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Zusammenfassung
Diese Arbeit entwickelt ein einheitliches Galois-theoretisches Rahmenwerk für zah-

lentheoretische Strukturen, die von Teilersummen, zyklotomischen Polynomen und
Primteilergrafen ausgehen.1 Ausgangspunkt ist ein Dirichlet–CRT–Beweis für die Dar-
stellung der Nachfolgerabbildung auf Primzahlen

Φ(p) = p1
(
σ(Ap−1)

)
,

woraus die Funktion Γ(p) und ein damit verknüpftes diophantisches System in Prim-
zahlen hervorgehen. Darauf aufbauend wird das Konzept k-zirkulärer Systeme einge-
führt und systematisch untersucht: vom Primzahlsystem als 3-zirkulärem System über
Beispiele aus Geometrie, Physik und Thermodynamik bis hin zu einem allgemeinen
Galois-Begriff für zirkuläre Systeme und ihrer Darstellung als Torsoren.

Ein zentraler Teil der Arbeit ist die Konstruktion von Galois-zirkulären Systemen,
die aus Teilermengen und Primteilergrafen zu einer Zahl n gewonnen werden. Dies
führt zu verschiedenen Galois-Gruppen Gal(n): additiv definiert über Bindungsglei-
chungen auf den Teilern, multiplikativ über den σ-Graphen auf Primteilern sowie in
kombinierten Swap-Systemen. Für gerade perfekte Zahlen wird explizit gezeigt, wie
ihre besondere Teilerstruktur zu großen Symmetriegruppen (insbesondere symmetri-
schen Gruppen) führt, während für hypothetische ungerade perfekte Zahlen struktu-
relle Hindernisse formuliert werden, die in Richtung einer Galois-theoretischen Re-
formulierung der klassischen Vermutung (Nicht-Existenz ungerader perfekter Zahlen)
weisen.

Im zweiten Teil werden diese Methoden auf ein σ-basiertes Primgraph-Modell
G(σ,n) übertragen. Aus der lokalen Struktur der Werte σ(pa) wird ein bipartiter Graph
konstruiert, dessen Automorphismengruppe als Galois-Gruppe Gal(n) interpretiert
wird. Es wird gezeigt, wie sich diese Gruppe rein kombinatorisch aus den Primfak-
torzerlegungen von n, σ(n) und den lokalen Summen σ(pa) rekonstruieren lässt und
wie sich das sukzessive Adjungieren von Primpotenzen auf Gal(n) auswirkt. Darauf
aufbauend werden Euler-Kompositionsreihen und Euler-Gruppen eingeführt, sowie ei-
ne Galois-Simplizitätsvermutung für perfekte Zahlen diskutiert: perfekte Zahlen sollen
genau diejenigen n sein, für die Gal(n) (in einem geeigneten Sinn) einfach ist.

Abschließend wird das Σf -Verfahren aus einer früheren MSE-Arbeit als Prime-
Closure-Mechanismus in den Galois-Rahmen integriert und eine Klasse Galois-admissibler
multiplikativer Funktionen f definiert, für die Gleichungen der Form

A · f(n) = B · n

mittels der zugehörigen Galois-Gruppen strukturell analysiert werden können (insbe-
sondere für f = σ und f = φ). Es werden erste Dichtefragen für Zahlen mit trivialer
Galois-Gruppe sowie für Zahlen mit Gal(n) ∼= C2 formuliert und heuristisch diskutiert.

Ein Teil der heuristischen Überlegungen, der Formulierungsideen und der redak-
tionellen Glättung dieses Textes entstand mit Unterstützung eines Large Language
Models (LLM, z. B. ChatGPT/GPT-5.1 Thinking), das interaktiv bei der Strukturie-
rung, Präzisierung und sprachlichen Ausarbeitung der Konzepte eingesetzt wurde.

1Vgl. die detaillierte Gliederung und Ausarbeitung in den Notizen.
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1 Notizen zu zyklotomischen Polynomen und der Nachfol-
gerabbildung

In diesem Abschnitt sammeln wir einige elementare, aber nützliche Beobachtungen zu den
zyklotomischen Polynomen und ihrer Verbindung zur Nachfolgerabbildung Φ, wie sie im
Haupttext verwendet wird.

1.1 Das zyklotomische Polynom Φp(X)
Sei p eine Primzahl. Das p-te zyklotomische Polynom ist definiert durch

Φp(X) = 1 +X +X2 + · · ·+Xp−1.

Es erfüllt die Identität
Xp − 1 = (X − 1) Φp(X).

Für eine ganze Zahl a ≥ 2 setzen wir

Φp(a) := 1 + a+ a2 + · · ·+ ap−1.

Dann gilt
ap − 1 = (a− 1) Φp(a),

so dass Φp(a) ≥ 2 ist und mindestens einen Primteiler besitzt.

1.2 Primteiler von Φp(a) und kongruente Primzahlen

Wir betrachten nun die Menge der Primzahlen, die als Primteiler eines Wertes Φp(a)
auftreten.

Definition 1.1. Für eine Primzahl p sei

Sp := { ℓ prim : ∃ a ∈ Z, a ≥ 2, ℓ | Φp(a) }.

Die folgende Proposition beschreibt Sp vollständig.

Proposition 1.2. Für jede Primzahl p gilt

Sp = { ℓ prim : ℓ ≡ 1 (mod p) }.
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Beweis. Wir zeigen zunächst die Inklusion Sp ⊆ {ℓ : ℓ ≡ 1 (mod p)}. Sei also a ≥ 2 eine
ganze Zahl und ℓ eine Primzahl mit ℓ | Φp(a), d. h.

Φp(a) = 1 + a+ · · ·+ ap−1 ≡ 0 (mod ℓ).

Aus der Identität
ap − 1 = (a− 1) Φp(a)

folgt insbesondere
ap ≡ 1 (mod ℓ).

Da ℓ Prim ist und a ̸≡ 0 (mod ℓ), besitzt a eine Ordnung ordℓ(a) in der multiplikativen
Gruppe (Z/ℓZ)×. Aus ap ≡ 1 (mod ℓ) folgt, dass ordℓ(a) ein Teiler von p ist, also ordℓ(a) ∈
{1, p}.

Wir zeigen zunächst, dass der Fall ordℓ(a) = 1 nicht eintreten kann. In Fp gilt die
Kongruenz

ap − 1 ≡ a− 1 (mod p)
(Fermats kleiner Satz). Kombiniert mit ap − 1 = (a− 1)Φp(a) ergibt dies

(a− 1) Φp(a) ≡ a− 1 (mod p).

Falls a ̸≡ 1 (mod p), ist a− 1 modulo p invertierbar, so dass Φp(a) ≡ 1 (mod p) folgt. In
diesem Fall kann p kein Teiler von Φp(a) sein. Nimmt man andererseits ordℓ(a) = 1, so ist
a ≡ 1 (mod ℓ), und damit

Φp(a) ≡ 1 + 1 + · · ·+ 1 = p (mod ℓ).

Aus ℓ | Φp(a) folgt dann ℓ | p, also ℓ = p. Dies widerspricht für a ̸≡ 1 (mod p) der eben
gezeigten Kongruenz Φp(a) ≡ 1 (mod p). Der Fall ordℓ(a) = 1 ist also ausgeschlossen (wir
können a ̸≡ 1 (mod p) voraussetzen, da uns dieser Spezialfall nicht interessiert).

Es bleibt ordℓ(a) = p. Die Ordnung eines Elements in (Z/ℓZ)× teilt die Gruppenord-
nung ℓ− 1, also

p | ℓ− 1 ⇒ ℓ ≡ 1 (mod p).
Damit ist Sp ⊆ {ℓ : ℓ ≡ 1 (mod p)} gezeigt.

Umgekehrt sei nun ℓ eine Primzahl mit ℓ ≡ 1 (mod p). Dann ist (Z/ℓZ)× zyklisch von
Ordnung ℓ− 1, und p | (ℓ− 1). Sei g ein Erzeuger dieser Gruppe. Setze

a ≡ g(ℓ−1)/p (mod ℓ).

