by iterating Φ

Finally we show that every prime can be recovered from its terminal value
under ψ by iterating the successor map Φ.

Proposition 10.6 (Recovering p from ψ∞(p)). Let p be a prime. Then there

exists an integer k ≥ 0 such that

Φ(k)
(
ψ∞(p)

)
= p,

where Φ(k) denotes the k-fold iterate of Φ.
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Proof. If p is LD, then by de�nition ψ(p) = p and hence ψ∞(p) = p. Taking
k = 0 gives

Φ(0)
(
ψ∞(p)

)
= ψ∞(p) = p.

Now suppose that p is LI. Consider again the ψ-sequence

p0 := p, pi+1 := ψ(pi) (i ≥ 0),

so that pi = ψ(i)(p). By Lemma 10.3 there is a minimal index m ≥ 1 with

pm = ψ∞(p) and pi LI for 0 ≤ i < m.

For each 0 ≤ i < m, the prime pi is LI, hence lies in the image of Φ by
Corollary 4.9. By the de�nition of ψ in the LI case,

pi+1 = ψ(pi) = min{ r ∈ P : Φ(r) = pi },

so in particular
Φ(pi+1) = pi (0 ≤ i < m).

Composing these identities, we obtain

Φ(pm) = pm−1, Φ(pm−1) = pm−2, . . . , Φ(p1) = p0.

Thus
Φ(m)(pm) = p0 = p.

Since pm = ψ∞(p), this shows that

Φ(m)
(
ψ∞(p)

)
= p

with m ≥ 1. Combining this with the LD case k = 0 proves the proposition.

In particular, ψ∞(p) may be viewed as a �base point� from which the
original prime p is reached by a �nite forward orbit of the successor map
Φ. This ties together the backward dynamics encoded by ψ and the forward
dynamics encoded by Φ in a closed �nite-loop structure for every prime.

11 Lower bounds in the factorial decomposition

11.1 The successor map Φ

We work with the following successor map on the primes.

De�nition 11.1 (Successor map on the primes). For each prime p we de�ne

Φ(p) := min{q ∈ P : q ≡ 1 (mod p)},

the least prime q with q ≡ 1 (mod p). Equivalently, there is a uniquely
determined integer k ≥ 1 such that

Φ(p) = kp+ 1, k ∈ N. (6)
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We extend Φ multiplicatively to all positive integers as follows.

De�nition 11.2 (Multiplicative extension of Φ). For n ∈ N with prime
factorisation

n =
∏
p

pvp(n),

we de�ne
Φ(n) :=

∏
p

Φ(p)vp(n).

In particular, Φ is (completely) multiplicative: Φ(mn) = Φ(m)Φ(n) for all
m,n ∈ N, and Φ(1) = 1.

By construction each factor Φ(p) is a prime, so Φ(n) ≥ 1 for all n ∈ N,
and Φ(n) > 1 as soon as n > 1.

11.2 A basic inequality for Φ and its consequences

We now record the key inequality for Φ on primes that will be used to control
Φ(n) and Φ(n!).

Lemma 11.3 (Prime inequality for Φ). For every prime p we have

Φ(p)
(
Φ(p)− 1

)
≤ pΦ

(
Φ(p)− 1

)
. (7)

Proof. By de�nition of Φ there exists a unique integer k ≥ 1 such that

Φ(p) = kp+ 1.

In particular,
Φ(p)− 1 = kp,

so Φ(p)− 1 is a multiple of p.
Now apply Φ to both sides and use multiplicativity:

Φ
(
Φ(p)− 1

)
= Φ(kp) = Φ(k) Φ(p).

By construction, Φ sends every prime r to a prime Φ(r) ≥ r + 1, and
extending multiplicatively gives Φ(n) ≥ n for all n ∈ N. In particular,

Φ(k) ≥ k,

hence
Φ
(
Φ(p)− 1

)
= Φ(k) Φ(p) ≥ kΦ(p).

Substitute k =
Φ(p)− 1

p
into this inequality:

Φ
(
Φ(p)− 1

)
≥ Φ(p)− 1

p
Φ(p).
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Multiplying both sides by p yields

pΦ
(
Φ(p)− 1

)
≥ Φ(p)

(
Φ(p)− 1

)
,

which is exactly (7).

Lemma 11.4. For every prime q we have

ψ(q) ≥ q(q − 1)

Φ(q − 1)
.

