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This document explores a formalization of logical reasoning within a Re-
producing Kernel Hilbert Space (RKHS), providing a framework for expres-
sing logical operations and quantifiers geometrically. We define a set of ele-
ments mapped from a feature space through a kernel function, utilizing a
fixed perspective vector to analyze logical properties such as conjunction,
disjunction, and implication. The framework extends to include first-order
logic operations, offering a way to model universal and existential quantifiers.
Key properties of classical logic, such as commutativity, associativity, distri-
butivity, De Morgan’s laws, and quantifier interactions, are proven within
this geometric setting. We also present practical applications of this frame-
work in various domains, including conceptual spaces and cognitive science,
showcasing its potential for enhancing knowledge representation and reaso-
ning under uncertainty.
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1 Introduction

The interplay between logic and geometry has long been a subject of profound interest in
both mathematics and computer science. Classical logic provides a robust framework for
reasoning about propositions and their interrelations, while geometric representations
offer intuitive and computationally efficient methods for modeling complex data and
relationships. Bridging these two domains, the concept of a semantic space emerges as
a powerful paradigm that leverages geometric structures to encapsulate logical semantics.
Semantic spaces, often realized through Reproducing Kernel Hilbert Spaces (RKHS),

enable the embedding of logical propositions and operations into high-dimensional vector
spaces. This geometric embedding facilitates the application of algebraic and analytic
techniques to logical reasoning, opening avenues for enhanced knowledge representation,
natural language processing, and artificial intelligence. By representing logical opera-
tions—such as negation, conjunction, disjunction, implication, and biconditional—as
geometric transformations like projections and inner products, semantic spaces offer a
continuous and flexible framework for modeling both propositional and first-order logic.
A critical aspect of this integration is the preservation of classical logical properties

within the geometric framework. Ensuring that fundamental laws of logic, including com-
mutativity, associativity, De Morgan’s laws, double negation, and contraposition, hold
true in the semantic space is essential for maintaining the integrity and reliability of lo-
gical reasoning processes. Additionally, the incorporation of quantifiers, both existential
(∃) and universal (∀), introduces further complexity, necessitating rigorous definitions
and proofs to validate their interactions with other logical operations.
This work delves into the preservation of these classical logical properties within a

semantic space framework defined by an RKHS. By meticulously defining logical ope-
rations in terms of geometric constructs and employing inner product computations,
we extend the analysis to encompass both propositional and first-order logic. Through
a series of theorems and proofs, we demonstrate that the semantic space framework
faithfully upholds essential logical laws while accommodating the nuances introduced by
indeterminate truth values.
Furthermore, we illustrate the practical applicability of this framework through ex-

amples inspired by Conceptual Spaces, a theory that aligns closely with semantic
spaces in representing knowledge geometrically. These examples highlight how logical
reasoning can be effectively modeled and evaluated within a geometric context, showca-
sing the framework’s potential in areas such as artificial intelligence, cognitive science,
and knowledge representation.
The structure of this paper is as follows: we begin with formal definitions of the

semantic space and logical operations, followed by an in-depth analysis of various logical
properties and their preservation within the framework. Subsequent sections present
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illustrative examples and extend the discussion to first-order logic, including quantifier
interactions. We conclude by exploring the broader applications and societal impact of
integrating logical reasoning with geometric semantic spaces.
Through this exploration, we aim to provide a comprehensive understanding of how

classical logic can be seamlessly embedded within geometric frameworks, thereby en-
hancing the capabilities of computational systems in reasoning, learning, and knowledge
representation.

2 Definitions

Let H be an RKHS with positive semidefinite kernel k : X × X → R, −1 ≤ k(x, y) ≤
1, k(x, x) = 1 and let ϕ : X → H be the feature map associated with k. Fix an element
(called ’perspective’) w ∈ X such that ∥ϕ(w)∥ = 1. Define the set:

Gw = {t ϕ(w) | t ∈ [−1, 1]}

We consider elements α, β ∈ Gw.

2.1 Logical Operations

1. Negation (¬):
¬α = −α

2. Conjunction (∧):

α ∧ β = min (⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

3. Disjunction (∨):

α ∨ β = max (⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)

4. Implication (→):
α → β = (¬α) ∨ β

5. Biconditional (↔):
α ↔ β = (α → β) ∧ (β → α)

6. Existential Quantification (∃):

∃x ∈ M, P (x) = max
x∈M

⟨ϕ(w), P (x)⟩ϕ(w)

7. Universal Quantification (∀):

∀x ∈ M, P (x) = min
x∈M

⟨ϕ(w), P (x)⟩ϕ(w)
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2.2 Evaluation Function

Define the evaluation function µ : Gw → {T, I, F} as:

µ(α) =


T if ⟨ϕ(w), α⟩ > 0,

I if ⟨ϕ(w), α⟩ = 0,

F if ⟨ϕ(w), α⟩ < 0.

Since α = tαϕ(w), we have ⟨ϕ(w), α⟩ = tα.

3 Logical Properties

We analyze various logical properties within this framework.

3.1 Propositional Logic Properties

3.1.1 Commutativity

Conjunction

Theorem 3.1. For all α, β ∈ Gw:

α ∧ β = β ∧ α

Beweis. By definition:

α ∧ β = min (⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)
= β ∧ α.

Disjunction

Theorem 3.2. For all α, β ∈ Gw:

α ∨ β = β ∨ α

Beweis. By definition:

α ∨ β = max (⟨ϕ(w), α⟩, ⟨ϕ(w), β⟩)ϕ(w)
= β ∨ α.

Page 8



Logical Properties and Quantifiers in a Semantic Space Framework

3.1.2 Associativity

Conjunction

Theorem 3.3. For all α, β, γ ∈ Gw:

(α ∧ β) ∧ γ = α ∧ (β ∧ γ)

Beweis. Let a = ⟨ϕ(w), α⟩, b = ⟨ϕ(w), β⟩, c = ⟨ϕ(w), γ⟩. Then:

(α ∧ β) ∧ γ = min (min(a, b), c)ϕ(w)

= min(a, b, c)ϕ(w)

Similarly,

α ∧ (β ∧ γ) = min (a, min(b, c))ϕ(w)

= min(a, b, c)ϕ(w)

Thus, the two expressions are equal.

Disjunction

Theorem 3.4. For all α, β, γ ∈ Gw:

(α ∨ β) ∨ γ = α ∨ (β ∨ γ)

Beweis. Using a, b, c as before:

(α ∨ β) ∨ γ = max (max(a, b), c)ϕ(w)

= max(a, b, c)ϕ(w)

Similarly,

α ∨ (β ∨ γ) = max (a, max(b, c))ϕ(w)

= max(a, b, c)ϕ(w)

Thus, the two expressions are equal.

3.1.3 Distributivity

Theorem 3.5. Distributivity holds in this system; that is, for all α, β, γ ∈ Gw:

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)
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Beweis. Compute the left-hand side:

α ∧ (β ∨ γ) = min (a, max(b, c))ϕ(w)

Compute the right-hand side:

(α ∧ β) ∨ (α ∧ γ) = max (min(a, b), min(a, c))ϕ(w)

We need to show that:

min (a, max(b, c)) = max (min(a, b), min(a, c))

Consider two cases:
Case 1: a ≤ max(b, c)
Then:

min (a, max(b, c)) = a

And:
max (min(a, b), min(a, c)) = max (a, a) = a

Thus, both sides are equal.
Case 2: a ≥ max(b, c)
Then:

min (a, max(b, c)) = max(b, c)

And:
max (min(a, b), min(a, c)) = max (b, c) = max(b, c)

Again, both sides are equal.
Therefore, distributivity holds in this system.

3.1.4 De Morgan’s Laws

Theorem 3.6. For all α, β ∈ Gw:

¬(α ∧ β) = ¬α ∨ ¬β

¬(α ∨ β) = ¬α ∧ ¬β

Beweis. Let a = ⟨ϕ(w), α⟩, b = ⟨ϕ(w), β⟩.
Compute ¬(α ∧ β):

α ∧ β = min(a, b)ϕ(w)

¬(α ∧ β) = −min(a, b)ϕ(w) = max(−a,−b)ϕ(w)

Compute ¬α ∨ ¬β:

¬α = −a ϕ(w)

¬β = −b ϕ(w)

¬α ∨ ¬β = max(−a,−b)ϕ(w)
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Thus,
¬(α ∧ β) = ¬α ∨ ¬β

Similarly for the second law:

¬(α ∨ β) = −max(a, b)ϕ(w) = min(−a,−b)ϕ(w)

¬α ∧ ¬β = min(−a,−b)ϕ(w)

Therefore,
¬(α ∨ β) = ¬α ∧ ¬β

3.1.5 Double Negation

Theorem 3.7. For all α ∈ Gw:
¬(¬α) = α

Beweis.
¬(¬α) = −(−α) = α

3.1.6 Modus Ponens

Theorem 3.8. If µ(α) = T and µ(α → β) = T , then µ(β) = T .

Beweis. Given µ(α) = T , so a = ⟨ϕ(w), α⟩ > 0.
From the definition of implication:

α → β = max(−a, b)ϕ(w)

Given µ(α → β) = T , so max(−a, b) > 0.
Since −a < 0, it follows that max(−a, b) > 0 implies b > 0.
Therefore, µ(β) = T .

3.1.7 Modus Tollens

Theorem 3.9. If µ(α → β) = T and µ(β) = F , then µ(α) = F .

Beweis. Given µ(β) = F , so b = ⟨ϕ(w), β⟩ < 0.
Given µ(α → β) = T , so max(−a, b) > 0.
Since b < 0, max(−a, b) > 0 implies −a > 0, so a < 0.
Therefore, µ(α) = F .
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3.1.8 Contraposition

Theorem 3.10. For all α, β ∈ Gw:

α → β = (¬β) → (¬α)

Beweis. Compute (¬β) → (¬α):

(¬β) → (¬α) = max(−(−b),−a)ϕ(w) = max(b,−a)ϕ(w)

Similarly, α → β = max(−a, b)ϕ(w).
Since max(−a, b) = max(b,−a), the expressions are equal.

3.1.9 Identity of Implication

Theorem 3.11. For all α ∈ Gw:

µ(α → α) ̸= F

Beweis. Compute:
α → α = max(−a, a)ϕ(w)

Since max(−a, a) = |a| ≥ 0, and ⟨ϕ(w), α → α⟩ = |a| ≥ 0.
Thus, µ(α → α) = T if |a| > 0, I if a = 0, hence µ(α → α) ̸= F .

3.1.10 Disjunctive Syllogism

Theorem 3.12. If µ(α ∨ β) = T and µ(¬α) = T , then µ(β) = T .

Beweis. Given µ(α ∨ β) = T , so max(a, b) > 0.
Given µ(¬α) = T , so −a > 0, thus a < 0.
Since a < 0 and max(a, b) > 0, it must be that b > 0.
Therefore, µ(β) = T .

3.1.11 Law of Excluded False

Theorem 3.13. The law of excluded false holds in this system; that is, µ(α∨¬α) ̸= F .

Beweis. Compute:
α ∨ ¬α = max(a,−a)ϕ(w) = |a|ϕ(w)

If a = 0, then α ∨ ¬α = 0, and µ(α ∨ ¬α) = I.
Therefore, µ(α ∨ ¬α) is T or I, but never F .
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3.1.12 Non-Contradiction

Theorem 3.14. The Law of Non-Contradiction holds; that is, µ(α ∧ ¬α) ̸= T .

Beweis. Compute:
α ∧ ¬α = min(a,−a)ϕ(w) = −|a|ϕ(w)

Thus, ⟨ϕ(w), α ∧ ¬α⟩ = −|a| ≤ 0.
Therefore, µ(α ∧ ¬α) = F if |a| > 0, I if a = 0.