Dann ist die Ordnung von a modulo ℓ genau p: zum einen

ap ≡ gℓ−1 ≡ 1 (mod ℓ),

zum anderen ist keine kleinere positive Potenz von a gleich 1, da g ganze Ordnung ℓ − 1
hat. Insbesondere ist a ̸≡ 1 (mod ℓ), und wir können a als ganze Zahl mit 2 ≤ a ≤ ℓ − 1
wählen.

Aus ap ≡ 1 (mod ℓ) folgt nun wieder

0 ≡ ap − 1 = (a− 1) Φp(a) (mod ℓ).

Da a ̸≡ 1 (mod ℓ), ist a− 1 modulo ℓ invertierbar, und wir erhalten

Φp(a) ≡ 0 (mod ℓ),

d. h. ℓ | Φp(a). Somit gehört ℓ zur Menge Sp.
Damit ist die umgekehrte Inklusion {ℓ : ℓ ≡ 1 (mod p)} ⊆ Sp bewiesen, und insgesamt

folgt die behauptete Gleichheit.

10



1.3 Verbindung zur Nachfolgerabbildung Φ
Erinnere man sich an die im Haupttext definierte Nachfolgerabbildung

Φ(p) := min{ q prim : q ≡ 1 (mod p) }

für Primzahlen p. Dann besagt Proposition 1.2, dass die Menge der Primteiler von Werten
Φp(a) (a ≥ 2) genau die Menge der Nachfolgerkandidaten q ≡ 1 (mod p) ist.

Insbesondere gilt:

Corollary 1.3. Für jede Primzahl p gilt

Φ(p) = min
a≥2

P1
(
Φp(a)

)
= min

2≤a≤Φ(p)−1
P1
(
Φp(a)

)
,

wobei P1(n) den kleinsten Primteiler von n bezeichnet.

Corollary 1.4. Für jede Primzahl p gilt

Φ(p) = min{ ℓ prim : ∃a ≥ 2, ℓ | Φp(a) } = min
a≥2

P1
(
Φp(a)

)
,

wobei P1(n) den kleinsten Primteiler von n bezeichnet.

Beweis. Nach Proposition 1.2 ist

Sp = {ℓ prim : ℓ ≡ 1 (mod p)},

und Φ(p) ist per Definition die kleinste Primzahl in dieser Menge. Also

Φ(p) = min
ℓ∈Sp

ℓ = min
a≥2

P1
(
Φp(a)

)
.

Remark 1.5. Numerische Experimente (z. B. mit Sage) deuten darauf hin, dass man das
Minimum bereits über den endlichen Bereich 2 ≤ a ≤ p+ 1 nehmen kann, d. h.

Φ(p) = min
2≤a≤p+1

P1
(
Φp(a)

)
für alle bisher getesteten Primzahlen p. Ein formaler Beweis dieser Verstärkung ist dem
Autor jedoch nicht bekannt; wir verwenden im Folgenden nur die unbedingte Aussage des
Korollars.

2 Algebraische Eigenschaften zyklotomischer Polynome
In diesem Abschnitt fassen wir die grundlegenden algebraischen Eigenschaften der zyklo-
tomischen Polynome zusammen. Für eine ganze Zahl n ≥ 1 sei

ζn := e2πi/n

eine primitive n-te Einheitswurzel.
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2.1 Definition und Grundkonstruktion

Definition 2.1. Für n ≥ 1 ist das n-te zyklotomische Polynom definiert durch

Φn(X) :=
∏

1≤k≤n
gcd(k,n)=1

(
X − ζkn

)
.

Die Nullstellen von Φn sind genau die primitiven n-ten Einheitswurzeln, d. h. die n-ten
Einheitswurzeln, deren Ordnung genau n ist.
Proposition 2.2 (Minimalpolynom). Für jedes n ≥ 1 ist Φn(X) das Minimalpolynom
einer primitiven n-ten Einheitswurzel über Q. Insbesondere ist

Φn(X) ∈ Q[X]

und irreduzibel in Q[X].
Proposition 2.3 (Ganzzahlige Koeffizienten). Für alle n ≥ 1 gilt

Φn(X) ∈ Z[X]

und Φn ist monisch.
Proposition 2.4 (Grad). Für alle n ≥ 1 ist

deg Φn = φ(n),

wobei φ die Eulersche Phi-Funktion bezeichnet.

2.2 Faktorisierung von Xn − 1
Proposition 2.5 (Produktdarstellung). Für jedes n ≥ 1 gilt in Z[X] die Faktorisierung

Xn − 1 =
∏
d|n

Φd(X).

Proposition 2.6 (Möbius-Inversion). Umgekehrt erhält man Φn aus den Polynomen Xd−
1 durch

Φn(X) =
∏
d|n

(Xd − 1)µ(n/d),

wobei µ die Möbius-Funktion ist.
Corollary 2.7 (Paarweise Koprimheit). Für m ̸= n sind die Polynome Φm(X) und Φn(X)
in Q[X] (und damit auch in Z[X]) teilerfremd.

2.3 Spezielle Formen und Symmetrien

Proposition 2.8 (Primzahl- und Primzahlpotenz-Fall). [(i)]

1. Für eine Primzahl p gilt

Φp(X) = 1 +X +X2 + · · ·+Xp−1.

2. Für eine Primzahlpotenz pk mit k ≥ 1 gilt

Φpk(X) = 1 +Xpk−1 +X2pk−1 + · · ·+X(p−1)pk−1
.

Proposition 2.9 (Reelle Koeffizienten und Reziprozität). Für jedes n ≥ 1 hat Φn(X)
reelle Koeffizienten. Für n > 1 ist Φn rezi-prok, d. h.

Xφ(n) Φn

( 1
X

)
= Φn(X).
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2.4 Werte bei speziellen Argumenten

Proposition 2.10 (Werte bei X = 0 und X = 1). Für n ≥ 1 gilt:

Φn(0) =
{
−1, n = 1,
1, n > 1,

Φn(1) =


1, n = 1,

p, n = pk ist eine Primzahlpotenz,

1, sonst.

Remark 2.11. Alle hier genannten Eigenschaften sind rein algebraischer Natur: sie fol-
gen aus der Definition der zyklotomischen Polynome als Minimalpolynome der primitiven
Einheitswurzeln, aus der Struktur der Gruppe der n-ten Einheitswurzeln und aus ele-
mentarer Galoistheorie bzw. Multiplikativität der Eulerschen Phi-Funktion. Analytische
Eigenschaften (z. B. bezüglich Größenordnungen von Koeffizienten oder Nullstellen auf
dem Einheitskreis) werden hier nicht betrachtet.

3 Ein Dirichlet–CRT–Beweis für die Darstellung Φ(p) = p1
(
σ(Ap−1)

)
In diesem Abschnitt geben wir einen detaillierten und korrigierten Beweis dafür, dass sich
der Nachfolger Φ(p) als kleinster Primteiler eines Wertes σ(Ap−1) mit A prim schreiben
lässt. Der Beweis verwendet die zyklotomische Struktur, den chinesischen Restsatz und
den Satz von Dirichlet über Primzahlen in arithmetischen Progressionen.

3.1 Notation und Zielsetzung

Sei im gesamten Abschnitt p eine feste Primzahl.

• Für n ≥ 1 bezeichne σ(n) die Summe der positiven Teiler von n.

• Für n ≥ 2 sei
p1(n) := min{ ℓ prim : ℓ | n }

der kleinste Primteiler von n; für n = 1 setze man p1(1) := 1.

• Die Nachfolgerabbildung auf Primzahlen sei definiert durch

Φ(p) := min{ q prim : q ≡ 1 (mod p) }.

Dies ist die kleinste Primzahl in der Progression 1 mod p.

• Das p-te zyklotomische Polynom ist

Φp(X) := 1 +X +X2 + · · ·+Xp−1.

Für jede Primzahl a ≥ 1 gilt

σ(ap−1) = 1 + a+ a2 + · · ·+ ap−1 = Φp(a),

da die Teiler von ap−1 genau die Potenzen ak für 0 ≤ k ≤ p− 1 sind.