Proof. Recall the prime inequality for Φ:

Φ(p)
(
Φ(p)− 1

)
≤ pΦ

(
Φ(p)− 1

)
for every prime p.

Case 1: q is linearly independent.
Then q lies in the image of Φ, and by de�nition of ψ there exists at least

one prime r with Φ(r) = q, and among all such primes the smallest one is

ψ(q) = min{r ∈ P : Φ(r) = q}.

Apply the prime inequality with p = r:

Φ(r)
(
Φ(r)− 1

)
≤ rΦ

(
Φ(r)− 1

)
.

Since Φ(r) = q and Φ(r)− 1 = q − 1, this becomes

q(q − 1) ≤ rΦ(q − 1).

Hence

r ≥ q(q − 1)

Φ(q − 1)
.

This holds for every prime r with Φ(r) = q, in particular for the minimal
such prime r = ψ(q), and therefore

ψ(q) ≥ q(q − 1)

Φ(q − 1)
.

Case 2: q is linearly dependent.
By de�nition we then have ψ(q) = q. We need to check that

q ≥ q(q − 1)

Φ(q − 1)
.

This is equivalent to
Φ(q − 1) ≥ q − 1.
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But Φ is completely multiplicative and on primes satis�es Φ(p) ≥ p+ 1,
hence Φ(p) ≥ p for every prime p. For a general integer

n =
∏
p

pvp(n)

we have
Φ(n) =

∏
p

Φ(p)vp(n) ≥
∏
p

pvp(n) = n.

Applying this with n = q−1 gives Φ(q−1) ≥ q−1, so the desired inequality
holds.

In both cases we obtain

ψ(q) ≥ q(q − 1)

Φ(q − 1)
,

which completes the proof.

Murthy's theorem in base 2 and exponential bounds
for Φ

We now introduce Murthy's argument in base 2 and derive the bounds

Φ(p) ≤ 2p for primes p, Φ(n) ≤ 2η(n) for all n ≥ 1,

where
η(n) :=

∑
p|n

vp(n) p.

Murthy's theorem in base 2

For m ≥ 1 let
R(m) := 2m − 1

be the repunit in base 2 with m ones in binary. Let Pn denote the n-th
prime, and for each n set

u(n) := R(Pn) = 2Pn − 1.

Theorem 11.5 (Murthy, base 2 version). Let p be a prime and write p = Pn

for some n. If q is any prime divisor of

u(n) = 2Pn − 1,

then

q ≡ 1 (mod p).
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Proof. Let p = Pn be prime and let q be a prime divisor of 2p − 1, so

2p ≡ 1 (mod q).

Let ordq(2) denote the multiplicative order of 2 modulo q. Then

ordq(2) | p and ordq(2) | q − 1

(the �rst because 2p ≡ 1 (mod q), the second by Fermat's little theorem).
Since p is prime, the only positive divisors of p are 1 and p itself. Thus

ordq(2) ∈ {1, p}.

We cannot have ordq(2) = 1, because this would imply 2 ≡ 1 (mod q) and
hence q | 1, impossible. Therefore

ordq(2) = p.

But ordq(2) divides q − 1, so p | q − 1, i.e.

q ≡ 1 (mod p).

This is exactly the desired congruence.

As a direct corollary we obtain a strong upper bound for the successor
map on primes.

Corollary 11.6. For every prime p we have

Φ(p) ≤ 2p.

Proof. Fix a prime p and write p = Pn for some n. By Theorem 11.5 there
exists a prime q dividing 2p − 1 with

q ≡ 1 (mod p).

Thus q lies in the arithmetic progression 1 (mod p), and

q | 2p − 1 < 2p,

so q ≤ 2p − 1 < 2p.
By de�nition, Φ(p) is the smallest prime congruent to 1 modulo p, hence

Φ(p) ≤ q ≤ 2p − 1 < 2p.

In particular Φ(p) ≤ 2p, as claimed.
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The bound Φ(n) ≤ 2η(n)

Recall the multiplicative extension of Φ: for

n =
∏
p

pvp(n)

we set
Φ(n) :=

∏
p

Φ(p)vp(n).

Proposition 11.7. For every integer n ≥ 1 we have

Φ(n) ≤ 2η(n), η(n) :=
∑
p|n

vp(n) p.

Proof. First treat prime powers. Let p be prime and e ≥ 1. Then, by
multiplicativity,

Φ(pe) = Φ(p)e.