3.2 First-Order Logic Properties

3.2.1 Negation of Quantifiers

Negation of Universal Quantification

Theorem 3.15. For any predicate P (x):

¬ (∀x ∈ M, P (x)) = ∃x ∈ M, ¬P (x)

Beweis. Compute the left-hand side (LHS):

¬ (∀x ∈ M, P (x)) = −
(
min
x∈M

⟨ϕ(w), P (x)⟩ϕ(w)
)

= −
(
min
x∈M

⟨ϕ(w), P (x)⟩
)
ϕ(w)

= max
x∈M

(−⟨ϕ(w), P (x)⟩)ϕ(w)

Compute the right-hand side (RHS):

∃x ∈ M, ¬P (x) = max
x∈M

(⟨ϕ(w),−P (x)⟩)ϕ(w)

= max
x∈M

(−⟨ϕ(w), P (x)⟩)ϕ(w)

Therefore,
¬ (∀x ∈ M, P (x)) = ∃x ∈ M, ¬P (x)

Negation of Existential Quantification

Theorem 3.16. For any predicate P (x):

¬ (∃x ∈ M, P (x)) = ∀x ∈ M, ¬P (x)
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Beweis. Compute the left-hand side (LHS):

¬ (∃x ∈ M, P (x)) = −
(
max
x∈M

⟨ϕ(w), P (x)⟩ϕ(w)
)

= −
(
max
x∈M

⟨ϕ(w), P (x)⟩
)
ϕ(w)

= min
x∈M

(−⟨ϕ(w), P (x)⟩)ϕ(w)

Compute the right-hand side (RHS):

∀x ∈ M, ¬P (x) = min
x∈M

(⟨ϕ(w),−P (x)⟩)ϕ(w)

= min
x∈M

(−⟨ϕ(w), P (x)⟩)ϕ(w)

Therefore,
¬ (∃x ∈ M, P (x)) = ∀x ∈ M, ¬P (x)

3.2.2 Distributivity over Logical Connectives

Universal Quantifier and Conjunction

Theorem 3.17. For any predicates P (x) and Q(x):

∀x ∈ M, (P (x) ∧Q(x)) = (∀x ∈ M, P (x)) ∧ (∀x ∈ M, Q(x))

Beweis. Compute the left-hand side (LHS):

∀x ∈ M, (P (x) ∧Q(x)) = min
x∈M

(min (⟨ϕ(w), P (x)⟩, ⟨ϕ(w), Q(x)⟩))ϕ(w)

Compute the right-hand side (RHS):

(∀x ∈ M, P (x)) ∧ (∀x ∈ M, Q(x)) = min

(
min
x∈M

⟨ϕ(w), P (x)⟩, min
x∈M

⟨ϕ(w), Q(x)⟩
)
ϕ(w)

Since the minimum of minima is equal to the minimum of all values, both sides are
equal.

Existential Quantifier and Disjunction

Theorem 3.18. For any predicates P (x) and Q(x):

∃x ∈ M, (P (x) ∨Q(x)) = (∃x ∈ M, P (x)) ∨ (∃x ∈ M, Q(x))
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Beweis. Compute the left-hand side (LHS):

∃x ∈ M, (P (x) ∨Q(x)) = max
x∈M

(max (⟨ϕ(w), P (x)⟩, ⟨ϕ(w), Q(x)⟩))ϕ(w)

Compute the right-hand side (RHS):

(∃x ∈ M, P (x)) ∨ (∃x ∈ M, Q(x)) = max

(
max
x∈M

⟨ϕ(w), P (x)⟩, max
x∈M

⟨ϕ(w), Q(x)⟩
)
ϕ(w)

Since the maximum of maxima is equal to the maximum of all values, both sides are
equal.

3.2.3 Interaction with Implication

Theorem 3.19. For any predicate P (x) and proposition Q:

(∀x ∈ M, P (x)) → Q = ∃x ∈ M, (P (x) → Q)

Beweis. Compute LHS:

(∀x ∈ M, P (x)) → Q = max

(
−min

x∈M
⟨ϕ(w), P (x)⟩, ⟨ϕ(w), Q⟩

)
ϕ(w)

Compute RHS:

∃x ∈ M, (P (x) → Q) = max
x∈M

(max (−⟨ϕ(w), P (x)⟩, ⟨ϕ(w), Q⟩))ϕ(w)

Since −minx∈M⟨ϕ(w), P (x)⟩ = maxx∈M (−⟨ϕ(w), P (x)⟩), both sides are equal.

Theorem 3.20. For any proposition P and predicate Q(x):

P → (∀x ∈ M, Q(x)) = ∀x ∈ M, (P → Q(x))

Proof as in previous section.

4 Examples

4.1 Example from a Dataset of Conceptual Spaces

In this section, we present an example inspired by research in philosophy and cognitive
science on Conceptual Spaces, particularly drawing from Antti Hautamäki’s work [2].
Conceptual spaces are similar to semantic spaces and provide a geometric framework for
representing knowledge.
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4.2 Dataset Description

The dataset includes properties of animals such as the number of legs, skin cover, weight,
intelligence, and speed. The data has been scaled and processed to compute a cosine
kernel, resulting in the following Gram matrix G:

Legs Skin Cover Weight Intelligence Speed
Legs 1.00 0.28 0.54 0.43 −0.46

Skin Cover 0.28 1.00 −0.22 0.12 0.43
Weight 0.54 −0.22 1.00 0.76 −0.85

Intelligence 0.43 0.12 0.76 1.00 −0.56
Speed −0.46 0.43 −0.85 −0.56 1.00

4.3 Feature Map and Perspective Vector

We perform a Cholesky decomposition on this Gram matrix to find an embedding ϕ(x)
such that:

Gx,y = k(x, y) = ⟨ϕ(x), ϕ(y)⟩

where X = {Legs, Skin Cover,Weight, Intelligence, Speed}.
We select Intelligence as our perspective vector w and compute the projections of

each property onto w using the reproducing property:

proj(w, x) = k(w, x) = ⟨ϕ(w), ϕ(x)⟩

4.4 Computed Projections

� Legs: proj(w,Legs) = 0.43

� Skin Cover: proj(w, Skin Cover) = 0.12

� Weight: proj(w,Weight) = 0.76

� Intelligence: proj(w, Intelligence) = 1.00

� Speed: proj(w, Speed) = −0.56

These projections are interpreted as measures of similarity or ”degrees of truth”relative
to the perspective of intelligence.

4.5 Defined Logical Formulas

We define the following logical formulas:

1. Formula 1: Intelligence → a

� Meaning: If an animal is intelligent, then property a holds.
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� Implementation:

Implies(proj(w, Intelligence), proj(w, a))

2. Formula 2: Legs ∧ a

� Meaning: The animal has legs and property a holds.

� Implementation:

And(proj(w,Legs), proj(w, a))

3. Formula 3: Intelligence ↔ (Speed ∧ a)

� Meaning: The animal is intelligent if and only if it is fast and property a
holds.

� Implementation:

Iff(proj(w, Intelligence),And(proj(w, Speed), proj(w, a)))

4.6 Evaluation and Interpretation of Formulas

We evaluate each formula for all properties a ∈ X.

4.6.1 Formula 1: Intelligence → a

For each property a:

� Legs:
Implies(1.00, 0.43) = max(−1.00, 0.43) = 0.43

Interpreted as True.

� Skin Cover:
Implies(1.00, 0.12) = max(−1.00, 0.12) = 0.12

Interpreted as True.

� Weight:
Implies(1.00, 0.76) = max(−1.00, 0.76) = 0.76

Interpreted as True.

� Intelligence:

Implies(1.00, 1.00) = max(−1.00, 1.00) = 1.00

Interpreted as True.
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� Speed:
Implies(1.00,−0.56) = max(−1.00,−0.56) = −0.56

Interpreted as False.

Interpretation:

� Legs, Skin Cover, Weight, Intelligence: There’s a positive implication from
intelligence to these properties, indicating that higher intelligence is associated
with these traits.

� Speed: The implication is false, reflecting that higher intelligence does not imply
higher speed—in fact, they are negatively correlated.

4.6.2 Formula 2: Legs ∧ a

For each property a:

� Legs:
And(0.43, 0.43) = min(0.43, 0.43) = 0.43

Interpreted as True.

� Skin Cover:
And(0.43, 0.12) = min(0.43, 0.12) = 0.12

Interpreted as True.

� Weight:
And(0.43, 0.76) = min(0.43, 0.76) = 0.43

Interpreted as True.

� Intelligence:
And(0.43, 1.00) = min(0.43, 1.00) = 0.43

Interpreted as True.

� Speed:
And(0.43,−0.56) = min(0.43,−0.56) = −0.56

Interpreted as False.

Interpretation:

� Legs, Skin Cover, Weight, Intelligence: The conjunction is true, suggesting
that having legs is positively associated with these properties from the perspective
of intelligence.

� Speed: The conjunction is false due to the negative correlation between legs and
speed.
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4.6.3 Formula 3: Intelligence ↔ (Speed ∧ a)

For each property a:

1. Compute And(proj(w, Speed), proj(w, a)):

� For all a:
And(−0.56, proj(w, a)) = min(−0.56, proj(w, a))

Since −0.56 is less than any proj(w, a) in this dataset, And will be −0.56 for
all a.

2. Compute Iff(1.00,−0.56):

Implies(1.00,−0.56) = max(−1.00,−0.56) = −0.56

Implies(−0.56, 1.00) = max(0.56, 1.00) = 1.00

Iff(1.00,−0.56) = min(−0.56, 1.00) = −0.56

Interpreted as False.

Interpretation:

� The equivalence is false across all properties. This reflects that intelligence is not
equivalent to the conjunction of speed and any other property, emphasizing the
negative relationship between intelligence and speed.

4.7 Computations with Quantifiers

We now demonstrate computations involving quantifiers using the dataset.

4.7.1 Universal Quantification: ∀a ∈ X, Intelligence → a

Compute:

∀a ∈ X, Intelligence → a = min
a∈X

(Implies(1.00, proj(w, a)))ϕ(w)

From previous computations, we have:

Implies(1.00, proj(w, a)) = max(−1.00, proj(w, a)) = proj(w, a)

Therefore:
∀a ∈ X, Intelligence → a = min

a∈X
(proj(w, a))ϕ(w)

Compute the minimum:
min
a∈X

(proj(w, a)) = −0.56

Thus:
∀a ∈ X, Intelligence → a = −0.56ϕ(w)

µ (∀a ∈ X, Intelligence → a) = F

Interpretation:
The universal statement is false because there exists at least one property (Speed)

for which the implication Intelligence → Speed is false.
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4.7.2 Existential Quantification: ∃a ∈ X, Intelligence → a

Compute:

∃a ∈ X, Intelligence → a = max
a∈X

(Implies(1.00, proj(w, a)))ϕ(w)

From previous computations:

max
a∈X

(proj(w, a)) = 1.00

Thus:
∃a ∈ X, Intelligence → a = 1.00ϕ(w)

µ (∃a ∈ X, Intelligence → a) = T

Interpretation:
The existential statement is true because there exists at least one property (Intelligence

itself) for which the implication Intelligence → a is true.

4.7.3 Negation of Universal Quantification

Compute:

¬ (∀a ∈ X, Intelligence → a) = ∃a ∈ X, ¬ (Intelligence → a)

From previous results:

∃a ∈ X, ¬ (Intelligence → a) = max
a∈X

(−Implies(1.00, proj(w, a)))ϕ(w)

Compute:
−Implies(1.00, proj(w, a)) = −proj(w, a)

Maximum of negatives:

max
a∈X

(−proj(w, a)) = −0.12

Thus:
∃a ∈ X, ¬ (Intelligence → a) = −0.12ϕ(w)

µ (∃a ∈ X, ¬ (Intelligence → a)) = F

Interpretation:
There exists a property (Speed) such that the negation of the implication Intelligence →

Speed is true, reinforcing the earlier conclusion that the universal implication is false.
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4.8 Analysis with Different Perspectives

Similarly, we can perform the analysis using Weight as the perspective vector w. The
projections are:

� Legs: proj(w,Legs) = 0.54

� Skin Cover: proj(w, Skin Cover) = −0.22

� Weight: proj(w,Weight) = 1.00

� Intelligence: proj(w, Intelligence) = 0.76

� Speed: proj(w, Speed) = −0.85

4.8.1 Quantifier Computations

Universal Quantification: ∀a ∈ X, Weight → a Compute:

∀a ∈ X, Weight → a = min
a∈X

(Implies(1.00, proj(w, a)))ϕ(w)

Compute the minimum:
min
a∈X

(proj(w, a)) = −0.85

Thus:
∀a ∈ X, Weight → a = −0.85ϕ(w)

µ (∀a ∈ X, Weight → a) = F

Interpretation:
The universal implication from weight to all properties is false due to the negative

correlation with speed and skin cover.

Existential Quantification: ∃a ∈ X, Weight → a Compute:

∃a ∈ X, Weight → a = max
a∈X

(proj(w, a)) = 1.00ϕ(w)

µ (∃a ∈ X, Weight → a) = T

Interpretation:
There exists at least one property (Weight itself) for which the implication holds

true.
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4.8.2 Negation of Existential Quantification

Compute:
¬ (∃a ∈ X, Weight → a) = ∀a ∈ X, ¬ (Weight → a)

Compute:

¬ (Weight → a) = −Implies(1.00, proj(w, a)) = −proj(w, a)

Compute the minimum:

min
a∈X

(−proj(w, a)) = −1.00

Thus:
∀a ∈ X, ¬ (Weight → a) = −1.00ϕ(w)

µ (∀a ∈ X, ¬ (Weight → a)) = F

Interpretation:
The negation of the existential quantification is false, as there exists at least one

property where the implication holds true.

4.9 Formulating and Evaluating Hypotheses

We formulate several hypotheses from the perspective of ’Intelligence’ in both propo-
sitional and first-order logic. These hypotheses are then evaluated using the computed
projections to determine their truth values within the semantic space framework.

4.9.1 Propositional Logic Hypotheses

Hypothesis A :

If an animal has Skin Cover, then it is not Speedy.

� Logical Formulation:
Skin Cover → ¬Speed

� Meaning: Having skin cover implies that the animal is not fast.