Unser Ziel ist es zu zeigen:
Theorem 3.1. Für jede Primzahl p gibt es unendlich viele Primzahlen A mit

Φ(p) = p1
(
Φp(A)

)
= p1

(
σ(Ap−1)

)
.

Als Korollar erhalten wir dann die Wohldefiniertheit von

Γ(p) := min{A prim : Φ(p) = p1(σ(Ap−1)) }.
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3.2 Primteiler von Φp(a)
Wir beginnen mit der bekannten Struktur der Primteiler von Werten des zyklotomischen
Polynoms.

Lemma 3.2. Sei p prim und a ∈ Z mit a ≥ 2 und a ̸≡ 1 (mod p). Sei ℓ eine Primzahl
mit ℓ | Φp(a). Dann gilt

ℓ ̸= p und ℓ ≡ 1 (mod p).

Beweis. Aus der Identität
ap − 1 = (a− 1) Φp(a)

folgt zunächst
ap ≡ 1 (mod ℓ).

Da ℓ Primzahl ist und a ̸≡ 0 (mod ℓ), besitzt a eine Ordnung ordℓ(a) in der Gruppe
(Z/ℓZ)×, und es gilt

aordℓ(a) ≡ 1 (mod ℓ), ordℓ(a) | ℓ− 1.

Aus ap ≡ 1 (mod ℓ) folgt, dass ordℓ(a) ein Teiler von p ist, also

ordℓ(a) ∈ {1, p}.

Wir betrachten zunächst den Fall ℓ = p. In Fp gilt (Fermats kleiner Satz)

ap − 1 ≡ a− 1 (mod p).

Andererseits ist
ap − 1 = (a− 1) Φp(a),

so dass
(a− 1) Φp(a) ≡ a− 1 (mod p).

Da a ̸≡ 1 (mod p), ist a− 1 modulo p invertierbar, und wir erhalten

Φp(a) ≡ 1 (mod p).

Somit kann p kein Teiler von Φp(a) sein, d.h. der Fall ℓ = p tritt nicht ein.
Es bleibt ℓ ̸= p. Angenommen, ordℓ(a) = 1, so wäre a ≡ 1 (mod ℓ). Dann folgt

Φp(a) = 1 + a+ · · ·+ ap−1 ≡ 1 + 1 + · · ·+ 1 = p (mod ℓ).

Aus ℓ | Φp(a) würde ℓ | p folgen, also ℓ = p, im Widerspruch zur Annahme ℓ ̸= p. Also
kann der Fall ordℓ(a) = 1 nicht eintreten.

Damit muss ordℓ(a) = p gelten. Da die Ordnung immer ein Teiler der Gruppenordnung
ℓ− 1 ist, folgt

p | (ℓ− 1), d.h. ℓ ≡ 1 (mod p).

Dies zeigt die Behauptung.

Insbesondere sind für a ̸≡ 1 (mod p) alle Primteiler von Φp(a) entweder gleich p oder
kongruent 1 (mod p); der Fall ℓ = p ist nach obiger Rechnung ausgeschlossen.
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3.3 Erzwingen von ℓ = Φ(p) als Primteiler

Wir setzen von nun an
ℓ := Φ(p),

also die kleinste Primzahl mit ℓ ≡ 1 (mod p). Wie gewohnt ist (Z/ℓZ)× zyklisch von
Ordnung ℓ− 1, und p | (ℓ− 1).

Lemma 3.3. Es existiert ein Restklassenvertreter a0 modulo ℓ mit

ap0 ≡ 1 (mod ℓ), a0 ̸≡ 1 (mod ℓ),

und damit
Φp(a0) ≡ 0 (mod ℓ).

Beweis. Sei g ein Erzeuger der zyklischen Gruppe (Z/ℓZ)× der Ordnung ℓ− 1. Setze

a0 ≡ g(ℓ−1)/p (mod ℓ).

Dann hat a0 Ordnung genau p modulo ℓ, d.h.

ap0 ≡ g
ℓ−1 ≡ 1 (mod ℓ),

und keine kleinere positive Potenz ist 1, insbesondere a0 ̸≡ 1 (mod ℓ).
Aus ap0 − 1 = (a0 − 1) Φp(a0) folgt

(a0 − 1) Φp(a0) ≡ 0 (mod ℓ),

und da a0 ̸≡ 1 (mod ℓ), ist a0−1 invertierbar modulo ℓ. Somit ist Φp(a0) ≡ 0 (mod ℓ).

Damit ist klar: für jedes A ≡ a0 (mod ℓ) gilt ℓ | Φp(A).

3.4 Ausschluss kleinerer Primzahlen ≡ 1 mod p

Sei nun
ℓ1, . . . , ℓk

die (endlich vielen) Primzahlen mit

ℓi < ℓ, ℓi ≡ 1 (mod p).

Wir möchten sicherstellen, dass diese ℓi keinen der späteren Werte Φp(A) teilen.

Lemma 3.4. Für jede Primzahl ℓi wie oben existiert ein Restklassenvertreter bi (mod ℓi)
mit

Φp(bi) ̸≡ 0 (mod ℓi).

Beweis. Wir betrachten Φp(X) als Polynom in Fℓi [X]. Da der konstante Term 1 ist, ist
Φp(X) nicht das Nullpolynom in Fℓi [X]. Ein nichttriviales Polynom kann nicht an allen
Stellen eines Körpers verschwinden. Also gibt es ein bi ∈ Fℓi mit Φp(bi) ̸≡ 0 (mod ℓi).

Zusätzlich wollen wir p selbst als Primteiler ausschließen. Aus der Rechnung in Lem-
ma 3.2 folgt: für a ̸≡ 1 (mod p) gilt

Φp(a) ≡ 1 (mod p),

also kann p kein Teiler von Φp(a) sein.
Wähle daher ein bp (mod p) mit

bp ̸≡ 1 (mod p).
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3.5 Chinesischer Restsatz und Dirichlet

Wir fassen nun alle Kongruenzbedingungen in einem Modul zusammen.

Lemma 3.5. Setze
M := p · ℓ · ℓ1 · · · ℓk.

Es existiert eine ganze Zahl r mit

r ≡ a0 (mod ℓ), r ≡ bp (mod p), r ≡ bi (mod ℓi) (1 ≤ i ≤ k),

und gcd(r,M) = 1.

Beweis. Die Moduli p, ℓ, ℓ1, . . . , ℓk sind paarweise teilerfremd. Für jedes Tupel von Rest-
klassen existiert nach dem chinesischen Restsatz genau eine Klasse r mod M , die alle
angegebenen Kongruenzen erfüllt.

Da a0 ̸≡ 0 (mod ℓ) und bi ̸≡ 0 (mod ℓi) gewählt werden können, ist r modulo jedem
Primfaktor von M nicht 0. Somit ist gcd(r,M) = 1.

Nun verwenden wir Dirichlets Satz:

Theorem 3.6 (Dirichlet). Seien a,m ∈ Z mit m ≥ 2 und gcd(a,m) = 1. Dann enthält
die arithmetische Progression

a, a+m, a+ 2m, a+ 3m, . . .

unendlich viele Primzahlen.

Angewandt auf a = r und m = M erhalten wir:

Lemma 3.7. Es gibt unendlich viele Primzahlen A mit

A ≡ r (mod M).

Für jede solche Primzahl A gilt

ℓ | Φp(A), p ∤ Φp(A), ℓi ∤ Φp(A) (1 ≤ i ≤ k).

Beweis. Da gcd(r,M) = 1 ist, liefert Dirichlets Satz unendlich viele Primzahlen A in der
Progression r mod M .

Für solche A gilt
A ≡ r ≡ a0 (mod ℓ),

also Φp(A) ≡ Φp(a0) ≡ 0 (mod ℓ) nach Lemma 3.3. Weiter

A ≡ r ≡ bp (mod p), bp ̸≡ 1 (mod p),

also A ̸≡ 1 (mod p) und damit Φp(A) ≡ 1 (mod p); insbesondere p ∤ Φp(A). Schließlich
gilt für jedes 1 ≤ i ≤ k:

A ≡ r ≡ bi (mod ℓi) ⇒ Φp(A) ≡ Φp(bi) ̸≡ 0 (mod ℓi),

also ℓi ∤ Φp(A).
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3.6 Bestimmung des kleinsten Primteilers

Nun sind wir in der Lage, den kleinsten Primteiler von Φp(A) zu bestimmen.