By Corollary 11.6,
Φ(p) ≤ 2p,

so
Φ(pe) = Φ(p)e ≤ (2p)e = 2ep.

But η(pe) = ep, hence
Φ(pe) ≤ 2η(p

e).

Now let n be arbitrary with prime factorisation n =
∏

p p
ep . Then

Φ(n) =
∏
p

Φ(p)ep ≤
∏
p

(2p)ep = 2
∑

p epp = 2η(n).

This proves the desired inequality for all n ≥ 1.

Remark 11.8. In many applications we actually have a strict inequality <
in (7), but the non-strict form su�ces for our purposes here and leads to
slightly cleaner algebraic manipulations.

We now propagate (7) from primes to general integers using the multi-
plicativity of Φ.

Proposition 11.9 (Extension to prime powers). Let p be a prime and e ≥ 1.
Then

Φ(pe)
(
Φ(p)− 1

)e ≤ peΦ
(
Φ(p)− 1

)e
. (8)
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Proof. Raising (7) to the e-th power yields[
Φ(p)

(
Φ(p)− 1

)]e ≤ [
pΦ
(
Φ(p)− 1

)]e
,

that is
Φ(p)e

(
Φ(p)− 1

)e ≤ peΦ
(
Φ(p)− 1

)e
.

Using Φ(pe) = Φ(p)e by multiplicativity gives (8).

Proposition 11.10 (Extension to general integers). Let n ∈ N with prime

factorisation n =
∏

p p
ep . Then

Φ(n) ·
∏
p|n

(
Φ(p)− 1

)ep ≤ n ·
∏
p|n

Φ
(
Φ(p)− 1

)ep . (9)

Equivalently,

Φ(n)

n
≤
∏
p|n

(
Φ
(
Φ(p)− 1

)
Φ(p)− 1

)ep

, (10)

or, in inverted form,

n

Φ(n)
≥
∏
p|n

(
Φ(p)− 1

Φ
(
Φ(p)− 1

))ep

. (11)

Proof. Applying Proposition 11.9 to each prime power pep dividing n we
obtain

Φ(pep)
(
Φ(p)− 1

)ep ≤ pep Φ
(
Φ(p)− 1

)ep
for every prime p with ep > 0. Multiplying these inequalities over all p | n
gives ∏

p|n

Φ(pep)
∏
p|n

(
Φ(p)− 1

)ep ≤ ∏
p|n

pep
∏
p|n

Φ
(
Φ(p)− 1

)ep .
By multiplicativity,

∏
p|nΦ(p

ep) = Φ(n) and
∏

p|n p
ep = n, so we obtain (9).

The forms (10) and (11) are obtained by simple rearrangement.

11.3 Application to the factorial n!

We now apply Proposition 11.10 to the special case n! =
∏

p≤n p
vp(n!). Writ-

ing ep = vp(n!) in (9), we obtain

Φ(n!) ·
∏
p≤n

(
Φ(p)− 1

)vp(n!) ≤ n! ·
∏
p≤n

Φ
(
Φ(p)− 1

)vp(n!). (12)

Equivalently,

Φ(n!)

n!
≤
∏
p≤n

(
Φ
(
Φ(p)− 1

)
Φ(p)− 1

)vp(n!)

, (13)
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and hence

n!

Φ(n!)
≥
∏
p≤n

(
Φ(p)− 1

Φ
(
Φ(p)− 1

))vp(n!)

. (14)

The inequality (14) expresses the �defect� n!/Φ(n!) as being bounded
below by a product over primes p ≤ n, with local factors determined by the
ratio

Φ(p)− 1

Φ
(
Φ(p)− 1

)
and the exponents vp(n!) in the factorial. Combined with the lower bounds
for En(Φ(p)) from Proposition ??, this provides a structural framework for
estimating n!/Φ(n!) in terms of the successor dynamics of the primes.

12 H-numbers, growth bounds and injectivity on
primes

In this section we introduce a class of integers de�ned by a comparison
between Φ(n) and Φ(n!), and show that for such numbers Φ(n) is always
strictly smaller than n2. We then use this to establish a restricted injectivity
statement for Φ on the set of H-primes.

12.1 De�nition of H-numbers

De�nition 12.1 (H-numbers). For n ≥ 2 we call n an H-number if

Φ(n) ≤ log
(
Φ(n!)

)
,

where Φ is the successor map from Section 3, extended multiplicatively to
all integers.

Thus being an H-number means that the value of Φ at n is at most the
logarithm of the (usually much larger) value Φ(n!).