� Evaluation:

Implies(proj(w, Skin Cover), proj(w,¬Speed)) = Implies(0.12,−(−0.56))

= Implies(0.12, 0.56)

= max(−0.12, 0.56)

= 0.56

µ (Skin Cover → ¬Speed) = T

� Interpretation:

Since the implication evaluates to a positive value (T ), the hypothesis is True
within the semantic space framework. This suggests that, from the perspective of
intelligence, having skin cover is associated with not being speedy.
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Hypothesis B :

An animal with Legs and Weight is Intelligent.

� Logical Formulation:

(Legs ∧Weight) → Intelligence

� Meaning: If an animal has legs and is heavy, then it is intelligent.

� Evaluation:

Conjunction : Legs ∧Weight = min(0.43, 0.76)

= 0.43

Implication : 0.43 → 1.00 = Implies(0.43, 1.00)

= max(−0.43, 1.00)

= 1.00

µ ((Legs ∧Weight) → Intelligence) = T

� Interpretation:

The implication evaluates to T , indicating that the hypothesis is True. This aligns
with the data, showing that animals with both legs and significant weight tend to
be intelligent.

4.9.2 First-Order Logic Hypotheses

In this context, we treat each property inX = {Legs, Skin Cover,Weight, Intelligence, Speed}
as elements over which we can quantify. The predicates are the properties themselves,
and logical statements relate these properties based on their projections.

Hypothesis C :
∀a ∈ X, (Intelligence → a)

� Meaning: For every property a, if an animal is intelligent, then it possesses pro-
perty a.

� Evaluation:

∀a ∈ X, Intelligence → a = min
a∈X

(Implies(1.00, proj(w, a)))ϕ(w)

= min(0.43, 0.12, 0.76, 1.00,−0.56)ϕ(w)

= −0.56ϕ(w)

µ (∀a ∈ X, Intelligence → a) = F
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� Interpretation:

The universal statement evaluates to F because there exists at least one property
(Speed) for which the implication Intelligence → Speed is false. This indicates
that not all properties are positively associated with intelligence.

Hypothesis D :
∃a ∈ X, (Intelligence ∧ ¬a)

� Meaning: There exists at least one property a such that an animal is intelligent
and does not possess property a.

� Evaluation:

Conjunction : Intelligence ∧ ¬a = min(1.00,−proj(w, a))

= min(1.00,−ta)

Existential Quantifier : ∃a ∈ X, (Intelligence ∧ ¬a) = max
a∈X

(min(1.00,−ta))ϕ(w)

Evaluating for each a ∈ X:

– a = Legs: min(1.00,−0.43) = −0.43

– a = Skin Cover: min(1.00,−0.12) = −0.12

– a = Weight: min(1.00,−0.76) = −0.76

– a = Intelligence: min(1.00,−1.00) = −1.00

– a = Speed: min(1.00, 0.56) = 0.56

Thus,

∃a ∈ X, (Intelligence∧¬a) = max(−0.43,−0.12,−0.76,−1.00, 0.56)ϕ(w) = 0.56ϕ(w)

µ (∃a ∈ X, (Intelligence ∧ ¬a)) = T

� Interpretation:

The existential statement evaluates to T , meaning the hypothesis is True. This
indicates that there exists at least one property (Speed) for which an intelligent
animal does not possess that property.

Hypothesis E :
∀a ∈ X, (Legs → a)

� Meaning: For every property a, if an animal has legs, then it possesses property
a.
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� Evaluation:

∀a ∈ X, Legs → a = min
a∈X

(Implies(0.43, proj(w, a)))ϕ(w)

= min (Implies(0.43, 0.43), Implies(0.43, 0.12), Implies(0.43, 0.76), Implies(0.43, 1.00), Implies(0.43,−0.56))ϕ(w)

= min(0.43, 0.12, 0.43, 1.00,−0.56)ϕ(w)

= −0.56ϕ(w)

µ (∀a ∈ X, Legs → a) = F

� Interpretation:

The universal statement evaluates to F because there exists at least one property
(Speed) for which the implication Legs → Speed is false. This indicates that
having legs does not necessarily imply possessing all properties, specifically speed.

4.9.3 Summary of Hypotheses Evaluation

Hypothesis Logical Form Evaluation Truth Value
A Intelligence → Weight 0.76 > 0 T
B (Legs ∧ Skin Cover) → ¬Speed 0.56 > 0 T
C ∀a ∈ X, Intelligence → a −0.56 < 0 F
D ∃a ∈ X, (Intelligence ∧ ¬a) 0.56 > 0 T
E ∀a ∈ X, Legs → a −0.56 < 0 F

Tabelle 1: Summary of Hypotheses Evaluation

Overall Interpretation:
The formulated hypotheses reveal insightful relationships within the dataset of con-

ceptual spaces:

� Hypotheses A and B are True, indicating consistent logical relationships bet-
ween Intelligence and Weight, as well as between Legs, Skin Cover, and Speed.

� Hypotheses C and E are False, highlighting that not all properties are implied
by Intelligence or Legs, respectively.

� Hypothesis D is True, demonstrating the existence of at least one property
(Speed) that does not co-occur with Intelligence.

These evaluations demonstrate the utility of the semantic space framework in testing
logical hypotheses against real-world data, providing a robust method for validating
theoretical propositions within a geometric and algebraic context.
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4.9.4 Additional Hypothesis: Law of Excluded Middle

Hypothesis F :
∀a ∈ X, (¬a ∨ a)

� Meaning: For every property a, either the property does not hold or it holds.

� Evaluation:

∀a ∈ X, (¬a ∨ a) = min
a∈X

(¬a ∨ a)ϕ(w)

= min
a∈X

(max(−ta, ta))ϕ(w)

= min
a∈X

(|ta|)ϕ(w)

= min(0.43, 0.12, 0.76, 1.00, 0.56)ϕ(w)

= 0.12ϕ(w)

µ (∀a ∈ X, (¬a ∨ a)) = T

� Interpretation:

The universal statement evaluates to T , meaning the hypothesis is True. This con-
firms the Law of Excluded Middle within the semantic space framework, asserting
that for every property, either it holds or its negation holds.

Conclusion:
The examination of various hypotheses using the semantic space framework showcases

its effectiveness in validating logical statements against empirical data. By translating
logical propositions into vector operations and leveraging the evaluation function, the
framework provides a rigorous and intuitive method for assessing the truth values of
complex logical relationships within conceptual spaces.

4.10 Integer Embeddings via the Second Jordan Totient Function

We define the embedding function ϕ(n) for integers n using the second Jordan totient
function J2(n):

ϕ(n) =
sgn(n)

|n|
∑
d||n|

√
J2(d) · ed

where:

� J2(n) is the second Jordan totient function, given by:

J2(n) = n2
∏
p|n

(
1− 1

p2

)
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� ed represents a unit vector in the direction corresponding to the divisor d of |n|.

This embedding maps each integer n to a high-dimensional vector space, allowing us
to compute inner products and apply logical operations, with kernel

k(a, b) = sgn(ab)
gcd(|a|, |b|)2

|ab|
= ⟨ϕ(a), ϕ(b)⟩

4.11 Computing the Gram Matrix

We consider the set of integers X = {−3,−2, 2, 3, 6, 8, 9}. Using the embedding ϕ(n), we
compute the Gram matrix G, where each entry Gi,j is the inner product ⟨ϕ(ni), ϕ(nj)⟩.
Here is a subset of the computed values of the Gram matrix:

⟨ϕ(ni), ϕ(nj)⟩ nj = −3 nj = −2 nj = 2 nj = 3

ni = −3 1
1

6
−1

6
−1

ni = −2
1

6
1 −1 −1

6

ni = 2 −1

6
−1 1

1

6

ni = 3 −1 −1

6

1

6
1

4.12 Inner Products and Logical Operations

We select a perspective vector w = 6 and compute the inner products ⟨ϕ(6), ϕ(n)⟩ for
all n ∈ X. These inner products serve as the basis for evaluating logical expressions.

n ⟨ϕ(6), ϕ(n)⟩

−3 −1

2

−2 −1

3

2
1

3

3
1

2
6 1

8
1

12

9
1

6

Tabelle 2: Inner products ⟨ϕ(6), ϕ(n)⟩ for selected integers
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4.12.1 Example: Evaluating µ(α) and µ(¬α)

Let α correspond to n = 8. We compute:

tα = ⟨ϕ(6), ϕ(8)⟩ = 1

12

Since tα > 0, we have:

µ(α) = T

Similarly, for the negation:

µ(¬α) = µ(−tα) = µ

(
− 1

12

)
= F

4.12.2 Example: Logical Conjunction µ(α ∧ β)

Let β correspond to n = 9. We compute:

tβ = ⟨ϕ(6), ϕ(9)⟩ = 1

6

The conjunction is evaluated as:

tα∧β = min

(
1

12
,
1

6

)
=

1

12

µ(α ∧ β) = µ

(
1

12

)
= T

4.12.3 Example: Logical Disjunction µ(α ∨ β)

The disjunction is evaluated as:

tα∨β = max

(
1

12
,
1

6

)
=

1

6

µ(α ∨ β) = µ

(
1

6

)
= T

4.12.4 Example: Logical Implication µ(α → β)

The implication is evaluated as:

tα→β = max

(
− 1

12
,
1

6

)
=

1

6

µ(α → β) = µ

(
1

6

)
= T
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4.13 Quantifiers over a Subset

We define the subset M ⊂ X as the set of even integers in X:

M = {n ∈ X | n is even} = {−2, 2, 6, 8}

4.13.1 Existential Quantifier ∃n ∈ M, P (n)

We compute the inner products for n ∈ M :

n tn = ⟨ϕ(6), ϕ(n)⟩

−2 −1

3

2
1

3
6 1

8
1

12

The maximum value is:

t∃ = max
n∈M

tn = 1

Since t∃ > 0:

µ (∃n ∈ M, P (n)) = T

4.13.2 Universal Quantifier ∀n ∈ M, P (n)

The minimum value is:

t∀ = min
n∈M

tn = −1

3

Since t∀ < 0:

µ (∀n ∈ M, P (n)) = F

4.13.3 Verification of De Morgan’s Law for Quantifiers

We verify the equivalence:

µ (¬ (∀n ∈ M, P (n))) = µ (∃n ∈ M, ¬P (n))

Compute:

t¬∀ = −t∀ =
1

3

Since t¬∀ > 0:
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µ (¬ (∀n ∈ M, P (n))) = T

Compute the negation of P (n) for each n ∈ M :

n −tn

−2
1

3

2 −1

3
6 −1

8 − 1

12

The maximum of the negated values is:

t∃¬P = max
n∈M

(−tn) =
1

3

Since t∃¬P > 0:

µ (∃n ∈ M, ¬P (n)) = T

Thus, we have:

µ (¬ (∀n ∈ M, P (n))) = µ (∃n ∈ M, ¬P (n)) = T

4.14 Interpretation of Results

The example computations demonstrate that:

� µ(α) = T and µ(¬α) = F for α corresponding to n = 8.

� The logical conjunction µ(α ∧ β) = T and disjunction µ(α ∨ β) = T .

� The logical implication µ(α → β) = T holds.

� For the subset M , the existential quantifier evaluates to T and the universal quan-
tifier evaluates to F .

� De Morgan’s Law for quantifiers is verified, as both sides of the equivalence evaluate
to T .

4.15 Application of the Semantic Space Framework

These examples demonstrate how the semantic space framework can be applied to integer
embeddings. By representing integers as vectors in a high-dimensional space or directly
using the kernel for the computations (Kernel-Trick) and defining logical operations in
terms of inner products / kernel, we can explore logical relationships and properties in
a geometric context.
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4.16 Conclusion of Examples

We observe that classical logical properties, such as conjunction, disjunction, implication,
and quantifiers, can be represented and evaluated within this framework. This approach
offers a novel perspective on logical reasoning, bridging the gap between algebraic number
theory and logical semantics.

5 Formalization of the Semantic Space of Logic

Definition 5.1 (Semantic Space). A semantic space S = (X, k) consists of:

� A set X.

� A positive semidefinite kernel function k : X ×X → R satisfying:

– −1 ≤ k(x, y) ≤ 1 for all x, y ∈ X.

– k(x, y) = 1 if and only if x = y.

Definition 5.2 (Semantic Space of Logic). A semantic space of logic L = (S,∧,∨,¬,→
,↔,∀,∃) is defined over a semantic space S = (X, k) with the following components:

� ∧ (Conjunction): A binary operation on S that is commutative, associative, and
distributive over ∨.

� ∨ (Disjunction): A binary operation on S that is commutative, associative, and
distributes over ∧.

� ¬ (Negation): A unary operation on S that is an involution, i.e., ¬(¬α) = α for
all α ∈ S.

� → (Implication): A binary operation on S satisfying contraposition, modus ponens,
and other implication-related properties.

� ↔ (Biconditional): A binary operation on S defined in terms of→ and ∧, satisfying
properties such as symmetry and reflexivity.

� ∀ (Universal Quantifier): A quantifier that interacts with logical connectives, pre-
serving logical equivalences and De Morgan’s laws.