Beweis von Theorem 3.1. Sei A eine der in Lemma 3.7 konstruierten Primzahlen. Sei r
der kleinste Primteiler von Φp(A), also

r = p1
(
Φp(A)

)
.

Aus Lemma 3.2 (angewandt auf a = A) wissen wir, dass r ̸= p ist und jeder Primteiler
von Φp(A) entweder gleich p oder ≡ 1 (mod p) ist. Da p ∤ Φp(A), sind alle Primteiler r
von Φp(A) in {Primzahlen ≡ 1 (mod p) }.

Unter diesen Primzahlen ist ℓ = Φ(p) per Definition die kleinste. Aus Lemma 3.7 wissen
wir, dass ℓ selbst ein Primteiler von Φp(A) ist, also

ℓ | Φp(A).
Da r der kleinste Primteiler von Φp(A) ist, folgt

r ≤ ℓ.

Andererseits sind alle Primteiler q von Φp(A), die ≡ 1 (mod p) sind, entweder gleich
ℓ oder größer: denn alle kleineren Primzahlen ≡ 1 (mod p) wurden in der Liste ℓ1, . . . , ℓk
erfasst, und für diese wurde in Lemma 3.7 sichergestellt, dass sie Φp(A) nicht teilen. Also
gilt für jeden Primteiler q | Φp(A) mit q ≡ 1 (mod p):

q = ℓ oder q > ℓ.

Somit ist
r ≥ ℓ.

Zusammen folgt r = ℓ, also
p1
(
Φp(A)

)
= ℓ = Φ(p).

Da Lemma 3.7 unendlich viele Primzahlen A in der Progression r mod M liefert, exis-
tieren unendlich viele Primzahlen A mit

p1
(
Φp(A)

)
= Φ(p).

Mit Φp(A) = σ(Ap−1) für Primzahlen A und p erhalten wir zugleich
p1
(
σ(Ap−1)

)
= Φ(p),

wie behauptet.

3.7 Definition von Γ(p)
Als unmittelbare Konsequenz ist die folgende Definition wohldefiniert:
Definition 3.8. Für eine Primzahl p definieren wir

Γ(p) := min{A prim : Φ(p) = p1
(
σ(Ap−1)

)
}.

Corollary 3.9. Für jede Primzahl p gilt

Φ(p) = p1
(
σ(Γ(p)p−1)

)
= p1

(
Φp(Γ(p))

)
.

Beweis. Nach Theorem 3.1 ist die Menge in der Definition von Γ(p) nichtleer und enthält
unendlich viele Primzahlen A. Daher existiert ein kleinstes Element Γ(p), und für dieses
gilt per Definition

Φ(p) = p1
(
σ(Γ(p)p−1)

)
.

Mit σ(Γ(p)p−1) = Φp(Γ(p)) folgt die zweite Gleichheit.
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4 Die Funktion Γ(p) und ihr zahlentheoretischer Kontext
In diesem Abschnitt fassen wir die in einem MathOverflow-Beitrag diskutierte Funktion
Γ(p) in standardisierter Notation zusammen und ordnen sie in bekannte Resultate der
analytischen Zahlentheorie ein.

4.1 Definition und vereinfachte Beschreibung

Sei p eine Primzahl. Wir definieren zunächst

L(p) (im MO-Post als Φ(p) bezeichnet)

als die kleinste Primzahl mit

L(p) ≡ 1 (mod p).

Weiter sei p1(n) der kleinste Primteiler von n, und σ(n) die Summe der positiven Teiler
von n. Für eine Primzahl q ̸= p gilt

σ(qp−1) = 1 + q + · · ·+ qp−1 = Φp(q),

wobei Φp das p-te zyklotomische Polynom bezeichnet.
Es ist ein klassisches Resultat, dass für q ̸= p alle Primteiler von Φp(q) kongruent zu

1 (mod p) sind. Da L(p) als die kleinste Primzahl mit L(p) ≡ 1 (mod p) definiert ist, ist
die Bedingung

L(p) = p1
(
σ(qp−1)

)
äquivalent dazu, dass

L(p) | Φp(q)

gilt, also dass L(p) überhaupt ein Primteiler von Φp(q) ist (und damit wegen der Minima-
lität automatisch der kleinste).

4.2 Gruppentheoretische Interpretation

Die Bedingung
L(p) | Φp(q)

ist äquivalent dazu, dass q eine Nullstelle von Φp(x) modulo L(p) ist. In der multiplikativen
Gruppe (Z/L(p)Z)× bedeutet das:

ordL(p)(q) = p,

d.h. das multiplikative Ordnung von q mod L(p) ist genau p.
Damit kann man die Funktion Γ(p) kompakt wie folgt beschreiben:

Γ(p) := min
{
q prim : ordL(p)(q) = p

}
.

Mit anderen Worten: Γ(p) ist die kleinste Primzahl q, deren multiplikative Ordnung
modulo L(p) gleich p ist.
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4.3 Existenz von Γ(p)
Die Nullstellen von Φp(x) modulo L(p) sind gerade die Elemente der Ordnung p in
(Z/L(p)Z)×. Diese bilden p − 1 Restklassen modulo L(p), also p − 1 arithmetische Pro-
gressionen der Form

q ≡ r (mod L(p)), gcd(r, L(p)) = 1.
Für jede solche Progression garantiert Dirichlets Satz über Primzahlen in arithmeti-

schen Progressionen, dass es unendlich viele Primzahlen in dieser Klasse gibt. Damit ist
die Menge {

q prim : ordL(p)(q) = p
}

nichtleer, und somit ist Γ(p) als Minimum über diese Menge wohldefiniert.

4.4 Bezug zu bekannten Resultaten (Linnik-Typ-Probleme)

Obwohl die konkrete Funktion Γ(p) in der Literatur (soweit ersichtlich) keinen etablierten
Namen besitzt, ist sie eine Kombination zweier klassischer Fragestellungen:

1. Größe von L(p): L(p) ist die kleinste Primzahl in der Progression 1, 1+p, 1+2p, . . ..
Linnik’s Satz liefert eine obere Schranke der Form

L(p)≪ pC

für eine absolute Konstante C (derzeit bekannte Werte von C liegen im mittleren
einstelligen Bereich).

2. Kleinste Primzahl in einer Untergruppe: Ist L(p) einmal fest, so sucht man
die kleinste Primzahl q, die in einer der p− 1 Restklassen liegt, welche die Elemente
der Ordnung p modulo L(p) repräsentieren. Das ist eine Variante des Problems der
kleinsten Primzahl in einer arithmetischen Progression bzw. der kleinsten Primzahl
mit vorgegebener Ordnung (Linnik-Typ-Probleme).

Analytisch gesehen ist Γ(p) somit ein Spezialfall der Frage nach der kleinsten Prim-
zahl in einer (Vereinigung von) arithmetischen Progression(en) mit zusätzlicher Struktur
(Ordnung p in einer zyklischen Untergruppe).

4.5 Heuristische Erwartungen

Unter starken Hypothesen wie der verallgemeinerten Riemannschen Vermutung (GRH)
erwartet man recht kleine obere Schranken für Γ(p). Heuristisch könnte man z.B. vermuten,
dass

Γ(p)≪ L(p)ε

für jedes ε > 0 oder sogar polylogarithmische Schranken in L(p) gelten. Präzise Resultate
in dieser Richtung sind jedoch tiefgehende offene Probleme der analytischen Zahlentheorie.

4.6 Zusammenfassung

Die Funktion
Γ(p) := min{q prim : Φ(p) = p1(σ(qp−1))}

lässt sich äquivalent als

Γ(p) = min{q prim : ordL(p)(q) = p}

formulieren, wobei L(p) die kleinste Primzahl ≡ 1 (mod p) ist.
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• Die Wohldefiniertheit von Γ(p) folgt aus Dirichlets Satz über Primzahlen in arith-
metischen Progressionen.