12.2 A quadratic upper bound for H-numbers

We �rst show that any H-number n satis�es a simple quadratic upper bound
on Φ(n).

Lemma 12.2. For every integer n ≥ 2 we have

log
(
Φ(n!)

)
< n2.

Consequently, if n is an H-number, then

Φ(n) < n2.
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Proof. We begin with the Dirichlet factorization of n!:

n! =
∏
p≤n

pvp(n!), Φ(n!) =
∏
p≤n

Φ(p)vp(n!).

Taking logarithms gives

log Φ(n!) =
∑
p≤n

vp(n!) log Φ(p).

We use two standard estimates:

1. For each prime p ≤ n,

vp(n!) =
∑
k≥1

⌊
n

pk

⌋
≤
∑
k≥1

n

pk
=

n

p− 1
.

2. By Murthy's theorem in base 2 (see Section ??), we know that for
every prime p,

Φ(p) ≤ 2p,

hence
log Φ(p) ≤ p log 2.

Combining these inequalities, we obtain

log Φ(n!) ≤
∑
p≤n

n

p− 1
log Φ(p) ≤

∑
p≤n

n

p− 1
p log 2

= n log 2
∑
p≤n

p

p− 1
.

We now write
p

p− 1
= 1 +

1

p− 1
,

and sum over p ≤ n:∑
p≤n

p

p− 1
=
∑
p≤n

1 +
∑
p≤n

1

p− 1
= π(n) +

∑
p≤n

1

p− 1
,

where π(n) denotes the prime-counting function.
Elementary estimates on primes (see e.g. standard analytic number the-

ory texts) give that for all su�ciently large n,

π(n) ≤ 2n

log n
,

∑
p≤n

1

p− 1
≤ C + log log n
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for some absolute constant C > 0. Hence

log Φ(n!) ≤ n log 2

(
2n

log n
+ C + log log n

)
=

2 log 2

log n
n2+n log 2 (C+log logn).

For large n, the factor
2 log 2

log n
becomes arbitrarily small, and the linear

term n log 2 (C + log log n) is much smaller than n2. In particular, there
exists an integer n0 (for example n0 = 20 su�ces) such that for all n ≥ n0
we have

log Φ(n!) < n2.

For the �nitely many integers 2 ≤ n < n0 the inequality log Φ(n!) < n2

can be veri�ed directly by computation. Thus the bound holds for all n ≥ 2.
Now suppose n is an H-number. By de�nition,

Φ(n) ≤ log Φ(n!).

Combining this with the established bound yields

Φ(n) ≤ log Φ(n!) < n2,

as claimed.

12.3 Injectivity of Φ on H-primes

We now consider the behaviour of Φ on H-numbers that are prime.

De�nition 12.3 (H-primes). A prime p is called an H-prime if it is an
H-number, i.e.

Φ(p) ≤ log Φ(p!).

We show that Φ is injective on the set of H-primes.

Lemma 12.4 (No collisions among H-primes for large p). There exists a

constant p0 such that the following holds: if p < q are primes with p ≥ p0,
both H-primes, then

Φ(p) ̸= Φ(q).

Proof. Suppose, for contradiction, that there exist primes p < q with

Φ(p) = Φ(q) =:M.

Since Φ(r) is the least prime congruent to 1 mod r, we have

M ≡ 1 (mod p), M ≡ 1 (mod q).

Therefore pq divides M − 1, and hence

M ≥ pq + 1 ≥ p2 + p+ 1 > p2.
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On the other hand, p is an H-prime by assumption, so

M = Φ(p) ≤ log Φ(p!).

Using the estimate from the proof of Lemma 12.2, we obtain (for n = p)

log Φ(p!) ≤ p log 2
(

2p

log p
+ C + log log p

)
.

For large p, the term
2 log 2

log p
p2 dominates, so that there exists a constant

K > 0 and a p1 such that

log Φ(p!) ≤ K p2

log p

for all p ≥ p1. Together with M ≥ pq, this yields

pq < M ≤ K p2

log p
⇒ q < K

p

log p
.

Now choose p0 ≥ p1 large enough such that

K
p

log p
< p

for all p ≥ p0. This is possible since log p→∞ and thus p
log p/p = 1/ log p→

0.
For every p ≥ p0, we then obtain from the inequality above

q < K
p

log p
< p,

which contradicts q > p. Thus, for p ≥ p0, there can be no H-primes p < q
with Φ(p) = Φ(q).