� ∃ (Existential Quantifier): A quantifier that interacts with logical connectives,
preserving logical equivalences and De Morgan’s laws.

Remark 5.3. The operations ∧, ∨, ¬, →, ↔, ∀, and ∃ are defined abstractly without refe-
rence to specific mathematical constructs such as min, max, or scalar negation. Instead,
they are characterized by the logical properties they satisfy, ensuring that all classical
logical laws hold within the semantic space of logic L.
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5.0.1 Properties of Logical Operations

The logical operations in the semantic space of logic L are designed to satisfy the classical
logical properties as follows:

Commutativity

� α ∧ β = β ∧ α for all α, β ∈ S.

� α ∨ β = β ∨ α for all α, β ∈ S.

Associativity

� (α ∧ β) ∧ γ = α ∧ (β ∧ γ) for all α, β, γ ∈ S.

� (α ∨ β) ∨ γ = α ∨ (β ∨ γ) for all α, β, γ ∈ S.

Distributivity

� α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ) for all α, β, γ ∈ S.

� α ∨ (β ∧ γ) = (α ∨ β) ∧ (α ∨ γ) for all α, β, γ ∈ S.

De Morgan’s Laws

� ¬(α ∧ β) = ¬α ∨ ¬β for all α, β ∈ S.

� ¬(α ∨ β) = ¬α ∧ ¬β for all α, β ∈ S.

Double Negation

� ¬(¬α) = α for all α ∈ S.

Modus Ponens

� If µ(α) = T and µ(α → β) = T , then µ(β) = T .

Modus Tollens

� If µ(α → β) = T and µ(β) = F , then µ(α) = F .

Contraposition

� α → β = ¬β → ¬α for all α, β ∈ S.

Identity of Implication

� µ(α → α) ̸= F for all α ∈ S.
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Disjunctive Syllogism

� If µ(α ∨ β) = T and µ(¬α) = T , then µ(β) = T .

Law of Excluded Middle

� µ(α ∨ ¬α) ̸= F for all α ∈ S.

Law of Non-Contradiction

� µ(α ∧ ¬α) ̸= T for all α ∈ S.

5.0.2 Properties of Quantifiers

The quantifiers ∀ and ∃ interact with the logical connectives as follows:

Negation of Quantifiers

� ¬(∀a ∈ X, P (a)) = ∃a ∈ X, ¬P (a)

� ¬(∃a ∈ X, P (a)) = ∀a ∈ X, ¬P (a)

Distributivity over Logical Connectives

� ∀a ∈ X, (P (a) ∧Q(a)) = (∀a ∈ X, P (a)) ∧ (∀a ∈ X, Q(a))

� ∃a ∈ X, (P (a) ∨Q(a)) = (∃a ∈ X, P (a)) ∨ (∃a ∈ X, Q(a))

Interaction with Implication

� (∀a ∈ X, P (a)) → Q = ∃a ∈ X, (P (a) → Q)

� P → (∀a ∈ X, Q(a)) = ∀a ∈ X, (P → Q(a))

5.0.3 Evaluation Function

An evaluation function µ : S → {T, I, F} assigns a truth value to each element of the
semantic space based on its projection onto a fixed perspective vector w. Formally:

Definition 5.4 (Evaluation Function). Let w ∈ X be a fixed perspective vector. The
evaluation function µ : S → {T, I, F} is defined by:

µ(α) =


T if ⟨ϕ(w), α⟩ > 0,

I if ⟨ϕ(w), α⟩ = 0,

F if ⟨ϕ(w), α⟩ < 0.

Remark 5.5. The evaluation function abstracts the determination of truth values based
on the geometric relationship between elements in the semantic space and the perspec-
tive vector w. It ensures that logical operations conform to the classical properties by
leveraging the underlying geometric structure.
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5.0.4 Ensuring Logical Properties

To guarantee that all logical properties hold within the semantic space of logic L, the
operations ∧, ∨, ¬, →, ↔, ∀, and ∃ are defined to satisfy the following axioms:

� Commutativity: Operations ∧ and ∨ are commutative.

� Associativity: Operations ∧ and ∨ are associative.

� Distributivity: Operations ∧ distributes over ∨ and vice versa.

� De Morgan’s Laws: Negation distributes over ∧ and ∨.

� Double Negation: Negation is an involution.

� Implication Properties: Implication satisfies contraposition, modus ponens, and
modus tollens.

� Biconditional Properties: Biconditional is symmetric and reflexive.

� Quantifier Properties: Quantifiers interact with logical connectives according
to classical logic, including distributivity and negation.

These axioms abstractly define the behavior of logical operations without relying on
specific mathematical constructs like min, max, or scalar negation. Instead, they en-
sure that the operations preserve the classical logical structure within the geometric
framework of the semantic space.

Theorem 5.6 (One example semantic space of logic). Let L be as defined in the begin-
ning of this document (min,max,¬a = −a). Then L is a semantic space of logic.

Beweis. The proof of this statement has been given by providing proofs in this document
of the individual properties.

Remark 5.7. This formalization abstracts the logical operations to their essential pro-
perties, allowing the semantic space framework to model logical reasoning geometrically.
By adhering to the classical logical axioms, the framework ensures compatibility with
traditional logical systems while leveraging the advantages of geometric representations.

6 The Lukasiewicz semantic space of logic

To prove that the Lukasiewicz semantic space of logic L := ((X, k),∧,∨,¬,→,↔,∀,∃, µ)
satisfies all properties that make it a semantic space of logic, we need to verify the
following logical properties for the operations defined in this space:
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6.1 Lukasiewicz Operations in the Semantic Space

Given:

� S = (X, k), where 0 ≤ k(x, y) ≤ 1 and k(x, y) = 1 iff x = y ∀x, y ∈ X and
k : X ×X → R is positive semidefinite.

� Definition of logical operations:

– Conjunction: a ∧ b := min(a, b).

– Disjunction: a ∨ b := max(a, b).

– Negation: ¬a := 1− a.

– Implication: a → b := min(1, 1− a+ b).

– Biconditional: a ↔ b := 1− |a− b|.
– Universal quantifier: ∀x ∈ M,P (x) := minx∈M⟨ϕ(w), P (x)⟩.
– Existential quantifier: ∃x ∈ M,P (x) := maxx∈M⟨ϕ(w), P (x)⟩.

� Evaluation function µ:

– µ(a) = T , if a > 0.5.

– µ(a) = I, if a = 0.5.

– µ(a) = F , if a < 0.5.

6.2 Step-by-Step Proof of Properties

6.2.1 1. Commutativity

� Conjunction: min(a, b) = min(b, a).

� Disjunction: max(a, b) = max(b, a).

Both operations are commutative by the definition of min and max functions.

6.2.2 2. Associativity

� Conjunction: (a ∧ b) ∧ c = min(min(a, b), c) = min(a, b, c) = min(a,min(b, c)) =
a ∧ (b ∧ c).

� Disjunction: (a∨ b)∨ c = max(max(a, b), c) = max(a, b, c) = max(a,max(b, c)) =
a ∨ (b ∨ c).

Both operations are associative by the properties of min and max.
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6.2.3 3. Distributivity

Conjunction over Disjunction:

a ∧ (b ∨ c) = min(a,max(b, c)), (min(a, b) ∨min(a, c)) = max(min(a, b),min(a, c)).

� If a ≤ max(b, c), then a = min(a,max(b, c)) = max(min(a, b),min(a, c)).

� If a ≥ max(b, c), then min(a,max(b, c)) = max(b, c) and max(min(a, b),min(a, c)) =
max(b, c).

Thus, distributivity holds.

6.2.4 4. Negation

� Double Negation: ¬(¬a) = 1− (1− a) = a.

6.2.5 5. Implication Properties

� Contraposition: a → b = min(1, 1− a+ b) = min(1, 1− b+ a) = ¬b → ¬a.

� Modus Ponens:

– Given µ(a) = T (i.e., a > 0.5) and µ(a → b) = T (i.e., min(1, 1−a+b) > 0.5).

– Since a > 0.5, 1− a+ b > 0.5, implying b > 0.5, so µ(b) = T .

� Modus Tollens:

– Given µ(a → b) = T and µ(b) = F .

– Since b < 0.5, 1− a+ b > 0.5 must hold, implying 1− a > 0.5, or a < 0.5, so
µ(a) = F .

6.2.6 6. Biconditional Properties

� Symmetry: a ↔ b = 1− |a− b| = 1− |b− a| = b ↔ a.

� Reflexivity: a ↔ a = 1− |a− a| = 1.

6.2.7 7. Quantifiers

� Negation of Universal Quantification:

¬ (∀x ∈ M,P (x)) = 1−min
x∈M

⟨ϕ(w), P (x)⟩ = max
x∈M

(1− ⟨ϕ(w), P (x)⟩) = ∃x ∈ M,¬P (x).

� Negation of Existential Quantification:

¬ (∃x ∈ M,P (x)) = 1−max
x∈M

⟨ϕ(w), P (x)⟩ = min
x∈M

(1− ⟨ϕ(w), P (x)⟩) = ∀x ∈ M,¬P (x).
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6.2.8 8. Law of Excluded Middle

a ∨ ¬a = max(a, 1− a) = 1, µ(a ∨ ¬a) = T.

The Law of Excluded Middle holds since the maximum of a and 1− a is always 1.

6.2.9 9. Law of Non-Contradiction

a ∧ ¬a = min(a, 1− a) ≤ 0.5, µ(a ∧ ¬a) = F.

The Law of Non-Contradiction holds because the minimum of a and 1− a is always less
than or equal to 0.5.

6.3 Conclusion

All the classical logical properties hold within the Lukasiewicz space L. Therefore, L :=
((X, k),∧,∨,¬,→,↔, ∀, ∃, µ) is a valid Lukasiewicz semantic space of logic.

7 Example: Evaluating Hypotheses in the Lukasiewicz
Semantic Space

7.1 Toy dataset description

Consider the toy dataset of smartphones with properties such as ’Battery Life’, ’Screen
Size’, ’Weight’, ’Performance’, and ’Price’. The kernel for these properties is given by
the following Gram matrix G:

G =

Battery Life Screen Size Weight Performance Price

Battery Life 1.00
1

2

1

6

1

3

1

6

Screen Size
1

2
1.00

1

12

1

6

1

3

Weight
1

6

1

12
1.00

1

2

1

4

Performance
1

3

1

6

1

2
1.00

1

2

Price
1

6

1

3

1

4

1

2
1.00

7.2 Feature Map and Perspective Vector

Perform a ’Cholesky Decomposition’ on the Gram matrix G to find the embedding ϕ(x)
such that:

Gx,y = k(x, y) = ⟨ϕ(x), ϕ(y)⟩
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Select ’Performance’ as the perspective vector w. Compute the projections of each
property onto w:

proj(w, x) = ⟨ϕ(w), ϕ(x)⟩ = k(w, x)

7.3 Computed Projections

� Battery Life: proj(w,Battery Life) =
1

3
≈ 0.333 → F

� Screen Size: proj(w, Screen Size) =
1

6
≈ 0.167 → F

� Weight: proj(w,Weight) =
1

2
= 0.5 → I

� Performance: proj(w,Performance) = 1.00 → T

� Price: proj(w,Price) =
1

2
= 0.5 → I

These projections represent the degrees of association of each property with ’Perfor-
mance’ within the semantic space.

7.4 Formulating and Evaluating Hypotheses

Based on the dataset and the computed projections, we formulate several hypotheses in
both propositional and first-order logic. Each hypothesis is then evaluated within the
Lukasiewicz semantic space to determine its truth value (T , I, or F ).

7.4.1 Propositional Logic Hypotheses

Hypothesis A :
Performance → Battery Life

� Meaning: If a smartphone has high performance, then it has long battery life.

� Evaluation:

Performance → Battery Life = min

(
1, 1− 1.00 +

1

3

)
= min

(
1,

1

3

)
=

1

3
≈ 0.333

µ (Performance → Battery Life) = F since 0.333 <
1

2

� Interpretation: The hypothesis is False, indicating that higher performance does
not necessarily imply longer battery life.
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Hypothesis B :
Price → (Performance ∧ Screen Size)

� Meaning: If a smartphone is expensive, then it has high performance and a large
screen size.

� Evaluation:

Performance ∧ Screen Size = min

(
1.00,

1

6

)
=

1

6
≈ 0.167

Price → (Performance∧Screen Size) = min

(
1, 1− 1

2
+

1

6

)
= min

(
1,

2

3

)
=

2

3
≈ 0.667

µ (Price → (Performance ∧ Screen Size)) = T since 0.667 >
1

2

� Interpretation: The hypothesis is True, suggesting that more expensive smart-
phones tend to have both high performance and larger screen sizes.

Hypothesis C :
Weight ∨ Price

� Meaning: The smartphone is either heavy or expensive.