• Die Untersuchung von Γ(p) verbindet die Theorie der kleinsten Primzahl in einer
Progression (Linnik) mit der Verteilung von Primzahlen in speziellen Restklassen
(Elemente gegebener Ordnung).

• In der Literatur scheint Γ(p) als eigene benannte Funktion nicht etabliert zu sein,
sie ist aber in bereits intensiv untersuchte Fragestellungen eingebettet.

5 Rekonstruktionseigenschaften und Injektivität
In diesem Abschnitt untersuchen wir den informationstheoretischen Gehalt des Tripels
(p, q, r), wobei wir die Abkürzungen

q := Φ(p) und r := Γ(p)

verwenden. Wir zeigen, dass das Tripel durch die Kenntnis von zwei beliebigen Kompo-
nenten vollständig bestimmt ist, die Funktion Γ(p) isoliert betrachtet jedoch Information
verliert.

5.1 Rekonstruktion des Tripels aus zwei Werten

Theorem 5.1 (Rekonstruktion). Sei T = {p, q, r} die Menge der drei Primzahlen, die
durch eine Startprimzahl p definiert sind. Sind zwei beliebige Elemente aus T bekannt, so
lässt sich das dritte Element eindeutig bestimmen.

Beweis. Wir unterscheiden drei Fälle, je nachdem, welches Paar gegeben ist:

1. Gegeben sind (p, q) oder (p, r):
Da q = Φ(p) und r = Γ(p) per Definition Funktionen von p sind, ist das Tripel durch
die Kenntnis von p trivialerweise vollständig bestimmt. Man berechnet einfach den
fehlenden Funktionswert gemäß Definition.

2. Gegeben sind (q, r):
Dies ist der nichttriviale Fall, da p nicht explizit vorliegt. Wir nutzen die gruppen-
theoretische Eigenschaft von Γ(p) aus Abschnitt 4.2. Es gilt per Definition, dass r
modulo q die multiplikative Ordnung p besitzt:

ordq(r) = p.

Da die multiplikative Ordnung eines Elements in der Gruppe (Z/qZ)× eindeutig
bestimmt ist, kann p durch die Berechnung

p = min{k ∈ N≥1 : rk ≡ 1 (mod q)}

eindeutig rekonstruiert werden.

Example 5.2. Seien q = 11 und r = 3 bekannt. Wir suchen p. Wir berechnen die Potenzen
von 3 modulo 11:

31 ≡ 3, 32 ≡ 9, 33 ≡ 5, 34 ≡ 4, 35 = 243 = 22 · 11 + 1 ≡ 1.

Die Ordnung ist 5, also folgt p = 5. Dies ist korrekt, da Φ(5) = 11 und Γ(5) = 3.
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5.2 Nicht-Injektivität von Γ(p)
Während das Paar (q, r) p eindeutig bestimmt, reicht die Kenntnis von r allein nicht aus.

Theorem 5.3. Die Funktion Γ : P → P ist nicht injektiv. Das heißt, eine Primzahl r
kann Nachfolger mehrerer verschiedener Primzahlen p sein.

Beweis. Wir führen ein Gegenbeispiel durch explizite Berechnung der ersten Werte an:

1. Sei p1 = 2.

• Φ(2) = 3 (kleinste Primzahl ≡ 1 (mod 2)).
• Wir suchen Γ(2): Die kleinste Primzahl mit Ordnung 2 modulo 3. Da 22 = 4 ≡ 1

(mod 3), ist Γ(2) = 2.

2. Sei p2 = 3.

• Φ(3) = 7 (kleinste Primzahl ≡ 1 (mod 3)).
• Wir suchen Γ(3): Die kleinste Primzahl mit Ordnung 3 modulo 7. Die Potenzen

von 2 sind 21 ≡ 2, 22 ≡ 4, 23 ≡ 1. Also ist Γ(3) = 2.

Da p1 ̸= p2, aber Γ(p1) = Γ(p2) = 2, ist die Funktion nicht injektiv.

6 Ein diophantisches System in Primzahlen
In diesem Abschnitt formulieren wir ein natürliches System von Gleichungen in drei Prim-
zahlen (p, q, r), das die bereits eingeführten Abbildungen

Φ(p) := min{ q prim : q ≡ 1 (mod p) }, Γ(p) := min{A prim : Φ(p) = p1
(
Φp(A)

)
}

(in Abschnitt ?? definiert) in rein diophantischer Form ausdrückt. Hier bezeichnet Φp(X) =
1 + X + · · · + Xp−1 das p-te zyklotomische Polynom und p1(n) den kleinsten Primteiler
von n.

6.1 Das Gleichungssystem in (p, q, r)
Wir betrachten das folgende System von Gleichungen in Primzahlen p, q, r:

(i) p = ordq(r),

(ii) q = p1

(
rp − 1
r − 1

)
,

(iii) r = min
{
s prim : q = p1

(
sp − 1
s− 1

)}
.

(1)

Dabei ist ordq(r) die multiplikative Ordnung von r in der Gruppe (Z/qZ)×.

Remark 6.1. Gleichung (ii) verwendet die Identität

rp − 1
r − 1 = 1 + r + r2 + · · ·+ rp−1 = Φp(r),

so dass (ii) äquivalent zu
q = p1

(
Φp(r)

)
ist.
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6.2 Das kanonische Lösungstripel (p, Φ(p), Γ(p))
Wir zeigen zunächst, dass für jede Primzahl p das Tripel

(p, q, r) =
(
p,Φ(p),Γ(p)

)
eine Lösung des Systems (2) ist.

Proposition 6.2. Für jede Primzahl p erfüllt das Tripel (p, q, r) =
(
p,Φ(p),Γ(p)

)
die

Gleichungen (i)–(iii) von (2).

Beweis. Sei p prim und setze q := Φ(p) und r := Γ(p).
Zu (ii): Nach Definition von Γ(p) gilt

Φ(p) = p1
(
Φp(Γ(p))

)
.

Mit q = Φ(p) und r = Γ(p) ist dies exakt Gleichung (ii).
Zu (i): Aus der Theorie der zyklotomischen Polynome und der Konstruktion in Ab-
schnitt ?? folgt, dass für jede Primzahl A mit q | Φp(A) die Ordnung von A in (Z/qZ)×

gleich p ist. Da r = Γ(p) eine solche Primzahl ist, gilt insbesondere

ordq(r) = p,

also (i).
Zu (iii): Per Definition von Γ(p) ist r die kleinste Primzahl mit

q = p1
(
Φp(r)

)
= p1

(
rp − 1
r − 1

)
.

Dies ist genau Aussage (iii).

Damit ist für jedes p das zugehörige Tripel

(p,Φ(p),Γ(p))

eine (kanonische) Lösung des diophantischen Systems (2).

6.3 Unendlich viele Lösungen in Primzahlen

In Abschnitt ?? wurde der folgende Satz bewiesen:

Theorem 6.3 (Existenz unendlich vieler A). Für jede Primzahl p und q := Φ(p) existieren
unendlich viele Primzahlen A mit

q = p1
(
Φp(A)

)
= p1

(
Ap − 1
A− 1

)
,

und für jede dieser Primzahlen A gilt

ordq(A) = p.

Setzen wir r := A, so erfüllt jedes dieser Tripel (p, q, r) bereits die Gleichungen (i) und
(ii) von (2). Unter all diesen r ist Γ(p) gerade das kleinste; dies liefert die spezielle Lösung
(p,Φ(p),Γ(p)), aber die übrigen r sind ebenfalls gültige (nicht-minimale) Lösungen des
„abgeschwächten“ Systems bestehend aus (i) und (ii).
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Corollary 6.4. Betrachte das Gleichungssystem in Primzahlen p, q, r

(i) p = ordq(r),

(ii) q = p1

(
rp − 1
r − 1

) (2)

Dann besitzt dieses System unendlich viele verschiedene Lösungen (p, q, r) mit p, q, r prim.

