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In the article ’Burton and Toint - 1992 - On an instance of the inverse shortest paths
problem.’, the following problem is solved: Edge costs in a directe graph are already
given, and shortest paths are also provided. The objective is to find additional edge
costs that explain the shortest paths and additionally minimize the l2 norm with respect
to the given costs. The problem is formulated as a quadratic optimization problem and
solved using a polynomial-time method in n steps, where n is the number of nodes.
The idea in the following proposition is to solve a related problem by considering a

directed acyclic graphs with a topological sorting and to perform this sorting on a line
that can represent a shortest path in the plane. Every path with nodes on this line is
then a shortest path if we consider the distances on the line between the nodes as the
new weighting. Since there can be different lines that satisfy this property, we later aim
to select a line that attempts to minimize the sum of the distances from the original
positions of the nodes in the plane to their respective positions on the line as much as
possible.
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Proposition 1.1. Let there be a directed acyclic graph G = (V,E), where ϕ : V → R2

represents the position function, and c(u, v) := |ϕ(u)− ϕ(v)| serves as the cost function
on the edges. Additionally, we have a set of paths P = {p1, · · · , pr}, and let S = ⟨P ⟩G
be the graph S = (VS , ES) generated by P within G. Furthermore, consider an arbitrary
line Y = {y ∈ R2|y = x0+ tr, ⟨x0, r⟩ = 0, ⟨r, r⟩ = 1, t ∈ R} defined by a point x0 ∈ R2 on
the line and a normalized direction vector r ∈ R2 of the line. We assume the existence
of an injective mapping ψ : V → Y .
Let V = {v1, · · · , vn} and v1 ⊴ v2 ⊴ · · · ⊴ vn represent a topological ordering of the

nodes in G. For u, v ∈ V , define u ≤ v : ⇐⇒ ⟨ψ(u), r⟩ ≤ ⟨ψ(v), r⟩. We assume that
vi ≤ vj ⇐⇒ vi ⊴ vj, meaning that, according to this assumption, v1 ≤ v2 ≤ · · · ≤ vn
holds due to the topological ordering.
Let m := min(u,v)∈E,u/∈VS or v/∈VS

|ϕ(u)−ϕ(v)| and R := |ψ(v1)−ψ(vn)|. Define ĉ(u, v)
as:

ĉ(u, v) =

{
|ϕ(u)− ϕ(v)|, if u /∈ VS or v /∈ VS ,

|ψ(u)− ψ(v)| · m
R , if u ∈ VS and v ∈ VS .

Each path p = (p1, · · · , pk) ∈ P is then a shortest path under ĉ.

Proof. First, we observe that for u, v ∈ V , it holds:

|ψ(u)− ψ(v)| = | ⟨ψ(u), r⟩ − ⟨ψ(v), r⟩ |

This is because: Since ψ(u) and ψ(v) lie on the line Y , there exist tu and tv ∈ R such
that:

ψ(u) = x0 + tur, ψ(v) = x0 + tvr
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From this, considering |r| = 1, we have:

|ψ(u)− ψ(v)| = |tu − tv|

On the other hand, we have:

| ⟨ψ(u), r⟩ − ⟨ψ(v), r⟩ | = | ⟨x0 + tur, r⟩ − ⟨x0 + tvr, r⟩ |

And since ⟨x0, r⟩ = 0 and ⟨r, r⟩ = 1, it follows:

= |tu − tv| = |ψ(u)− ψ(v)|

We also notice that for x, y, z ∈ V with x ≤ y ≤ z, it holds:

|ψ(x)− ψ(z)| = |ψ(x)− ψ(y)|+ |ψ(y)− ψ(z)|

This holds because there exist tx, ty, tz ∈ R such that ψ(x) = x0+txr, ψ(y) = x0+tyr,
and ψ(z) = x0 + tzr. Due to x ≤ y ≤ z, we have tx = ⟨ψ(x), r⟩ ≤ ty = ⟨ψ(y), r⟩ ≤ tz =
⟨ψ(z), r⟩, and it follows:

|ψ(x)−ψ(z)| = |tz−tx| = tz−tx = tz−ty+ty−tx = |tz−ty|+|ty−tx| = |ψ(z)−ψ(y)|+|ψ(y)−ψ(x)|

We also observe that for all (u, v) ∈ E, it holds:

R = |ψ(v1)− ψ(vn)| ≥ |ψ(u)− ψ(v)|

This is because according to the assumption:
v1 ⊴ u ⊴ v ⊴ vn
Which means:
v1 ≤ u ≤ v ≤ vn
Thus, based on the previous observation, it also holds that:
R = |ψ(v1)−ψ(vn)| = |ψ(v1)−ψ(u)|+ |ψ(u)−ψ(v)|+ |ψ(v)−ψ(vn)| ≥ |ψ(u)−ψ(v)|
According to the definition of ĉ, for all (u, v) ∈ E, u ∈ VS and v ∈ VS , it holds:

ĉ(u, v) = |ψ(u)− ψ(v)| · m
R

≤ 1 ·m = m

According to the definition of m and ĉ, for all (u, v) ∈ E, u /∈ VS or v /∈ VS , it holds:

ĉ(u, v) = |ϕ(u)− ϕ(v)| ≥ m

Now, let p = (p1, · · · , pk) ∈ P be a path from P . Let q = (q1, · · · , ql) be a path in G
with q1 = p1, ql = pk. We need to show that:

ĉ(p) :=

k−1∑
i=1

ĉ(pi, pi+1) ≤to be shown
l−1∑
i=1

ĉ(qi, qi+1) =: ĉ(q)
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Since p ∈ P is a path in G, and S = ⟨P ⟩G as a subgraph of a directed acyclic graph
is also directed and acyclic, it follows that:
p1 ⊴ p2 ⊴ · · · ⊴ pk
where ⊴ is the topological ordering as defined above. According to the assumption on

ψ, it holds:
p1 ≤ p2 ≤ · · · ≤ pk
Using the ∆-inequality, we have:

|ψ(p1)− ψ(pk)| ·
m

R
≤∆-Ineq.

k−1∑
i=1

|ψ(pi)− ψ(pi+1)| ·
m

R
=

k−1∑
i=1

ĉ(pi, pi+1) = ĉ(p)

Furthermore, using the ∆-inequality again, because the ψ(pj) are sorted by ≤ on the
line Y (as per the assumption vi ≤ vj ⇐⇒ vi ⊴ vj for ψ), we have:

k−1∑
i=1

|ψ(pi)− ψ(pi+1)| ·
m

R
= |ψ(p1)− ψ(pk)| ·

m

R

It follows:

ĉ(p) = |ψ(p1)− ψ(pk)| ·
m

R

If now q is a path whose nodes are all in S, the same argument shows that:

ĉ(q) = |ψ(q1)− ψ(ql)| ·
m

R
= |ψ(p1)− ψ(pk)| ·

m

R
= ĉ(p)

Otherwise, there exists a j such that qj is not in VS . We denote by I the set of indices i
such that qi ∈ VS and qi+1 ∈ VS , and by Ic the set of indices i with qi /∈ VS or qi+1 /∈ VS ,
i.e.:
I := {i|1 ≤ i ≤ l − 1, qi ∈ VS and qi+1 ∈ VS}
and
Ic := {i|1 ≤ i ≤ l − 1, qi /∈ VS or qi+1 /∈ VS}
We then have:

ĉ(q) =
∑

1≤i≤l−1

ĉ(qi, qi+1) =
∑
i∈I

ĉ(qi, qi+1) +
∑
i∈Ic

ĉ(qi, qi+1) = . . .

However, for i ∈ I, it holds:

ĉ(qi, qi+1) = |ψ(qi)− ψ(qi+1)| ·
m

R

And for i ∈ Ic, it holds:

ĉ(qi, qi+1) ≥ m = 1 ·m ≥ |ψ(qi)− ψ(qi+1)| ·
m

R

It follows:
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. . . =
∑
i∈I

ĉ(qi, qi+1) +
∑
i∈Ic

ĉ(qi, qi+1) ≥
m

R

∑
1≤i≤l−1

|ψ(qi)− ψ(qi+1)|

=
m

R
|ψ(q1)− ψ(ql)| =

m

R
|ψ(p1)− ψ(pk)| = ĉ(p)

Therefore, in this case, we have:

ĉ(q) ≥ ĉ(p)

Overall, it follows that p is a shortest path under ĉ.

Given: - c(u, v) := Currently used costs - ĉ(u, v) := Shortest path costs (Here, ĉ(u, v) :=
costs that exactly represent the shortest paths on the given paths)
Approach (from Johnson’s or Surballee’s Algorithm): Desired: Potential function h :

V → R that minimizes (∗) :

(∗) : min
h

∑
(u,v)∈E

(c(u, v)− (ĉ(u, v) + hv − hu))
2 and γ(u, v) := ĉ(u, v) + hv − hu ≥! 0

Heuristic solution approach: Let s ∈ V . Define: ĥs(v) = dc(s, v) = distance of the
shortest path with c from s to v (Here, s is a source: ∀v ∈ V ∃ a path from s to v. If
there is no such s, we sort the directed acyclic graph G using topological sorting and add
a new node s by connecting this node s with all nodes x having an in-degree deg−(x) = 0
and setting the cost of this connection to c(s, x) := 0. Then, s has the desired property
that there is a path from s to every v ∈ V .) (ĥs(v) is calculated as in the Johnson’s
algorithm using the Bellman-Ford algorithm: Runtime (|E||V |)). Then, it holds:

c(u, v)+ ĥs(v)− ĥs(u) ≥ dc(u, v)+ ĥs(v)− ĥs(u) = dc(u, v)+dc(s, v)−dc(s, u) ≥∆−Ineq. 0

We calculate using isometric regression:

min
h

n∑
i=1

(ĥs(vi)− hvi)
2

subject to the constraint hu ≤ hv∀(u, v) ∈ E (Runtime O(|V |)). We then set γ(u, v) :=
ĉ(u, v)︸ ︷︷ ︸

≥0

+hv − hu︸ ︷︷ ︸
≥0

≥ 0.

The potential function hv generally does not minimize equation (∗).
By using a potential function hv and transforming the weights ĉ(u, v) to γ(u, v) =

ĉ(u, v) + hv − hu, we maintain the property of shortest paths.
Proof:
Let p be a shortest path under ĉ from p1 to pk. Then, for all paths q from q1 = p1 to

ql = pk, it holds that:
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ĉ(p) ≤ ĉ(q)

According to the definition of γ(u, v) := ĉ(u, v) + hv − hu, we have:

γ(p) :=

k−1∑
i=1

γ(pi, pi+1) =

k−1∑
i=1

ĉ(pi, pi+1) + hpi+1 − hpi

= Telescoping sum (
k−1∑
i=1

ĉ(pi, pi+1)) + (hpk − hp1)

= ĉ(p) + hpk − hp1 ≤ ĉ(q) + hql − hq1 = γ(q)

Thus, γ(p) ≤ γ(q), and p is also a shortest path under γ.
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