� Evaluation:

Weight ∨ Price = max

(
1

2
,
1

2

)
=

1

2
= 0.5

µ (Weight ∨ Price) = I since 0.5 =
1

2

� Interpretation: The hypothesis is Indeterminate, indicating that the disjunc-
tion is exactly at the threshold and cannot be conclusively determined as true or
false.

7.4.2 First-Order Logic Hypotheses

Hypothesis D :
∀a ∈ X, (Performance → a)

� Meaning: For every property a, if a smartphone has high performance, then it
possesses property a.

� Evaluation:

∀a ∈ X, Performance → a = min (Performance → Battery Life, Performance → Screen Size, Performance → Weight, Performance → Performance, Performance → Price)
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Calculating each implication:

Performance → Battery Life =
1

3
≈ 0.333

Performance → Screen Size = min

(
1, 1− 1.00 +

1

6

)
= min

(
1,

1

6

)
=

1

6
≈ 0.167

Performance → Weight = min

(
1, 1− 1.00 +

1

2

)
= min

(
1,

1

2

)
=

1

2
= 0.5

Performance → Performance = min (1, 1− 1.00 + 1.00) = min (1, 1) = 1.00

Performance → Price = min

(
1, 1− 1.00 +

1

2

)
= min

(
1,

1

2

)
=

1

2
= 0.5

Therefore:

∀a ∈ X, Performance → a = min (0.333, 0.167, 0.5, 1.00, 0.5) = 0.167

µ (∀a ∈ X, Performance → a) = F since 0.167 <
1

2

� Interpretation: The universal statement is False because there exists at least
one property (’Screen Size’) for which the implication Performance → a is false.

Hypothesis E :
∃a ∈ X, (Price → a)

� Meaning: There exists at least one property a such that if a smartphone is ex-
pensive, then it possesses property a.

� Evaluation:

∃a ∈ X, Price → a = max (P. → Bt.L., P. → Scr.Si., P. → W., P. → Perf., P. → P.)

Calculating each implication:

Price → Battery Life = min

(
1, 1− 1

2
+

1

3

)
= min

(
1,

5

6

)
=

5

6
≈ 0.833

Price → Screen Size = min

(
1, 1− 1

2
+

1

6

)
= min

(
1,

2

3

)
=

2

3
≈ 0.667

Price → Weight = min

(
1, 1− 1

2
+

1

4

)
= min

(
1,

3

4

)
=

3

4
= 0.75

Price → Performance = min

(
1, 1− 1

2
+ 1.00

)
= min

(
1,

3

2

)
= 1.00

Price → Price = min

(
1, 1− 1

2
+

1

2

)
= min (1, 1) = 1.00
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Therefore:

∃a ∈ X, Price → a = max (0.833, 0.667, 0.75, 1.00, 1.00) = 1.00

µ (∃a ∈ X, Price → a) = T since 1.00 >
1

2

� Interpretation: The existential statement is True because there exists at least
one property (’Performance’ and ’Price’ themselves) for which the implication
Price → a holds true.

Hypothesis F :
¬ (∀a ∈ X, Performance → a)

� Meaning: It is not the case that for every property a, if a smartphone has high
performance, then it possesses property a.

� Evaluation:

¬ (∀a ∈ X, Performance → a) = ∃a ∈ X, ¬ (Performance → a)

Calculate ¬ (Performance → a) for each a:

¬ (Performance → a) = 1− (Performance → a) = 1−min (1, 1− 1.00 + a)

Since Performance = 1.00, this simplifies to:

¬ (Performance → a) = 1−min (1, a) = max (0, 1− a)

Evaluating for each property:

Battery Life : ¬ (Performance → Battery Life) = 1− 0.333 = 0.667

Screen Size : ¬ (Performance → Screen Size) = 1− 0.167 = 0.833

Weight : ¬ (Performance → Weight) = 1− 0.5 = 0.5

Performance : ¬ (Performance → Performance) = 1− 1.00 = 0.0

Price : ¬ (Performance → Price) = 1− 0.5 = 0.5

Therefore:

∃a ∈ X, ¬ (Performance → a) = max (0.667, 0.833, 0.5, 0.0, 0.5) = 0.833

µ (¬ (∀a ∈ X, Performance → a)) = T since 0.833 >
1

2

� Interpretation: The negation of the universal statement is True, reinforcing that
not all implications from performance to other properties are valid.
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7.4.3 Summary of Hypotheses Evaluation

Hypothesis Logical Form Evaluation Truth Value
A Performance → Battery Life 0.333 < 0.5 F
B Price → (Performance ∧ Screen Size) 0.667 > 0.5 T
C Weight ∨ Price 0.5 = 0.5 I
D ∀a ∈ X, Performance → a 0.167 < 0.5 F
E ∃a ∈ X, Price → a 1.00 > 0.5 T
F ¬(∀a ∈ X, Performance → a) 0.833 > 0.5 T

Tabelle 3: Summary of Hypotheses Evaluation in the Lukasiewicz Semantic Space

Overall Interpretation:

� Hypothesis A is False, indicating that higher performance does not necessarily
imply longer battery life. This aligns with real-world observations where high-
performance devices often consume more power, reducing battery life.

� Hypothesis B is True, suggesting that more expensive smartphones tend to have
both high performance and larger screen sizes. This matches consumer expectations
that premium devices offer superior features.

� Hypothesis C is Indeterminate, indicating that the disjunction is exactly at
the threshold. This reflects a balanced relationship where being heavy or expensive
is neither strongly true nor false.

� Hypothesis D is False, highlighting that not all properties are implied by per-
formance. Specifically, ’Screen Size’ does not follow from high performance, which
is realistic as performance improvements do not necessarily require larger screens.

� Hypothesis E is True, confirming that there exists at least one property (’Perfor-
mance’ itself) for which the implication holds true. This is intuitive, as a device’s
performance inherently relates to itself.

� Hypothesis F is True, reinforcing that it is not the case that all properties are
implied by performance. This underscores the selective influence of performance
on other device attributes.

These evaluations demonstrate the effectiveness of the Lukasiewicz semantic space
in validating logical hypotheses against a realistic dataset. By leveraging the defined
logical operations and the evaluation function, we can rigorously test and interpret the
relationships between different properties within the semantic space framework.
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7.5 Conclusion of the Example

This example illustrates how the Lukasiewicz semantic space of logic can be applied to
a practical dataset of smartphones. By defining logical operations within the semantic
space and utilizing the evaluation function, we successfully formulated and evaluated
multiple hypotheses, uncovering meaningful relationships between smartphone proper-
ties. This approach showcases the potential of semantic spaces in modeling and reasoning
about complex, real-world data, providing a robust framework for logical analysis and
knowledge representation.

8 Toy Example: Evaluating Hypotheses About Animals
(Cats) Using the Lukasiewicz Semantic Space
Framework

8.1 Assigned Animals and Similarity Matrix

8.1.1 Animals

1. Domestic Cat

2. Tiger

3. Lion

4. Cheetah

5. Leopard

8.1.2 Similarity Matrix

Domestic Cat Tiger Lion Cheetah Leopard
Domestic Cat 1 1

2
2
3

1
3

1
6

Tiger 1
2

1 3
4

2
3

1
3

Lion 2
3

3
4

1 1
2

1
4

Cheetah 1
3

2
3

1
2

1 1
2

Leopard 1
6

1
3

1
4

1
2

1

Tabelle 4: Similarity Matrix Among Selected Felines

8.1.3 Interpretation

� Similarity Scores range from 1 (identical) to lower fractions indicating lesser
similarity.

� The diagonal elements are all 1, representing perfect similarity of an animal with
itself.
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Abbildung 2: Cats

8.2 Lukasiewicz Semantic Space Framework

8.2.1 Definitions Recap

� Conjunction (∧): α ∧ β = min(α, β)

� Disjunction (∨): α ∨ β = max(α, β)

� Negation (¬): ¬α = 1− α

� Implication (→): α → β = min(1, 1− α + β)

� Biconditional (↔): α ↔ β = 1− |α− β|

� Evaluation Function (µ):

µ(α) =


T if α > 0.5,

I if α = 0.5,

F if α < 0.5.
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8.2.2 Perspective Vector

For consistency, we select Domestic Cat as our perspective vector w. Thus, the pro-
jection of each animal onto w is given by their similarity score.

8.3 Formulating Hypotheses

We will formulate the following hypotheses about the felines and evaluate them within
the Lukasiewicz semantic space:

1. Hypothesis A: If a Domestic Cat is similar to a Tiger, then it is similar to a
Lion.

2. Hypothesis B: A Domestic Cat is either similar to a Cheetah or not similar to
a Leopard.

3. Hypothesis C: A Domestic Cat is similar to a Tiger and a Lion.

4. Hypothesis D: For every pair of animals, if one is similar to a Cheetah, then the
other is not similar to a Leopard.

5. Hypothesis E: There exists at least one animal that is neither similar to a Do-
mestic Cat nor similar to a Tiger.

8.4 Detailed Evaluation of Hypotheses

8.4.1 Hypothesis A: If a Domestic Cat is similar to a Tiger, then it is similar to a
Lion.

Logical Formulation
Tiger → Lion

Evaluation

Tiger =
1

2
, Lion =

2

3

Tiger → Lion = min

(
1, 1− 1

2
+

2

3

)
= min

(
1,

7

6

)
= 1

µ (Tiger → Lion) = T

Interpretation The implication evaluates to True. This suggests that within the se-
mantic space, the similarity of Domestic Cat to Tiger positively influences its similarity
to Lion.
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8.4.2 Hypothesis B: A Domestic Cat is either similar to a Cheetah or not similar
to a Leopard.

Logical Formulation
Cheetah ∨ ¬Leopard

Evaluation

Cheetah =
1

3
, ¬Leopard = 1− 1

6
=

5

6

Cheetah ∨ ¬Leopard = max

(
1

3
,
5

6

)
=

5

6

µ (Cheetah ∨ ¬Leopard) = T

Interpretation The disjunction evaluates to True, indicating that a Domestic Cat is
either somewhat similar to a Cheetah or significantly dissimilar to a Leopard.

8.4.3 Hypothesis C: A Domestic Cat is similar to a Tiger and a Lion.

Logical Formulation
Tiger ∧ Lion

Evaluation

Tiger =
1

2
, Lion =

2

3

Tiger ∧ Lion = min

(
1

2
,
2

3

)
=

1

2

µ (Tiger ∧ Lion) = I

Interpretation The conjunction evaluates to Indeterminate. This reflects a balanced
similarity where Domestic Cat shares moderate similarity with both Tiger and Lion, but
not strongly enough to be definitively true.

8.4.4 Hypothesis D: For every pair of animals, if one is similar to a Cheetah,
then the other is not similar to a Leopard.

Logical Formulation

∀x ∈ {Domestic Cat,Tiger,Lion,Cheetah,Leopard}, (x → ¬Leopard)
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Evaluation For each animal x, compute x → ¬Leopard:

1. Domestic Cat:

x = 1, ¬Leopard = 1− 1

6
=

5

6

x → ¬Leopard = min

(
1, 1− 1 +

5

6

)
= min

(
1,

5

6

)
=

5

6

2. Tiger:

x =
1

2
, ¬Leopard =

5

6

x → ¬Leopard = min

(
1, 1− 1

2
+

5

6

)
= min

(
1,

7

6

)
= 1

3. Lion:

x =
2

3
, ¬Leopard =

5

6

x → ¬Leopard = min

(
1, 1− 2

3
+

5

6

)
= min

(
1,

7

6

)
= 1

4. Cheetah:

x =
1

3
, ¬Leopard =

5

6

x → ¬Leopard = min

(
1, 1− 1

3
+

5

6

)
= min

(
1,

7

6

)
= 1

5. Leopard:

x =
1

6
, ¬Leopard =

5

6

x → ¬Leopard = min

(
1, 1− 1

6
+

5

6

)
= min (1, 1) = 1

Therefore:

∀x, x → ¬Leopard = min

(
5

6
, 1, 1, 1, 1

)
=

5

6

µ (∀x, x → ¬Leopard) = T

Interpretation The universal statement evaluates to True, indicating that for every
animal, if it is similar to a Cheetah, then it is not significantly similar to a Leopard.
This aligns with biological distinctions where Cheetahs and Leopards occupy different
ecological niches.
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8.4.5 Hypothesis E: There exists at least one animal that is neither similar to a
Domestic Cat nor similar to a Tiger.