Beweis. Nach Theorem 6.3 gilt: Für jede Primzahl p und q = Φ(p) gibt es unendlich viele
Primzahlen r mit

q = p1

(
rp − 1
r − 1

)
und ordq(r) = p.

Damit ist für jedes feste p die Menge der Primzahlen r, die mit q = Φ(p) das System
erfüllen, unendlich. Da es zudem unendlich viele Primzahlen p gibt, erhält man insgesamt
unendlich viele verschiedene Primzahl-Tripel (p, q, r) als Lösungen.

Zusammenfassend gilt also:

• Für jedes p ist (p,Φ(p),Γ(p)) eine ausgezeichnete, kanonische Lösung des vollen
Systems (2).

• Für jedes p existieren darüber hinaus unendlich viele weitere Primzahlen r, die (mit
q = Φ(p)) die Gleichungen (i) und (ii) erfüllen.

• Insgesamt besitzt das System (i)–(ii) unendlich viele verschiedene Tripel (p, q, r) aus
Primzahlen als Lösungen.

7 Natürliche Koordinatendarstellung bezüglich einer uni-
modularen Basis

Die Untersuchung der linearen Abhängigkeit im Werte-Raum hat zur Identifikation eines
spezifischen Tripels von Primzahlen geführt, das fundamentale Bedeutung für die Struktur
des Raumes Z3 besitzt.

7.1 Die unimodulare Basis-Matrix M

Wir definieren die Vektoren vp := (p,Φ(p),Γ(p))T für die Primzahlen p ∈ {2, 23, 29}.
Explizit berechnen sich diese Vektoren zu:

v2 = (2, 3, 2)T ,
v23 = (23, 47, 2)T (da 47 = 2 · 23 + 1 und 223 ≡ 1 (mod 47)),
v29 = (29, 59, 3)T (da 59 = 2 · 29 + 1 und 329 ≡ 1 (mod 59)).

Wir fassen diese Vektoren als Spalten in einer Matrix M zusammen:

Definition 7.1 (Die Struktur-Matrix M).

M :=

2 23 29
3 47 59
2 2 3

 .
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Theorem 7.2 (Unimodularität). Die Matrix M ist unimodular über den ganzen Zahlen,
d.h. es gilt

det(M) = 1.
Beweis. Die Entwicklung der Determinante (beispielsweise nach der ersten Zeile oder Re-
gel von Sarrus) liefert:

det(M) = 2(47 · 3− 59 · 2)− 23(3 · 3− 59 · 2) + 29(3 · 2− 47 · 2)
= 2(141− 118)− 23(9− 118) + 29(6− 94)
= 2(23)− 23(−109) + 29(−88)
= 46 + 2507− 2552
= 2553− 2552 = 1.

Da die Determinante eine Einheit im Ring Z ist, existiert die inverse Matrix M−1 und
besitzt ausschließlich ganzzahlige Einträge.

7.2 Koordinatendarstellung beliebiger Primzahlen

Die Unimodularität von M hat weitreichende Konsequenzen für die Darstellung aller an-
deren Primzahlen. Da die Spalten von M eine Basis des Gitters Z3 bilden (und nicht nur
eines Untergitters), lässt sich jeder ganzzahlige Vektor – und damit insbesondere jeder
Vektor vs einer beliebigen Primzahl s – eindeutig als ganzzahlige Linearkombination der
Basisvektoren darstellen.
Definition 7.3 (Natürliche Koordinaten). Sei s eine beliebige Primzahl und vs = (s,Φ(s),Γ(s))T .
Wir definieren den Koordinatenvektor ks ∈ Z3 von s bezüglich der Basis {2, 23, 29} als:

ks := M−1 · vs.

Ist ks = (as, bs, cs)T , so gilt die Zerlegung:

vs = as · v2 + bs · v23 + cs · v29.

Remark 7.4 (Bedeutung). Die Koeffizienten (as, bs, cs) können als „arithmetische DNA“
der Primzahl s interpretiert werden.

• Sie sind stets ganzzahlig (keine Brüche notwendig).

• Sie existieren eindeutig für jede Primzahl.

• Sie beweisen, dass die Funktion Γ(p) linear unabhängig von p und Φ(p) ist (sonst
wäre die dritte Zeile von M linear abhängig und det(M) = 0).

Damit liefert das Tripel {2, 23, 29} ein vollständiges Koordinatensystem, um die Eigen-
schaften (p,Φ(p),Γ(p)) jeder anderen Primzahl im dreidimensionalen Raum zu verorten.

8 Drei-zirkuläre Systeme und das Primzahlsystem
(Vorsicht: Die drei Abbildungen müssen nicht total definiert sein und auch für k-zirkuläre
Systeme muss das nicht der Fall sein. Zumindest bei dem Primzahl-Beispiel ist die Funktion
h nicht total definiert.)

In diesem Abschnitt formalisieren wir den Begriff eines drei-zirkulären Systems und
zeigen, dass die Primzahlen zusammen mit den Abbildungen Φ (Nachfolgerabbildung)
und Γ (Gamma-Funktion) ein solches System bilden. Außerdem werden Φ und Γ im Sinne
dieser Struktur als Erzeuger erkannt.
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Definition 8.1 (Drei-zirkuläres System). Sei X eine Menge und seien

f, g, h : X ×X −→ X

drei (nicht notwendigerweise total definierte) Abbildungen. Ein Tupel (x, y, z) ∈ X3 heißt
ein Tripel von S, wenn

x = f(y, z), y = g(x, z), z = h(x, y)

gilt.
Ein System

S := (X, f, g, h)
heißt ein drei-zirkuläres System, falls die zugehörige Tripelmenge

T (S) := { (x, y, z) ∈ X3 : x = f(y, z), y = g(x, z), z = h(x, y) }

nicht leer ist.

Definition 8.2 (Erzeuger in einem drei-zirkulären System). Sei S = (X, f, g, h) ein drei-
zirkuläres System. Zwei Abbildungen

F,G : X −→ X

heißen (erster und zweiter) Erzeuger in S, falls für alle x ∈ X gilt:

(x, F (x), G(x)) ∈ T (S).

Das heißt, für jedes x ∈ X ist das Tripel (x, F (x), G(x)) ein Tripel von S im Sinne der
obigen Definition.

9 Das Primzahlsystem als drei-zirkuläres System
In diesem Abschnitt formalisieren wir den Begriff eines drei-zirkulären Systems und zeigen,
dass die Primzahlen zusammen mit der Nachfolgerabbildung Φ und der Funktion Γ ein
solches System bilden, wenn man geeignete binäre Operationen f, g, h auf der Primzah-
lenmenge definiert.

9.1 Drei-zirkuläre Systeme und Erzeuger

Definition 9.1 (Drei-zirkuläres System). Sei X eine Menge und seien

f, g, h : X ×X −→ X

drei Abbildungen. Ein Tupel (x, y, z) ∈ X3 heißt ein Tripel von S, wenn

x = f(y, z), y = g(x, z), z = h(x, y)

gilt.
Ein System

S := (X, f, g, h)
heißt ein drei-zirkuläres System, falls die zugehörige Tripelmenge

T (S) := { (x, y, z) ∈ X3 : x = f(y, z), y = g(x, z), z = h(x, y) }

nicht leer ist.
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Definition 9.2 (Erzeuger in einem drei-zirkulären System). Sei S = (X, f, g, h) ein drei-
zirkuläres System. Zwei Abbildungen

F,G : X −→ X

heißen (erster und zweiter) Erzeuger in S, falls für alle x ∈ X gilt:

(x, F (x), G(x)) ∈ T (S).

Das heißt, für jedes x ∈ X ist das Tripel (x, F (x), G(x)) ein Tripel von S im Sinne von
Definition 9.1.

9.2 Das 3-zirkulär System der Primzahlen

Wir betrachten nun die Menge P aller Primzahlen als Grundmenge:

P := { p Primzahl }.

Für p ∈ P seien wie zuvor definiert:

• die Nachfolgerabbildung

Φ(p) := min{ q ∈ P : q ≡ 1 (mod p) },

• für n ≥ 2 der kleinste Primteiler

p1(n) := min{ ℓ ∈ P : ℓ | n },

• die Funktion Γ durch

Γ(p) := min
{
r ∈ P : Φ(p) = p1

(rp − 1
r − 1

)}
.