For the �nitely many H-primes p < p0, the non-existence of such collisions
can be veri�ed directly (e.g. computationally). Combined with Lemma 12.4,
this yields:

Proposition 12.5 (Injectivity of Φ on H-primes). If p < q are primes and

both are H-primes, then

Φ(p) ̸= Φ(q).

In other words, the map Φ is injective on the set of H-primes.

13 Numerical evidence for H-primes

In this section we present some computational evidence for the existence and
distribution of H-primes, i.e. primes p with

Φ(p) ≤ log
(
Φ(p!)

)
,

and we compare this with the theoretical results from the previous section.
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13.1 Experimental setup

We implemented the successor map Φ and its multiplicative extension in
SageMath as follows:

� For a prime p,

Φ(p) := min{ q ∈ P : q ≡ 1 (mod p) },

found by scanning the arithmetic progression q = kp + 1 and testing
each q for primality.

� For n ≥ 1 with prime factorisation n =
∏
pvp(n),

Φ(n) :=
∏
p

Φ(p)vp(n).

� To compute log Φ(n!) we use the factorisation of n!:

n! =
∏
p≤n

pvp(n!), Φ(n!) =
∏
p≤n

Φ(p)vp(n!),

and thus
log Φ(n!) =

∑
p≤n

vp(n!) log Φ(p),

with vp(n!) computed via Legendre's formula

vp(n!) =
∑
k≥1

⌊ n
pk

⌋
.

A prime p is then declared an H-prime if the inequality

Φ(p) ≤ log Φ(p!)

holds in high-precision real arithmetic.

13.2 H-primes up to 500

Running this procedure on the interval [2, 500] produces the following data.

� The primes p with 2 ≤ p ≤ 500 that satisfy Φ(p) ≤ log Φ(p!) are:

11, 23, 29, 37, 41, 43, 53, 67, 73, 79, 83, 89,

97, 113, 127, 131, 137, 139, 151, 163, 173, 179,

181, 191, 193, 199, 233, 239, 241, 251, 257, 263,

271, 277, 281, 283, 293, 307, 311, 313, 331, 347,

359, 367, 373, 397, 409, 419, 431, 433, 443, 461,

467, 487, 491, 499.
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� In total there are 56 H-primes in [2, 500]. Since π(500) = 95, this cor-
responds to a proportion of approximately 56/95 ≈ 0.59 of all primes
in this interval.

� For each of these primes p we have numerically:

Φ(p) ≤ log Φ(p!) and Φ(p) < p2.

For example:
p Φ(p) log Φ(p!)

11 23 ≈ 27.87
79 317 ≈ 417.17
191 383 ≈ 1231.00
499 1997 ≈ 3852.40

In all these cases Φ(p) < p2 holds, in agreement with Lemma 12.2.

� We also computed Φ(p) for all H-primes in this range and checked for
collisions. There is no pair of distinct H-primes p < q ≤ 500 with
Φ(p) = Φ(q):

Φ(p) = Φ(q), p < q, p, q ≤ 500, p, q H-prime never occurs.

This is consistent with Proposition 12.5, which shows that Φ is injective
on the set of H-primes.

13.3 Discussion

The numerical data up to 500 shows that:

� H-primes are not rare: in the tested range they make up a positive
proportion of the primes, and they appear to be reasonably regularly
distributed.

� For every H-prime p we observe Φ(p) < p2, in perfect agreement with
the general bound from Lemma 12.2.

� There are no observed collisions Φ(p) = Φ(q) among H-primes in
[2, 500], again matching the theoretical injectivity result on H-primes.

These computations provide empirical support for the relevance of H-
primes in understanding the �ner arithmetic of the successor map Φ. In par-
ticular, the existence of in�nitely many H-primes would immediately imply
that Φ is injective on an in�nite subset of the primes, thanks to Proposi-
tion 12.5. At present, however, the question of whether there are in�nitely
many H-primes remains open.
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14 Heuristic why there should be in�nitely many
H-primes

In this section we give an informal heuristic why one should expect in�nitely
many H-primes. The argument is deliberately speculative: it combines the
structural picture provided by the maps ψ,ψ∞ and α with a growth picture
for Φ and a putative density behaviour of LI-primes. None of the global
density statements below are proved in this paper.