Logical Formulation

∃x ∈ {Lion,Cheetah,Leopard}, (¬Domestic Cat ∧ ¬Tiger)

Evaluation First, identify animals that are neither similar to Domestic Cat nor to
Tiger:

1. Lion:

Similarity with Domestic Cat =
2

3
, Similarity with Tiger =

3

4

¬Domestic Cat = 1− 2

3
=

1

3
, ¬Tiger = 1− 3

4
=

1

4

¬Domestic Cat ∧ ¬Tiger = min

(
1

3
,
1

4

)
=

1

4

2. Cheetah:

Similarity with Domestic Cat =
1

3
, Similarity with Tiger =

2

3

¬Domestic Cat = 1− 1

3
=

2

3
, ¬Tiger = 1− 2

3
=

1

3

¬Domestic Cat ∧ ¬Tiger = min

(
2

3
,
1

3

)
=

1

3

3. Leopard:

Similarity with Domestic Cat =
1

6
, Similarity with Tiger =

1

3

¬Domestic Cat = 1− 1

6
=

5

6
, ¬Tiger = 1− 1

3
=

2

3

¬Domestic Cat ∧ ¬Tiger = min

(
5

6
,
2

3

)
=

2

3

Therefore:

∃x, (¬Domestic Cat ∧ ¬Tiger) = max

(
1

4
,
1

3
,
2

3

)
=

2

3

µ (∃x, (¬Domestic Cat ∧ ¬Tiger)) = T
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Interpretation The existential statement evaluates toTrue, indicating that there exists
at least one animal (e.g., Leopard) that is neither significantly similar to a Domestic Cat
nor to a Tiger.

8.5 Summary of Hypotheses Evaluation

Hypothesis Logical Form Evaluation Truth Value
A Tiger → Lion 1 T
B Cheetah ∨ ¬Leopard 5

6
T

C Tiger ∧ Lion 1
2

I
D ∀x, x → ¬Leopard 5

6
T

E ∃x, (¬Domestic Cat ∧ ¬Tiger) 2
3

T

Tabelle 5: Summary of Hypotheses Evaluation

8.6 Interpretation of Results

1. Hypothesis A (True):

� Conclusion: If a Domestic Cat is similar to a Tiger, it is indeed similar to a
Lion.

� Insight: This aligns with biological taxonomy, as Tigers and Lions are both
big cats within the same genus.

2. Hypothesis B (True):

� Conclusion: A Domestic Cat is either somewhat similar to a Cheetah or
significantly dissimilar to a Leopard.

� Insight: Domestic Cats share moderate similarities with Cheetahs but are
less similar to Leopards, reflecting differences in behavior and habitat.

3. Hypothesis C (Indeterminate):

� Conclusion: The Domestic Cat’s similarity to both Tiger and Lion is balan-
ced, neither definitively true nor false.

� Insight: While Domestic Cats share traits with both Tigers and Lions, the
moderate similarity suggests a nuanced relationship.

4. Hypothesis D (True):

� Conclusion: For every animal, if it is similar to a Cheetah, then it is not
significantly similar to a Leopard.

� Insight: Cheetahs and Leopards occupy different ecological niches, and their
dissimilarities are reflected in the semantic space.

5. Hypothesis E (True):
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� Conclusion: There exists at least one animal (e.g., Leopard) that is neither
significantly similar to a Domestic Cat nor to a Tiger.

� Insight: This highlights the diversity within the feline family, where certain
species like Leopards exhibit distinct characteristics.

8.7 Visual Representation of Hypotheses

To further elucidate the relationships, consider the following simplified visualization:

� Domestic Cat:

– Strong similarity with itself (1).

– Moderate similarity with Tiger (0.5) and Lion (0.666).

– Lower similarity with Cheetah (0.333) and Leopard (0.166).

� Tiger:

– High similarity with Lion (0.75).

– Moderate similarity with Cheetah (0.666) and Leopard (0.333).

� Lion:

– Moderate similarity with Cheetah (0.5) and lower with Leopard (0.25).

� Cheetah:

– Moderate similarity with Leopard (0.5).

This structure illustrates how the semantic space captures varying degrees of similarity
among the felines, enabling the formulation and evaluation of logical hypotheses.

8.8 Conclusion

By leveraging the Lukasiewicz semantic space framework, we have successfully for-
mulated and evaluated logical hypotheses about the similarities among various felines.
This method provides a robust mechanism for reasoning about relationships within a
set of entities based on their similarity metrics. The framework’s ability to handle inde-
terminate truth values further enhances its applicability in scenarios where relationships
are nuanced and not strictly binary.
This approach can be extended to more complex datasets and broader sets of entities,

offering valuable insights in fields such as biology, taxonomy, and cognitive science.
Additionally, integrating this framework with machine learning models can facilitate
automated reasoning and knowledge discovery based on similarity measures.
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9 Possible Applications

The semantic space framework described in this document has the potential to benefit
society in multiple ways across various domains. By integrating logical reasoning with
geometric representations, this system offers a novel approach to handling complex in-
formation, reasoning under uncertainty, and modeling human cognition.

9.1 Artificial Intelligence and Machine Learning

In the field of artificial intelligence (AI) and machine learning, the semantic space frame-
work can enhance natural language processing (NLP) and understanding. By represen-
ting logical operations and quantifiers within a geometric space, AI systems can better
interpret and generate human language that involves nuanced logical relationships.

� Knowledge Representation: The framework allows for the representation of
knowledge in a continuous space, facilitating the handling of ambiguous or uncer-
tain information.

� Reasoning Under Uncertainty: Incorporating the indeterminate truth value I
enables AI systems to reason effectively even when information is incomplete or
ambiguous.

� Semantic Understanding: Enhanced modeling of semantic relationships can
improve machine translation, sentiment analysis, and information retrieval.

9.2 Cognitive Science and Psychology

The geometric approach to logic mirrors certain aspects of human cognition. By modeling
how concepts relate in a semantic space, researchers can gain insights into how people
process information and reason about the world.

� Concept Formation: Understanding how concepts are structured and related
can inform theories of learning and memory.

� Perspectivism: The use of perspective vectors aligns with the idea that indivi-
duals have different viewpoints, which can be modeled and analyzed.

9.3 Decision-Making Systems

In complex decision-making scenarios, especially those involving multiple criteria and
stakeholders, the framework can assist in evaluating options based on various perspec-
tives.

� Multi-Criteria Decision Analysis: Quantifying and comparing different criteria
within a unified space can aid in making balanced decisions.

� Conflict Resolution: Modeling different viewpoints can help identify common
ground and facilitate negotiations.
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9.4 Semantic Web and Ontologies

The semantic space framework can enhance the development of ontologies and the se-
mantic web by providing a mathematical foundation for representing and reasoning
about knowledge.

� Ontology Alignment: Geometric representations can assist in aligning different
ontologies by measuring the similarity of concepts.

� Knowledge Integration: Combining information from various sources becomes
more manageable within a unified semantic space.

9.5 Philosophical Logic and Formal Epistemology

The framework offers a new perspective on traditional logical systems, potentially con-
tributing to discussions in philosophical logic.

� Non-Classical Logics: Exploring how classical logical properties are preserved
or modified can lead to the development of new logical systems.

� Epistemic Logic: Modeling knowledge and belief within a geometric space can
provide insights into epistemological questions.

9.6 Education and Pedagogy

The intuitive geometric interpretation of logical concepts can serve as an educational
tool.

� Teaching Logic: Visual representations can make abstract logical concepts more
accessible to students.

� Critical Thinking Skills: Encouraging students to think about information from
different perspectives enhances critical thinking.

9.7 Enhancing Communication and Understanding

By modeling different perspectives and their logical interactions, the framework can aid
in improving communication across diverse groups.

� Cross-Cultural Understanding: Representing concepts from various cultural
perspectives can foster mutual understanding.

� Collaborative Problem-Solving: Identifying and reconciling different viewpoints
can lead to more effective collaboration.
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9.8 Data Analysis and Interpretation

In fields such as data science and analytics, the framework can be used to interpret
complex datasets.

� Pattern Recognition: Geometric representations can help identify patterns and
relationships within data.

� Uncertainty Quantification: Incorporating indeterminate values allows for more
nuanced analysis of uncertain or incomplete data.

9.9 Conclusion of Applications

Overall, the semantic space framework provides a versatile tool for modeling and rea-
soning about complex information. Its ability to integrate logical operations within a
geometric context opens up new possibilities for AI, cognitive science, decision-making,
and beyond. By embracing this approach, society can develop more sophisticated sys-
tems that handle ambiguity and diversity of perspectives, ultimately leading to more
effective solutions to complex problems.

10 Application to the House Price Prediction Dataset
from Kaggle

The House Price Prediction Dataset on Kaggle is a popular dataset used for predictive
modeling, especially in regression tasks where the goal is to estimate house prices based
on a variety of features. This dataset contains information about houses that cover a
broad spectrum of attributes such as location, size, number of rooms, condition, and year
built. It is frequently used in competitions and academic work to benchmark models for
real estate price prediction.

10.1 Interpretation of Sequences of Properties

Let S = (X, k) be a ’the’ Lukasiewicz semantic space of logic derived below with the
Python code for the house price prediction dataset and x1, x2, · · · , xr be a sequence of
elements of X, where X are the house properties. We want to be able to express the
following idea as a formula: Starting from x1 we deduce in a sequence of r steps that
xr must be true. Therefore we interpret this sequence as the following formula, which
basically says, I start with x1 as being true, then I keep on adding that from x1 → xi,
until we arrive at xr:

F = x1 ∧ (x1 → x2) ∧ (x2 → x3) ∧ . . . ∧ (xr−1 → xr) (1)

This approach makes sense becaus Modus Ponens holds in this framework.
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Having this formula F , we can now compute given say the perspective w = x1 how
likely F is:
This could help with generative models, where one would start with F = x1 and keep

adding x such that F ′ := F ∧ (x1 → x) has the largest value among the x ∈ X.
Here is an empirical result with interpretation in prosa:

� Bedrooms → Area → Bathrooms → Floors → YearBuilt → Price → Ga-
rage Yes → Location Rural → Location Suburban → Location Urban →
Condition Fair → Condition Good:

This chain starts from Bedrooms, implying a logical sequence of attri-
butes from bedrooms to good condition. This chain holds True with a
confidence of 0.7227.

� Bathrooms → Area → Bedrooms → Floors → YearBuilt → Price → Ga-
rage Yes → Location Rural → Location Suburban → Location Urban →
Condition Fair → Condition Good:

Starting from Bathrooms, the sequence leads to good condition. This
chain holds True with a confidence of 0.7143.

� Floors → Price → Area → Bedrooms → Bathrooms → YearBuilt → Loca-
tion Rural → Location Suburban → Location Urban → Condition Fair
→ Condition Good → Condition Poor:

Beginning with Floors, this chain implies eventual poor condition. This
chain holds True with a confidence of 0.6920.

� YearBuilt → Price → Area → Bedrooms → Bathrooms → Floors → Loca-
tion Suburban → Location Rural → Location Urban → Condition Fair
→ Condition Good → Condition Poor:

Starting from YearBuilt, the chain eventually leads to poor condition.
This chain holds True with a confidence of 0.7523.

� Price → Area → Bedrooms → Bathrooms → Floors → YearBuilt → Ga-
rage Yes → Location Rural → Location Suburban → Location Urban →
Condition Fair → Condition Good:

Starting from Price, the chain leads to good condition. This chain holds
True with a confidence of 0.7573.

� Location Rural:

The location is rural, and this property is True with a confidence of
1.0000.

� Location Suburban:

The location is suburban, and this property is True with a confidence
of 1.0000.
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� Location Urban:

The location is urban, and this property is True with a confidence of
1.0000.

� Condition Fair → Price → Area → Bedrooms → Bathrooms → Floors →
YearBuilt → Location Rural → Location Suburban → Location Urban
→ Condition Good → Condition Poor:

Starting from Condition Fair, the sequence indicates a downward pro-
gression to poor condition. This chain is Indeterminate with a confi-
dence of 0.4649.

� Condition Good:

The condition of the property is good, and this property is True with a
confidence of 1.0000.

� Condition Poor:

The condition of the property is poor, and this property is True with a
confidence of 1.0000.

11 Conclusion

In this document, we have developed and formalized a semantic space framework that
captures logical reasoning in a geometric context using Reproducing Kernel Hilbert
Spaces (RKHS). Through this construction, logical operations such as conjunction, dis-
junction, negation, implication, and quantification have been defined using inner pro-
ducts and projections in the RKHS. The framework adheres to classical logical pro-
perties, ensuring compatibility with established logical systems while providing a novel
geometric perspective.
Our analysis demonstrates the versatility of the framework in various applications,

such as propositional and first-order logic, as well as conceptual spaces. This approach
offers advantages in handling uncertainty, ambiguity, and indeterminate truth values,
which are particularly useful in fields like artificial intelligence, cognitive science, and
knowledge representation. Furthermore, by connecting algebraic and geometric methods,
the framework opens new avenues for exploring the logical structure of complex data
and conceptual relationships.
Overall, the semantic space framework provides a powerful and intuitive tool for re-

asoning about logical systems within a geometric paradigm, enhancing both theoretical
understanding and practical applications in diverse domains.

12 Appendix: Python Code

In this section we list some Python code to show the application of the Lukasiewicz
semantic space of logic for the House Price Prediction Dataset which is on Kaggle.
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� �
1 # Code for generating random hypothesis / propositional formulas and

testing them:

2 import random

3

4 import pandas as pd

5 import numpy as np

6 from sklearn.preprocessing import OneHotEncoder , MinMaxScaler

7 from sklearn.metrics.pairwise import cosine_similarity

8

9 # Logical Operations as per Lukasiewicz Logic

10 def AND(a, b):

11 return np.minimum(a, b)

12

13 def OR(a, b):

14 return np.maximum(a, b)

15

16 def NOT(a):

17 return 1 - a

18

19 def IMPLIES(a, b):

20 return np.minimum(1, 1 - a + b)

21

22 def IFF(a, b):

23 return 1 - np.abs(a - b)

24

25

26 def existential_quantifier(t_values):

27 """

28 Existential quantifier Exists x in M, P(x). Takes the maximum value

from the list of t_values.