Wie im vorherigen Abschnitt gezeigt wurde, ist Γ(p) für jedes p ∈ P wohldefiniert und
erfüllt insbesondere

ordΦ(p)
(
Γ(p)

)
= p,

also ist die multiplikative Ordnung von Γ(p) modulo Φ(p) gleich p.

Wir definieren nun explizit die drei Abbildungen

f, g, h : P× P −→ P

durch die folgenden arithmetischen Formeln (jeweils dort, wo die rechte Seite wohldefiniert
ist; insbesondere setzen wir voraus, dass die Argumente so gewählt sind, dass der Wert
wieder eine Primzahl ist):

f(q, r) := p1
(
ordq(r)

)
,

g(p, r) := p1
(rp − 1
r − 1

)
,

h(p, q) := min
{
s ∈ P : q = p1

(sp − 1
s− 1

)}
.
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Damit ist insbesondere

f
(
Φ(p),Γ(p)

)
= p1

(
ordΦ(p)

(
Γ(p)

))
= p1(p) = p,

sowie
g
(
p,Γ(p)

)
= p1

(Γ(p)p − 1
Γ(p)− 1

)
,

und
h
(
p,Φ(p)

)
= min

{
s ∈ P : Φ(p) = p1

(sp − 1
s− 1

)}
.

Definition 9.3 (Das Primzahl-System SP). Wir definieren

SP := (P, f, g, h)

mit f, g, h wie oben.

Proposition 9.4. Für jedes p ∈ P ist das Tupel(
p,Φ(p),Γ(p)

)
∈ P3

ein Tripel von SP im Sinne von Definition 9.1, d. h. es gilt

p = f
(
Φ(p),Γ(p)

)
, Φ(p) = g

(
p,Γ(p)

)
, Γ(p) = h

(
p,Φ(p)

)
.

Insbesondere ist SP ein drei-zirkuläres System mit Erzeugern F = Φ und G = Γ.

Beweis. Sei p ∈ P beliebig, und setze

x := p, y := Φ(p), z := Γ(p).

(1) Erste Gleichung x = f(y, z):
Nach der im vorigen Abschnitt bewiesenen gruppentheoretischen Eigenschaft gilt

ordΦ(p)
(
Γ(p)

)
= p,

wobei p prim ist. Mit der Definition von f folgt

f(y, z) = f
(
Φ(p),Γ(p)

)
= p1

(
ordΦ(p)

(
Γ(p)

))
= p1(p) = p = x.

(2) Zweite Gleichung y = g(x, z):
Aus der Definition von Γ(p) erhalten wir

Φ(p) = p1
(Γ(p)p − 1

Γ(p)− 1
)
.

Mit der Definition von g ergibt sich

g(x, z) = g
(
p,Γ(p)

)
= p1

(Γ(p)p − 1
Γ(p)− 1

)
= Φ(p) = y.

(3) Dritte Gleichung z = h(x, y):
Per Definition von h gilt

h(p,Φ(p)) = min
{
s ∈ P : Φ(p) = p1

(sp − 1
s− 1

)}
.
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Genau dieser minimale Primzahlwert wird aber durch Γ(p) definiert, also

Γ(p) = min
{
s ∈ P : Φ(p) = p1

(sp − 1
s− 1

)}
= h

(
p,Φ(p)

)
= h(x, y) = z.

Damit sind alle drei Gleichungen

x = f(y, z), y = g(x, z), z = h(x, y)

für x = p, y = Φ(p), z = Γ(p) erfüllt, d. h. (p,Φ(p),Γ(p)) ist ein Tripel von SP. Da dies für
jedes p ∈ P gilt, ist die Tripelmenge

T (SP) ⊇ { (p,Φ(p),Γ(p)) : p ∈ P }

insbesondere nicht leer, und SP ist ein drei-zirkuläres System.
Nach Definition 9.2 sind F = Φ und G = Γ Erzeuger in SP, da für alle p ∈ P

(p,Φ(p),Γ(p)) ∈ T (SP)

gilt.

10 Weitere Beispiele drei-zirkulärer Systeme mit Erzeugern
In diesem Abschnitt geben wir einige elementare Beispiele drei-zirkulärer Systeme (X, f, g, h)
im Sinne von Definition 9.1 und konstruieren jeweils konkrete Erzeuger (F,G) im Sinne
von Definition 9.2.

10.1 Additives Beispiel: Summe gleich Null

Sei (A,+) eine abelsche Gruppe, etwa A = Z oder A = R. Wir betrachten

X := A.

Definiere drei Abbildungen f, g, h : X ×X → X durch

f(y, z) := −y − z, g(x, z) := −x− z, h(x, y) := −x− y.

Proposition 10.1. Ein Tripel (x, y, z) ∈ X3 ist genau dann ein Tripel von S = (X, f, g, h),
wenn

x+ y + z = 0

gilt. Insbesondere ist S ein drei-zirkuläres System.

Beweis. Es gilt:
x = f(y, z) = −y − z ⇐⇒ x+ y + z = 0.

Analog erhält man
y = g(x, z) = −x− z ⇐⇒ x+ y + z = 0

und
z = h(x, y) = −x− y ⇐⇒ x+ y + z = 0.

Sind zwei dieser Gleichungen erfüllt, so ist automatisch die dritte erfüllt, und umgekehrt.
Also ist (x, y, z) genau dann Tripel, wenn x+y+z = 0. Damit ist insbesondere T (S) nicht
leer (z.B. (0, 0, 0) ist ein Tripel), und S ist drei-zirkulär.
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Wir geben nun konkrete Erzeuger an.
Proposition 10.2. Seien F,G : X → X definiert durch

F (x) := x, G(x) := −2x.
Dann sind F,G Erzeuger in S, d.h. für alle x ∈ X ist (x, F (x), G(x)) ein Tripel von S.
Beweis. Für jedes x ∈ X gilt

x+ F (x) +G(x) = x+ x+ (−2x) = 0,
also ist (x, F (x), G(x)) ein Tripel (wegen obiger Charakterisierung genau diejenigen Tripel
mit Summe null). Explizit:

x = f(F (x), G(x)) = −F (x)−G(x),
F (x) = g(x,G(x)) = −x−G(x),
G(x) = h(x, F (x)) = −x− F (x).

Damit ist (x, F (x), G(x)) ∈ T (S) für alle x.

10.2 Geometrisches Beispiel: Winkel eines Dreiecks

Sei
X := (0, π) ⊂ R

die Menge möglicher Innenwinkel eines euklidischen Dreiecks. Ein Tripel (α, β, γ) ∈ X3

sind genau dann die Innenwinkel eines Dreiecks, wenn
α+ β + γ = π

gilt.
Wir definieren

f(β, γ) := π − β − γ, g(α, γ) := π − α− γ, h(α, β) := π − α− β.
Proposition 10.3. Ein Tripel (α, β, γ) ∈ X3 ist genau dann ein Tripel von S△ =
(X, f, g, h), wenn die drei Winkel ein Dreieck bilden, d.h.

α+ β + γ = π.

Insbesondere ist S△ ein drei-zirkuläres System.
Beweis. Genau wie im additiven Beispiel:

α = f(β, γ) = π − β − γ ⇐⇒ α+ β + γ = π,

und analog für die anderen beiden Gleichungen. Die Argumentation ist identisch.

Wir konstruieren nun symmetrische Erzeuger.
Proposition 10.4. Die Abbildungen F,G : X → X mit

F (α) := π − α
2 , G(α) := π − α

2
sind Erzeuger in S△.
Beweis. Für jedes α ∈ X gilt:

α+ F (α) +G(α) = α+ π − α
2 + π − α

2 = α+ π − α = π.