Recall that H-primes are those primes p for which Φ(p) grows �slowly� in
the sense that

Φ(p) ≤ log Φ(p!),

which, in particular, implies the quadratic bound Φ(p) < p2 from Lemma 12.2.
By contrast, for general primes we only have very crude upper bounds such
as Murthy's Φ(p) ≤ 2p. The heuristic below starts from the opposite ex-
treme: it imagines a world in which, beyond some point, Φ always grows
fast.

Step 1: A fast-growth world without H-primes

Assume, for contradiction, that there are only �nitely many H-primes. Then
there exists N0 such that every prime p > N0 is not an H-prime. For such
primes the de�ning inequality for H-primes fails, so heuristically Φ(p) should
very often be signi�cantly larger than p.

For the sake of discussion we postulate a strong model assumption:

Hypothesis A (fast growth away from H-primes). There existN0 and
ε > 0 such that

p > N0, p not H-prime =⇒ Φ(p) ≥ p1+ε

(in particular, one may keep in mind the exaggerated model Φ(p) ≈ p2).

Under Hypothesis A, if y = Φ(x) with x a large non-H-prime, then
y ≥ x1+ε, so

x ≤ y1/(1+ε) ≪ √
y.

Thus, moving backwards along a Φ-orbit (or equivalently, applying the pre-
decessor map ψ to a large LI-prime) shrinks numbers very quickly.

Step 2: Collapse of the predecessor trees

The maps ψ and ψ∞ organise the prime numbers into rooted trees. For each
LD-prime q we de�ne its tree

T (q) = { p prime : ψ∞(p) = q },
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so that every p ∈ T (q) is obtained from the root q by �nitely many forward
applications of Φ, and conversely one reaches the root by iterating ψ until
stabilization: ψ(k)(p)→ ψ∞(p) = q.

In the fast-growth world of Hypothesis A, each backward step y 7→ x
with Φ(x) = y typically satis�es x ≪ y1/(1+ε). This means that, starting
from a very large prime p and repeatedly applying ψ, one falls below N0 in
at most O(log log p) steps. In other words, all large nodes of the tree T (q)
sit above a very shallow trunk built from primes ≤ N0, and the growth along
each branch is roughly of the form

x, x1+ε, x(1+ε)2 , x(1+ε)3 , . . .

(up to branching and lower-order e�ects). Such trees produce a very sparse
set of values overall.

Step 3: Surjectivity, LI-primes and a density tension

On the other side the structural part of the theory gives us two facts:

� The map Φ is surjective from the set of all primes onto the set PLI of
LI-primes. Thus every LI-prime occurs somewhere in one of the trees
T (q) as a value of Φ.

� For eachN the vectors ϕN (p) with p ≤ N and p LI form a Z-basis of the
unimodular lattice ΛN . In particular, LD-primes q ≤ N admit unique
integer relations of the form log(q − 1) =

∑
r<q, r LI cr(q) log(r − 1),

and the map α selects the largest LI-prime appearing in such a relation.

It is natural (though unproved) to expect that the LI-primes are not too
sparse among all primes; for instance one may posit:

Hypothesis B (mild density of LI-primes). The set PLI has positive
upper density among the primes, or at least grows comparably to the
full set of primes in the sense that the n-th LI-prime qn satis�es a
bound of the form qn ≪ nC for some �xed C.

Combining Hypothesis A with the tree picture from Step 2, one is led to
the following tension: starting from a �nite set of primes ≤ N0 at the bottom
and letting Φ grow at least like p1+ε, the union of all values generated in
the trees T (q) should have asymptotic density zero among the primes. In
contrast, Hypothesis B suggests that PLI = im(Φ) retains positive density
or at least grows comparably fast to the full prime sequence. In a random
map model, these two behaviours are incompatible.
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Step 4: The rôle of α

The map α re�nes this heuristic by encoding �short dependencies� between
an LD-root q = ψ∞(p) and the LI-primes below it. The relation

log(q − 1) =
∑

r<q, r LI

cr(q) log(r − 1)

expresses q− 1 multiplicatively in terms of smaller r− 1, and α(q) picks the
largest such r. Iterating α produces a descending chain of LI-primes. If all
these LI-primes were forced, by Hypothesis A, to have very large Φ-values
(and thus to be very far apart numerically), one expects a clash with the
unimodular lattice structure: expressing the logarithm of a large composite
q − 1 using only very distant generators log(r − 1) with integral coe�cients
becomes increasingly rigid. Informally, the α-chains insist that each LD-root
q must be surrounded by �nearby� LI-primes, while the fast-growth model of
Φ tends to push LI-preimages far away.