29 """

30 return max(t_values)

31

32 # Compute Forall x in M, P(x) (universal quantifier)

33 def universal_quantifier(t_values):

34 """

35 Universal quantifier Forall x in M, P(x). Takes the minimum value

from the list of t_values.

36 """

37 return min(t_values)

38

39 # Evaluation Function

40 def evaluate(value):

41 eps = 5*1e-2

42 if value > 0.5+ eps:

43 return ’True’

44 elif 0.5-eps <= value and value <= 0.5+ eps:

45 return ’Indeterminate ’

46 else:

47 return ’False ’

48

49 # Load the Bank Marketing Dataset
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50 def load_data(filepath ,sep=";"):

51 df = pd.read_csv(filepath , sep=sep)

52 return df

53

54 # Preprocess the Data

55 def preprocess_data(df ,remove_columns = []):

56 # Separate features

57 X = df

58 for rm in remove_columns:

59 X = X.drop(rm,axis =1)

60

61 # Identify categorical and numerical columns

62 categorical_cols = X.select_dtypes(include =[’object ’]).columns

63 numerical_cols = X.select_dtypes(include =[’int64’, ’float64 ’]).

columns

64 print(categorical_cols ,numerical_cols)

65

66 # One -Hot Encode Categorical Variables

67 encoder = OneHotEncoder(sparse_output=False , drop=’first’)

68 X_encoded = pd.DataFrame(encoder.fit_transform(X[categorical_cols ])

,

69 columns=encoder.get_feature_names_out(

categorical_cols))

70

71 X_numerical = X[numerical_cols]

72

73 # Scale Numerical Variables

74 scaler = MinMaxScaler ()

75 X_scaled = pd.DataFrame(scaler.fit_transform(X[numerical_cols ]),

76 columns=numerical_cols)

77

78 # Combine Encoded and Scaled Features

79 X_processed = pd.concat ([X_scaled , X_encoded], axis =1)

80

81 X_final = X_processed.dropna ()

82

83 return X_final

84

85 # Build Similarity Matrix

86 def build_similarity_matrix(X):

87 similarity = cosine_similarity(X.T)

88 similarity_df = pd.DataFrame(similarity , index=X.columns , columns=X

.columns)

89 return similarity_df

90

91 def generate_random_formula(variables , gram_matrix , perspective ,

max_depth =3, current_depth =0):

92 """

93 Recursively generate a random propositional formula.

94

95 Args:

96 variables (list of str): List of propositional variables.
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97 max_depth (int): Maximum depth of the formula.

98 current_depth (int): Current depth in the recursion.

99

100 Returns:

101 str: A random propositional formula as a string.

102 """

103 df = gram_matrix

104 w = perspective

105 dd = {"AND":AND ,"IFF":IFF ,"IMPLIES":IMPLIES ,"NOT":NOT ,"OR":OR}

106

107 # Base case: return a variable , possibly negated

108 if current_depth >= max_depth or (current_depth > 0 and random.

random () < 0.3):

109 var = random.choice(variables)

110 proj = df.loc[w,var]

111 if random.random () < 0.3:

112 return f’(NOT {var})’,NOT(proj)

113 else:

114 return var ,proj

115 else:

116 # Choose a binary operator

117 operator = random.choice ([’AND’, ’OR’, ’IMPLIES ’, ’IFF’])

118 opr = dd[operator]

119

120 # Recursively generate left and right sub -formulas

121 left = generate_random_formula(variables , gram_matrix ,

perspective , max_depth , current_depth + 1)

122 right = generate_random_formula(variables , gram_matrix ,

perspective , max_depth , current_depth + 1)

123

124 return f’({left [0]} {operator} {right [0]})’,opr(left[1], right

[1])

125

126 def generate_multiple_formulas(variables , similarity_df , perspective ,

num_formulas =5, max_depth =3):

127 """

128 Generate multiple random propositional formulas.

129

130 Args:

131 variables (list of str): List of propositional variables.

132 num_formulas (int): Number of formulas to generate.

133 max_depth (int): Maximum depth of each formula.

134

135 Returns:

136 list of str: A list containing generated propositional formulas

.

137 """

138 formulas = []

139 for _ in range(num_formulas):

140 formula = generate_random_formula(variables , similarity_df ,

perspective , max_depth)

141 formulas.append(formula)
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142 return formulas

143

144

145 if __name__ == "__main__":

146 filepath = "./ kaggle_datasets/House Price Prediction Dataset.csv"

147 sepHouse= ","

148

149 sep = sepHouse

150 #print(description)

151

152 # Load Data

153 print("Loading data ...")

154 df = load_data(filepath ,sep)

155

156 # Preprocess Data

157 print("Preprocessing data ...")

158 X_processed = preprocess_data(df,remove_columns = ["Id"])

159

160 # Build Similarity Matrix

161 print("Building similarity matrix ...")

162 similarity_df = build_similarity_matrix(X_processed)

163 print(similarity_df.columns)

164

165 # Define the list of variables

166 X = similarity_df.columns.tolist ()

167

168

169 for perspective in X:

170 # Generate 5 random propositional formulas

171

172 formulas_found = 0

173 while not formulas_found >5:

174 random_formulas = generate_multiple_formulas(X,

similarity_df , perspective , num_formulas =150, max_depth

=1)

175 evs = []

176 # Display the generated formulas

177

178 for idx , formula in enumerate(random_formulas , 1):

179 if formula [1] >0.45 and formula [1] <0.55 or formula

[1] <0.15 or formula [1] >0.85:

180 evs.append (( formula [1], evaluate(formula [1]),formula

))

181 formulas_found += 1

182 print("Randomly Generated Propositional Formulas

for perspective (",perspective ,"):")

183 print(evs[-1])

184 break� �� �
1 # Code for generating sequence of likely implications starting from a

property / desired perspective:

2 import random
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3

4 import pandas as pd

5 import numpy as np

6 from sklearn.preprocessing import OneHotEncoder , MinMaxScaler

7 from sklearn.metrics.pairwise import cosine_similarity

8

9 # Logical Operations as per Lukasiewicz Logic

10 def AND(a, b):

11 return np.minimum(a, b)

12

13 def OR(a, b):

14 return np.maximum(a, b)

15

16 def NOT(a):

17 return 1 - a

18

19 def IMPLIES(a, b):

20 return np.minimum(1, 1 - a + b)

21

22 def IFF(a, b):

23 return 1 - np.abs(a - b)

24

25

26

27 # Evaluation Function

28 def evaluate(value):

29 eps = 5*1e-2

30 if value > 0.5+ eps:

31 return ’True’

32 elif 0.5-eps <= value and value <= 0.5+ eps:

33 return ’Indeterminate ’

34 else:

35 return ’False ’

36

37 # Load the Bank Marketing Dataset

38 def load_data(filepath ,sep=";"):

39 df = pd.read_csv(filepath , sep=sep)

40 return df

41

42 # Preprocess the Data

43 def preprocess_data(df ,remove_columns = []):

44 # Separate features

45 X = df

46 for rm in remove_columns:

47 X = X.drop(rm,axis =1)

48

49 # Identify categorical and numerical columns

50 categorical_cols = X.select_dtypes(include =[’object ’]).columns

51 numerical_cols = X.select_dtypes(include =[’int64’, ’float64 ’]).

columns

52 print(categorical_cols ,numerical_cols)

53
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54 # One -Hot Encode Categorical Variables

55 encoder = OneHotEncoder(sparse_output=False , drop=’first’)

56 X_encoded = pd.DataFrame(encoder.fit_transform(X[categorical_cols ])

,

57 columns=encoder.get_feature_names_out(

categorical_cols))

58

59 X_numerical = X[numerical_cols]

60

61 # Scale Numerical Variables

62 scaler = MinMaxScaler ()

63 X_scaled = pd.DataFrame(scaler.fit_transform(X[numerical_cols ]),

64 columns=numerical_cols)

65

66 # Combine Encoded and Scaled Features

67 X_processed = pd.concat ([X_scaled , X_encoded], axis =1)

68

69 X_final = X_processed.dropna ()

70

71 return X_final

72

73

74 def kk(a,b,df=similarity_df):

75 return df.loc[a,b]

76

77 def proj(kk ,a,b):

78 return kk(a,b,df=similarity_df)

79

80 def test_sequence(kk ,seq):

81 # linear logic

82 #print(f"\ nTesting {description} sequence: {’ -> ’.join(txt)}")

83 w = seq[0]

84 start = proj(kk, w, w) # Start with the assumption that the first

word’s projection is true

85

86 for i in range(len(seq) - 1):

87 xi = seq[i]

88 pxi = proj(kk , w, xi)

89 xj = seq[i+1]

90 pxj = proj(kk ,w,xj)

91 impl = IMPLIES(pxi ,pxj)

92 start = AND(start , impl)

93 truth_val = evaluate(start)

94 #print(seq ,truth_val)

95 #print(f"Sequence is evaluated as: {truth_val} ({start :.3f})")

96 return (truth_val ,start)

97

98 # Evaluate both sequences

99

100

101 def generate_next_token(kk ,ll ,X):

102 max_prob = -2
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103 max_word = ""

104 for w in X:

105 seqs = ll+[w]

106 tv,prob = test_sequence(kk,seqs)

107 #print(seqs ,tv,prob)

108 if prob > max_prob and not (w in ll):

109 max_word = w

110 max_prob = prob

111 if max_word !="":

112 return ll+[ max_word]

113 else:

114 return ll

115 def generate_meaningful_sequence(kk ,ll ,Ngen ,X,verbose=False):

116 if Ngen is None:

117 ll0 = [l for l in ll]

118 while test_sequence(kk,ll0)[0]!="False":

119 ll1 = generate_next_token(kk ,ll0 ,X)

120 if verbose:

121 print(ll0 ,test_sequence(kk,ll0))

122 if len(ll0)==len(ll1):

123 break

124 return ll0

125 else:

126 ll0 = [l for l in ll1]

127 ll0.pop(-1)

128 return ll0

129 else:

130 for k in range(Ngen):

131 ll = generate_next_token(kk ,ll ,X)

132 return ll

133

134

135 filepath = "./ kaggle_datasets/House Price Prediction Dataset.csv"

136 sepHouse= ","

137

138 sep = sepHouse

139 #print(description)

140

141 # Load Data

142 print("Loading data ...")

143 df = load_data(filepath ,sep)

144

145 # Preprocess Data

146 print("Preprocessing data ...")

147 X_processed = preprocess_data(df,remove_columns = ["Id"])

148

149 # Build Similarity Matrix

150 print("Building similarity matrix ...")

151 similarity_df = build_similarity_matrix(X_processed)

152 print(similarity_df.columns)

153

154 # Define the list of variables
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155 X = similarity_df.columns.tolist ()

156 for x in X:

157 seq = (generate_meaningful_sequence(kk ,ll=[x],Ngen=None ,X=X))

158 print(seq)

159 print(test_sequence(kk,seq))� �� �
1 # Data output for the sequences

2 [’Area’, ’Price’, ’Bedrooms ’, ’Bathrooms ’, ’Floors ’, ’YearBuilt ’, ’

Garage_Yes ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban

’, ’Condition_Fair ’, ’Condition_Good ’]

3 (’True’, 0.7573235376101951)

4 [’Bedrooms ’, ’Area’, ’Bathrooms ’, ’Floors ’, ’YearBuilt ’, ’Price ’, ’

Garage_Yes ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban

’, ’Condition_Fair ’, ’Condition_Good ’]

5 (’True’, 0.7226975545155016)

6 [’Bathrooms ’, ’Area’, ’Bedrooms ’, ’Floors ’, ’YearBuilt ’, ’Price ’, ’

Garage_Yes ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban

’, ’Condition_Fair ’, ’Condition_Good ’]

7 (’True’, 0.7142987211615484)

8 [’Floors ’, ’Price’, ’Area’, ’Bedrooms ’, ’Bathrooms ’, ’YearBuilt ’, ’

Location_Rural ’, ’Location_Suburban ’, ’Location_Urban ’, ’

Condition_Fair ’, ’Condition_Good ’, ’Condition_Poor ’]

9 (’True’, 0.6920406748066003)

10 [’YearBuilt ’, ’Price’, ’Area’, ’Bedrooms ’, ’Bathrooms ’, ’Floors ’, ’

Location_Suburban ’, ’Location_Rural ’, ’Location_Urban ’, ’

Condition_Fair ’, ’Condition_Good ’, ’Condition_Poor ’]

11 (’True’, 0.7523090247901313)

