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1 Markov algorithms and Entropy

Let M be a Markov algorithm with alphabet 3 of terminals and non-terminals. The terminal
alphabet is {0,1}. Let ¢ € {1,...,n} be given in its binary representation, so |i| ~ logi. To
each Markov algorithm M we associate a function

far: (BU{x})" — (Zu{x})”
defined as follows. On input

i = w; xi (w; €XF, x ¢3),

far (@) reads off w;, applies one Markov replacement to obtain M (w;), and then re-appends “xi”.
Hence

fu(@) = M(w;) X i.
Here M (w) means: apply a single rule of the Markov algorithm to w, or return w if no rule
applies.

Proposition 1.1. For any Markov algorithm M, the map far is injective.

Proof. It far(i) = far(j) then
M(wz) X1 = M(wj) Xj

and so ¢ = j. ]

Suppose M decides a recursive set L C N, by outputting 1 if ¢ € L and 0 otherwise. We
meagure time by the total length of all intermediate strings:

i) = Y |MP @) = [£) 0] -,
k=0

where M©) (i) = i, M**V(5) = M(M®(4)), and M) (i) € {0,1} is the halting output. The
equality follows by a simple induction tracking the appended “x” symbols.
Two Markov algorithms Mj, My deciding the same language L are called computationally
equivalent,
My=M, <= Vildtty: M™G) =M ().
We then compare their time-complexities: define
My <My <= Yidryre: ty, (i) < tag(i).

Finally write My ~ My if My = Ms, M1 < Ms, and My < Mj.

Entropy reduction?
Let
X1D2XoD--- DXy

be finite topological spaces, each X;11 a continuous image of X; via a surjection f; : X; — X;11,
with | X;| > | Xi+1|. Define the Shannon entropy at step i by

Hi=— ) i @) 10g2<’fi1($)|>'

| Xil | Xl

r€Xit1
Also let

and set




Question 1.1. Can one prove in general that

H; > H and H; > Hii1 foreachi?

2 Finite topologies and Markov algorithms for decision problems

We now illustrate with several decision problems how one may impose a finite preorder topology
on a search space, and how the Markov steps correspond to continuous maps.

2.1 1. Primality test

For n € N, let
Xn=A{2,...,[Vn]},
with preorder < y :< x | y. Opens are
Oy ={y:z|y}

The solution set is
Y, ={zeX,:xz|n, x+#1,n}.

2. Partition problem
Given S = (s1,...,87), let I ={1,...,r} and
Xg=P(I), USV:ie> s,<Y s, Oy={V:U<V}

uelU veV

Y;:{U:Zsu: st}.

uelU vele

The target set is

2.2 3. Composite test via gcd-order

For n, set

Xp={l,....n-1}, @<y ged(na) <ged(ny), Op={y:z <y}, Yif ={w:ged(n,a)¢ {1,n}}.

2.3 4. Partition-number test

For n, let
X, ={d:d|n, ged(d,%) =1}, z<y:=Qz)<Qy), Y, ={d:Qd)=Qn/d)},

where ) counts prime-factors with multiplicity.

More generally, given any finite X and Y C X, the quotient
m: X — X/Y

collapsing Y to one point is monotone and hence continuous. Its Shannon entropy is

X|=[¥]. AXI=Y]\ Y], 1Y)
Hr) = -2 = (AR Ty 0 (1,
(™) w1 e el )

Finally, one may attach to each execution trace

(M, z) = (x1,...,2¢)



a finite topological space
t A A~ .
Sy = U Sesy Sp={y: MY (y) =2z for j = 0,1},
i=1

with preorder a < b <= b= MU (a) for j < 1. Then each single-rule step M : Se; — Sz
continuous.

i+1 18

Question 2.1. Is it possible to enforce conditions on these constructions so as to obtain a
bijection

{Markov algorithms} <— {finite topological spaces with extra data}?
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