Step 5: Heuristic conclusion

Summarising, the heuristic can be phrased as follows: if there were only
�nitely many H-primes, then beyond some height Φ would grow so rapidly
(Hypothesis A) that its image along Φ-orbits in the trees T (q) would form
a set of primes of very small asymptotic density. This picture is hard to rec-
oncile with the expectation that LI-primes occur with reasonable frequency
(Hypothesis B) and with the combination of surjectivity of Φ onto PLI and
the unimodular lattice structure governed by ψ∞ and α. In order to avoid
this �collapse of the predecessor trees�, one is led to believe that there must
be in�nitely many primes at which Φ grows slowly, i.e. in�nitely many H-
primes.

Turning this heuristic into a theorem would require quantitative control
on the distribution of LI-primes and on the typical size of Φ(p) outside the
H-primes; the framework developed here suggests a concrete programme for
such investigations.

15 The H-dominant regime of the dynamical zeta
function

In this �nal synthesis, we connect the arithmetic functions LLD, LLI , the
dynamical zeta function ζ̂(s), and the class of H-numbers. Throughout we
write

Ĝ(s) := Gb(s), ζ̂(s) := ζb(s) = Ĝ(s)H(s),

and we use the notation LLD, LLI for the functions denoted LLD,LLI in
Section 8. The growth bounds established for H-numbers suggest that they
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constitute the analytically dominant part of the dynamical series, while the
injectivity results suggest that they form an �arithmetically regular� core of
the successor map.

15.1 Decomposition of Ĝ(s) by H-numbers

Recall the dynamical zeta function from De�nition 5.4:

Ĝ(s) =
∑
n≥1

1

Φ(n)s
.

Let H denote the set of H-numbers (De�nition 12.1). We decompose the
series into an H-part and a complementary part :

Ĝ(s) = ĜH(s)+Ĝsing(s), ĜH(s) :=
∑
n∈H

1

Φ(n)s
, Ĝsing(s) :=

∑
n/∈H

1

Φ(n)s
.

By Lemma 12.2, for every n ∈ H we have the quadratic bound Φ(n) < n2.
Consequently, the terms in ĜH(s) satisfy

1

Φ(n)s
>

1

n2s
,

so their decay is at best quadratic in n. In contrast, under the heuristic of
�fast growth away from H-primes� (Hypothesis A in Section 14), terms with
n /∈ H would satisfy

Φ(n)≫ n1+ε

for some �xed ε > 0 (or even exhibit exponential growth), making Ĝsing(s)
converge very rapidly for ℜs > 1.

Remark 15.1. Heuristically, this decomposition suggests that any slow
divergence or possible singular behaviour of Ĝ(s) (and hence of ζ̂(s) =
Ĝ(s)H(s)) near its abscissa of convergence is driven primarily by the H-
numbers. In particular, if Ĝ(s) were to develop a pole at some σ0 > 1, then
its main contribution would naturally be attributed to ĜH(s) rather than to
the complementary part Ĝsing(s).

15.2 Arithmetical regularity on H-numbers

We recall the injectivity criterion from Theorem 8.9:

Φ is injective ⇐⇒ LLD(Φ(n)) = τ(n) for all n ≥ 1.

Moreover, for every n we always have

LLD(Φ(n)) = τ(Φ(n)) ≤ τ(n),
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with strict inequality for some n if and only if Φ is not injective. On the
other hand, Proposition 12.5 shows that Φ is injective on the set of H-primes.

It is therefore natural to view H-numbers as candidates for an �arith-
metically regular� region of the dynamics where the LI/LD-decomposition
behaves in a particularly tame way. Extrapolating from the prime case, one
might conjecture that, for n ∈ H, the image Φ(n) preserves much of the
divisor structure of n in the sense that the defect

τ(n)− LLD(Φ(n)) = τ(n)− τ(Φ(n))

is typically small or even vanishes.
Using the identity

ζ̂(s) = Ĝ(s)H(s) =
∑
n≥1

c(n)

ns
, c(n) = a(ℓLI(n)),

from Section 7.3, we make the following observations.

1. On H-numbers. If Φ is injective on H, then for any u ∈ Φ(H) the
multiplicity is a(u) = 1. Consequently, on the set Φ(H) the coe�cients
of ζ̂(s) coincide with those of the Riemann zeta function (all equal to
1). Heuristically, if H has positive density in an appropriate sense, this
suggests that H-numbers contribute the �least degenerate� part of the
dynamical factor.