12 [’Price’, ’Area’, ’Bedrooms ’, ’Bathrooms ’, ’Floors ’, ’YearBuilt ’, ’

Garage_Yes ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban

’, ’Condition_Fair ’, ’Condition_Good ’]

13 (’True’, 0.7573235376101957)

14 [’Location_Rural ’]

15 (’True’, 1.0000000000000007)

16 [’Location_Suburban ’]

17 (’True’, 1.0)

18 [’Location_Urban ’]

19 (’True’, 1.000000000000001)

20 [’Condition_Fair ’, ’Price’, ’Area’, ’Bedrooms ’, ’Bathrooms ’, ’Floors ’,

’YearBuilt ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban

’, ’Condition_Good ’, ’Condition_Poor ’]

21 (’Indeterminate ’, 0.4649147843022506)

22 [’Condition_Good ’]

23 (’True’, 1.0000000000000007)

24 [’Condition_Poor ’]

25 (’True’, 0.9999999999999998)

26 [’Garage_Yes ’, ’Price’, ’Area’, ’Bedrooms ’, ’Bathrooms ’, ’Floors ’, ’

YearBuilt ’, ’Location_Rural ’, ’Location_Suburban ’, ’Location_Urban ’

, ’Condition_Fair ’, ’Condition_Good ’]

27 (’True’, 0.6043995507236861)� �� �
1 # Data output for the random formulas generated and evaluated:

2 Randomly Generated Propositional Formulas for perspective ( Area ):
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3 (1.0, ’True’, (’(Condition_Good IMPLIES Bathrooms)’, 1.0))

4 Randomly Generated Propositional Formulas for perspective ( Area ):

5 (0.8572502552118751 , ’True’, (’((NOT Bathrooms) IFF Location_Urban)’,

0.8572502552118751))

6 Randomly Generated Propositional Formulas for perspective ( Area ):

7 (1.0, ’True’, (’(Bathrooms IMPLIES Bedrooms)’, 1.0))

8 Randomly Generated Propositional Formulas for perspective ( Area ):

9 (1.0, ’True’, (’(Condition_Poor IMPLIES Floors)’, 1.0))

10 Randomly Generated Propositional Formulas for perspective ( Area ):

11 (0.9687871220777605 , ’True’, (’((NOT Location_Suburban) IFF Garage_Yes)

’, 0.9687871220777605))

12 Randomly Generated Propositional Formulas for perspective ( Area ):

13 (0.8703181543645824 , ’True’, (’(Condition_Fair IFF (NOT Floors))’,

0.8703181543645824))

14 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

15 (0.9431369688026381 , ’True’, (’((NOT Location_Suburban) IFF Garage_Yes)

’, 0.9431369688026381))

16 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

17 (0.45214452201066824 , ’Indeterminate ’, (’((NOT Garage_Yes) AND Area)’,

0.45214452201066824))

18 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

19 (1.0, ’True’, (’(Location_Urban IMPLIES Bathrooms)’, 1.0))

20 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

21 ( -8.881784197001252e-16, ’False’, (’(Bedrooms IMPLIES (NOT Bedrooms))’,

-8.881784197001252e-16))

22 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

23 (0.5478554779893318 , ’Indeterminate ’, (’(Area AND Garage_Yes)’,

0.5478554779893318))

24 Randomly Generated Propositional Formulas for perspective ( Bedrooms ):

25 (1.0, ’True’, (’(Location_Rural IMPLIES Floors)’, 1.0))

26 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

27 (0.9418456790147741 , ’True’, (’(Floors IMPLIES (NOT Condition_Poor))’,

0.9418456790147741))

28 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

29 (1.0, ’True’, (’(Location_Urban IMPLIES Location_Suburban)’, 1.0))

30 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

31 (0.9830213635688818 , ’True’, (’(Location_Suburban IFF Condition_Poor)’,

0.9830213635688818))

32 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

33 (1.0, ’True’, (’((NOT Location_Rural) IFF (NOT Location_Rural))’, 1.0))

34 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

35 (0.9631318469890159 , ’True’, (’((NOT Location_Urban) IMPLIES Garage_Yes

)’, 0.9631318469890159))

36 Randomly Generated Propositional Formulas for perspective ( Bathrooms )

:

37 (0.8637774755162289 , ’True’, (’(Garage_Yes IFF YearBuilt)’,

0.8637774755162289))
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38 Randomly Generated Propositional Formulas for perspective ( Floors ):

39 (0.9198556751629549 , ’True’, (’(Condition_Poor IFF (NOT Area))’,

0.9198556751629549))

40 Randomly Generated Propositional Formulas for perspective ( Floors ):

41 (1.0, ’True’, (’((NOT Floors) IMPLIES (NOT Bedrooms))’, 1.0))

42 Randomly Generated Propositional Formulas for perspective ( Floors ):

43 (1.0, ’True’, (’(Condition_Good IMPLIES YearBuilt)’, 1.0))

44 Randomly Generated Propositional Formulas for perspective ( Floors ):

45 (0.9615264095041067 , ’True’, (’(Area IFF Bathrooms)’,

0.9615264095041067))

46 Randomly Generated Propositional Formulas for perspective ( Floors ):

47 (0.8939740155548392 , ’True’, (’(Garage_Yes IFF Bathrooms)’,

0.8939740155548392))

48 Randomly Generated Propositional Formulas for perspective ( Floors ):

49 (1.0, ’True’, (’(Condition_Good IMPLIES YearBuilt)’, 1.0))

50 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

51 (0.9650762201722981 , ’True’, (’(Bathrooms IFF Floors)’,

0.9650762201722981))

52 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

53 (1.0, ’True’, (’((NOT Bedrooms) IMPLIES Bathrooms)’, 1.0))

54 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

55 (0.968240495721197 , ’True’, (’(Condition_Poor IMPLIES Location_Urban)’,

0.968240495721197))

56 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

57 (0.9999999999999996 , ’True’, (’(Condition_Good OR YearBuilt)’,

0.9999999999999996))

58 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

59 (0.9798886955519408 , ’True’, (’(Condition_Fair IFF Condition_Poor)’,

0.9798886955519408))

60 Randomly Generated Propositional Formulas for perspective ( YearBuilt )

:

61 (1.0, ’True’, (’(Bathrooms IMPLIES Area)’, 1.0))

62 Randomly Generated Propositional Formulas for perspective ( Price ):

63 (0.4649147843022498 , ’Indeterminate ’, (’(Location_Rural OR

Condition_Fair)’, 0.4649147843022498))

64 Randomly Generated Propositional Formulas for perspective ( Price ):

65 (1.0, ’True’, (’(Location_Suburban IMPLIES (NOT Condition_Poor))’, 1.0)

)

66 Randomly Generated Propositional Formulas for perspective ( Price ):

67 (0.9999999999999997 , ’True’, (’(Bathrooms OR Price)’,

0.9999999999999997))

68 Randomly Generated Propositional Formulas for perspective ( Price ):

69 (1.0, ’True’, (’((NOT Area) IMPLIES Bathrooms)’, 1.0))

70 Randomly Generated Propositional Formulas for perspective ( Price ):

71 (0.9397316500164674 , ’True’, (’(YearBuilt IMPLIES Floors)’,

0.9397316500164674))

72 Randomly Generated Propositional Formulas for perspective ( Price ):
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73 (0.9557981902429034 , ’True’, (’(YearBuilt IMPLIES Bedrooms)’,

0.9557981902429034))

74 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

75 (0.862860575548185 , ’True’, (’(Bathrooms IFF Condition_Poor)’,

0.862860575548185))

76 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

77 (0.9998553190866013 , ’True’, (’(YearBuilt IMPLIES Area)’,

0.9998553190866013))

78 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

79 (1.0, ’True’, (’((NOT Bathrooms) IMPLIES Location_Rural)’, 1.0))

80 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

81 (1.0, ’True’, (’(Condition_Good IMPLIES (NOT Condition_Fair))’, 1.0))

82 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

83 (1.0, ’True’, (’(Garage_Yes IFF Garage_Yes)’, 1.0))

84 Randomly Generated Propositional Formulas for perspective (

Location_Rural ):

85 (0.0, ’False ’, (’(Location_Urban AND Location_Urban)’, 0.0))

86 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

87 (0.982063933440659 , ’True’, (’((NOT Condition_Fair) IFF (NOT

Condition_Good))’, 0.982063933440659))

88 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

89 (1.0, ’True’, (’(Bedrooms IMPLIES Bathrooms)’, 1.0))

90 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

91 (1.0, ’True’, (’(Location_Rural IMPLIES YearBuilt)’, 1.0))

92 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

93 (1.0, ’True’, (’(Location_Rural IMPLIES Location_Rural)’, 1.0))

94 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

95 (0.0, ’False ’, (’(Bedrooms AND (NOT Location_Suburban))’, 0.0))

96 Randomly Generated Propositional Formulas for perspective (

Location_Suburban ):

97 (0.0, ’False ’, (’((NOT Area) AND Location_Rural)’, 0.0))

98 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

99 (0.8516301960509322 , ’True’, (’(Bathrooms IMPLIES Condition_Fair)’,

0.8516301960509322))

100 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

101 (1.000000000000001 , ’True’, (’((NOT Location_Rural) OR Location_Urban)’

, 1.000000000000001))

102 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

103 (1.0, ’True’, (’((NOT Bathrooms) IMPLIES Location_Urban)’, 1.0))
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104 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

105 (0.8651232306429956 , ’True’, (’(Bathrooms IMPLIES Condition_Poor)’,

0.8651232306429956))

106 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

107 (1.0, ’True’, (’(Location_Suburban IMPLIES Garage_Yes)’, 1.0))

108 Randomly Generated Propositional Formulas for perspective (

Location_Urban ):

109 (1.000000000000001 , ’True’, (’(Location_Urban OR (NOT Condition_Good))’

, 1.000000000000001))

110 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

111 (1.0, ’True’, (’(Location_Urban IMPLIES Condition_Fair)’, 1.0))

112 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

113 (0.0, ’False ’, (’(Condition_Good AND (NOT Bathrooms))’, 0.0))

114 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

115 (1.0, ’True’, (’(Location_Rural OR (NOT Condition_Poor))’, 1.0))

116 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

117 (0.8703145558524861 , ’True’, (’(Location_Rural IFF Floors)’,

0.8703145558524861))

118 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

119 (0.8821726119294495 , ’True’, (’((NOT Bedrooms) IFF Price)’,

0.8821726119294495))

120 Randomly Generated Propositional Formulas for perspective (

Condition_Fair ):

121 (0.0, ’False ’, (’(Condition_Poor AND YearBuilt)’, 0.0))

122 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

123 (1.0, ’True’, (’(Location_Rural OR (NOT Condition_Poor))’, 1.0))

124 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

125 (0.9999999999999993 , ’True’, (’(Condition_Poor IFF (NOT Condition_Good)

)’, 0.9999999999999993))

126 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

127 (0.0, ’False ’, (’(Condition_Poor OR Condition_Poor)’, 0.0))

128 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

129 (0.9938416973972002 , ’True’, (’(YearBuilt IFF Area)’,

0.9938416973972002))

130 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

131 (0.0, ’False ’, (’((NOT Location_Suburban) AND Condition_Fair)’, 0.0))

132 Randomly Generated Propositional Formulas for perspective (

Condition_Good ):

133 (0.8621320644884826 , ’True’, (’(Floors IFF Location_Suburban)’,

0.8621320644884826))
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134 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

135 (0.8622070352025419 , ’True’, (’(Location_Urban IFF Floors)’,

0.8622070352025419))

136 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

137 (0.0, ’False ’, (’(Location_Suburban AND Condition_Good)’, 0.0))

138 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

139 (1.0, ’True’, (’(Location_Rural IMPLIES Location_Rural)’, 1.0))

140 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

141 (0.0, ’False ’, (’(Condition_Good AND (NOT Area))’, 0.0))

142 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

143 (0.0, ’False ’, (’(Condition_Fair AND (NOT Garage_Yes))’, 0.0))

144 Randomly Generated Propositional Formulas for perspective (

Condition_Poor ):

145 (1.0, ’True’, (’(Location_Urban IFF Location_Urban)’, 1.0))

146 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

147 (0.994771274954062 , ’True’, (’((NOT Condition_Good) IMPLIES (NOT

Condition_Poor))’, 0.994771274954062))

148 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

149 (0.45214452201066824 , ’Indeterminate ’, (’(Bedrooms IFF (NOT Garage_Yes)

)’, 0.45214452201066824))

150 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

151 (1.0, ’True’, (’(Condition_Fair IFF Condition_Fair)’, 1.0))

152 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

153 (1.0, ’True’, (’(Location_Urban IMPLIES Bedrooms)’, 1.0))

154 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

155 (0.9042890440213365 , ’True’, (’(Bedrooms IFF (NOT Bedrooms))’,

0.9042890440213365))

156 Randomly Generated Propositional Formulas for perspective ( Garage_Yes

):

157 (0.5356905325519948 , ’Indeterminate ’, (’(Floors AND Area)’,

0.5356905325519948))� �
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