2. The LLD-witness. The value LLD(Φ(n)) = τ(Φ(n)) serves as an
arithmetic witness for how far Φ(n) is from preserving the divisor struc-
ture of n. For H-primes p we rigorously have LLD(Φ(p)) = 2 = τ(p), so
the defect vanishes. It is natural to conjecture that this phenomenon
extends, at least frequently, to composite H-numbers.

From this point of view, H-numbers form the region where the �exotic�
arithmetic functions LLD and LLI synchronize best with the classical divisor
function τ , and where the dynamical factorization underlying ζ̂(s) exhibits
minimal defect. This supports the heuristic picture of an H-dominant regime
both analytically and arithmetically.

16 Conclusion and outlook

The central theme of this paper has been to combine a structural LI/LD�decomposition
of the primes with the successor map

Φ(p) = min{q prime : q ≡ 1 (mod p)},

and to use this interaction to obtain both dynamical Dirichlet series and
arithmetic information about the values of Φ. We showed that the image of

46



Φ consists precisely of the linearly independent primes and that every LI-
prime admits a unique predecessor under Φ, whereas LD-primes never occur
as successors. Extending Φ multiplicatively to all positive integers leads to
a natural notion of LI- and LD-numbers and to a factorisation ζ = G · H
of the Riemann zeta function into LI- and LD-zeta factors, together with a
dynamical Dirichlet series Gb built from the successor values Φ(n).

On the level of integers, the maps ℓLI , ℓLD isolate the LI- and LD-
components of n, and the divisor sums LLD,LLI encode global information
about the LI/LD�structure. This allowed us to reinterpret the coe�cients
of the dynamically weighted zeta function ζb(s) = Gb(s)H(s) arithmetically
as c(n) = a(ℓLI(n)), where a(u) counts the preimages of u under Φ, and to
formulate a clean injectivity criterion:

Φ is injective ⇐⇒ LLD(Φ(n)) = τ(n) for all n ≥ 1.

Thus the injectivity of the successor map is completely encoded by the be-
haviour of a divisor sum built from the LD-component.

The unimodular Φ-lattice provides a second structural pillar: choosing
the exponent vectors of LI-primes as a Z-basis, every LD-prime admits an
explicit and unique representation of p− 1 as a product of integer powers of
(r − 1) for LI-primes r < p. This yields logarithmic relations of the form

log(p− 1) =
∑

r<p, r LI

cr(p) log(r − 1),

and, together with the stabilising operator ψ and its terminal value ψ∞(p),
leads to an in�nite descent mechanism via the map α. These constructions
tie the successor dynamics to the LI/LD�basis in a rigid way and suggest
that the local structure of Φ-orbits is strongly constrained by the lattice
geometry.

In the second part of the paper we used the multiplicative extension of
Φ to derive lower bounds in the factorial decomposition, culminating in a
class of H-numbers de�ned by the growth condition Φ(n) ≤ log Φ(n!). For
H-numbers we showed a quadratic upper bound Φ(n) < n2, which contrasts
sharply with the general exponential bounds known for Φ(p), and we proved
that Φ is injective on H-primes. Numerical computations up to 500 indicate
that H-primes occur with a positive proportion among the primes and exhibit
no collisions under Φ, supporting the idea that H-primes form a large and
arithmetically regular subset of the primes.

Finally, we proposed a heuristic that combines the surjectivity of Φ onto
LI-primes, the unimodular lattice structure, and a fast-growth hypothesis
away from H-primes to argue that there should be in�nitely many H-primes.
In this picture, H-numbers support an �H-dominant� regime for the dynam-
ical zeta function ζ̂(s) = ζb(s): they are expected to govern any slow diver-
gence or singularity of Ĝ(s) = Gb(s) near its abscissa of convergence, and,
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arithmetically, they are the region where LLD and LLI synchronize best
with the classical divisor function τ .

Several natural questions remain open. Chief among them are the global
injectivity of Φ, the distribution of LI- and LD-primes, the analytic continua-
tion and possible functional equations of G, H and Gb, and the existence and
density of H-primes. The framework developed here reduces many of these
problems to quantitative questions about the typical size of Φ(n) and the
multiplicities a(u), and suggests a concrete programme for further investi-
gation at the interface of prime distribution, Dirichlet series, and arithmetic
dynamics.
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