Also ist (α, F (α), G(α)) ein Dreiecks-Winkeltripel, insbesondere Tripel von S△. Explizit:
α = f(F (α), G(α)) = π − F (α)−G(α),

und analog für die anderen beiden Gleichungen.
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10.3 Boolesches Beispiel: XOR-Bedingung

Wir betrachten die boolesche Menge

X := {0, 1}

mit der Operation ⊕ (Addition modulo 2). Wir definieren

f(y, z) := y ⊕ z, g(x, z) := x⊕ z, h(x, y) := x⊕ y.

Proposition 10.5. Ein Tripel (x, y, z) ∈ X3 ist genau dann ein Tripel von Sbool =
(X, f, g, h), wenn

x⊕ y ⊕ z = 0

gilt. Insbesondere ist Sbool drei-zirkulär.

Beweis. Es gilt:
x = f(y, z) = y ⊕ z ⇐⇒ x⊕ y ⊕ z = 0

und analog
y = g(x, z) = x⊕ z ⇐⇒ x⊕ y ⊕ z = 0,

z = h(x, y) = x⊕ y ⇐⇒ x⊕ y ⊕ z = 0.

Sind zwei dieser Gleichungen erfüllt, so zwingt die Struktur von Z/2Z auch die dritte.

Proposition 10.6. Die Abbildungen F,G : X → X mit

F (x) := x, G(x) := 0

sind Erzeuger in Sbool.

Beweis. Für x = 0 erhält man das Tripel (0, 0, 0) mit

0⊕ 0⊕ 0 = 0.

Für x = 1 erhält man (1, 1, 0) mit

1⊕ 1⊕ 0 = 0.

In beiden Fällen ist (x, F (x), G(x)) ein Tripel. Explizit:

x = f(F (x), G(x)) = F (x)⊕G(x) = x⊕ 0 = x,

F (x) = g(x,G(x)) = x⊕ 0 = x,

G(x) = h(x, F (x)) = x⊕ F (x) = x⊕ x = 0 = G(x).

Also (x, F (x), G(x)) ∈ T (Sbool) für alle x ∈ X.
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10.4 Multiplikatives Beispiel: Produkt gleich Eins

Sei K ein Körper und X := K× seine multiplikative Gruppe. Wir definieren

f(y, z) := (yz)−1, g(x, z) := (xz)−1, h(x, y) := (xy)−1.

Proposition 10.7. Ein Tripel (x, y, z) ∈ X3 ist genau dann ein Tripel von S× = (X, f, g, h),
wenn

xyz = 1

gilt.

Beweis. Aus x = f(y, z) = (yz)−1 folgt xyz = 1, und umgekehrt ist x = (yz)−1 äquivalent
zu xyz = 1. Analog aus

y = g(x, z) = (xz)−1, z = h(x, y) = (xy)−1

folgt jeweils dieselbe Bedingung. Wie zuvor sind die drei Gleichungen äquivalent zur ein-
zigen Bedingung xyz = 1.

Proposition 10.8. Die Abbildungen F,G : X → X mit

F (x) := x, G(x) := x−2

sind Erzeuger in S×.

Beweis. Für jedes x ∈ X gilt

x · F (x) ·G(x) = x · x · x−2 = 1.

Also ist (x, F (x), G(x)) ein Tripel. Explizit:

x = f(F (x), G(x)) = (F (x)G(x))−1 = (x · x−2)−1 = x,

F (x) = g(x,G(x)) = (xG(x))−1 = (x · x−2)−1 = x,

G(x) = h(x, F (x)) = (xF (x))−1 = (x · x)−1 = x−2 = G(x).

Somit ist (x, F (x), G(x)) ∈ T (S×) für alle x ∈ X.

Remark 10.9. Die obigen Beispiele zeigen, dass drei-zirkuläre Systeme mit Erzeugern in
sehr unterschiedlichen Kontexten auftreten:

• additiv (Summenbedingungen),

• geometrisch (Winkel eines Dreiecks),

• boolesch (XOR-Bedingung),

• multiplikativ (Produkteinheit).

Das Primzahlsystem (P, f, g, h) mit F = Φ und G = Γ passt in dieses allgemeine Sche-
ma, ist aber strukturell wesentlich komplizierter, da f, g, h dort durch zahlentheoretische
Operationen gegeben sind und die Tripel (p,Φ(p),Γ(p)) starke arithmetische Nebenbedin-
gungen erfüllen.
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11 Allgemeine k-zirkuläre Systeme mit Erzeugern
In diesem Abschnitt verallgemeinern wir den Begriff eines drei-zirkulären Systems auf k-
Tupel und diskutieren insbesondere den Fall k = 2 als niedrigdimensionale Grundsituation.

11.1 Definition eines k-zirkulären Systems

Sei k ≥ 2 eine feste ganze Zahl.

Definition 11.1 (k-zirkuläres System). Sei X eine Menge. Ein k-zirkuläres System ist ein
Tupel

S :=
(
X, (fi)1≤i≤k

)
,

wobei für jedes 1 ≤ i ≤ k eine Abbildung

fi : Xk−1 −→ X

gegeben ist, die nicht notwendigerweise total sein muss.
Ein k-Tupel (x1, . . . , xk) ∈ Xk heißt k-Zirkel von S, wenn für alle i = 1, . . . , k gilt:

xi = fi(x1, . . . , xi−1, xi+1, . . . , xk),

d. h. jede Koordinate xi wird durch die anderen k − 1 Koordinaten bestimmt.
Die Menge aller solcher k-Zirkel nennen wir die Zirkelmenge

T (S) :=
{

(x1, . . . , xk) ∈ Xk : xi = fi(x1, . . . , x̂i, . . . , xk) für alle i
}
,

wobei das Dach x̂i bedeutet, dass die Koordinate xi weggelassen wird. Wir verlangen, dass
T (S) ̸= ∅.

Für k = 3 erhält man genau die zuvor eingeführte Definition eines drei-zirkulären
Systems.

11.2 Erzeuger in einem k-zirkulären System

Im Fall k = 3 hatten wir zwei Erzeuger F,G : X → X, die aus einem Parameter x ∈ X
das Tripel (x, F (x), G(x)) erzeugen. Entsprechend definieren wir nun:

Definition 11.2 (Erzeuger in einem k-zirkulären System). Sei S =
(
X, (fi)1≤i≤k

)
ein

k-zirkuläres System. Eine Familie von Abbildungen

F2, . . . , Fk : X −→ X

heißt Erzeugerfamilie von S, wenn für alle x ∈ X das Tupel

(x, F2(x), . . . , Fk(x))

ein k-Zirkel von S ist, d. h. es gilt

x = f1
(
F2(x), . . . , Fk(x)

)
,

F2(x) = f2
(
x, F3(x), . . . , Fk(x)

)
,

...
Fk(x) = fk

(
x, F2(x), . . . , Fk−1(x)

)
für alle x ∈ X.

In unserem Primzahl-Beispiel ist k = 3, F2 = Φ und F3 = Γ.
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11.3 Beispiele für k = 2
Für k = 2 besteht ein zwei-zirkuläres System aus einer Menge X und zwei Abbildungen

f1, f2 : X −→ X.

Ein Paar (x, y) ∈ X2 ist Zirkel, wenn

x = f1(y), y = f2(x).

Eine Erzeugerabbildung F2 : X → X (wir schreiben der Einfachheit halber F := F2) muss
die Bedingung erfüllen, dass für jedes x ∈ X das Paar (x, F (x)) ein Zirkel ist, also

x = f1(F (x)), F (x) = f2(x) für alle x ∈ X.

Insbesondere folgt:
f2 = F, f1 = F−1,

d. h. jeder Erzeuger F in einem zwei-zirkulären System muss bijektiv sein, und die Struktur
reduziert sich auf eine Involution zwischen x und F (x).

Proposition 11.3 (Charakterisierung für k = 2). Sei X eine Menge und F : X → X
eine Bijektion mit Inverser F−1. Definiert man

f1 := F−1, f2 := F,

so ist
S := (X, f1, f2)

ein zwei-zirkuläres System mit Erzeuger F , und für alle x ∈ X ist (x, F (x)) ein Zirkel
von S. Umgekehrt stammt jedes zwei-zirkuläre System mit Erzeuger aus einer solchen
Bijektion.

Beweis. Hin-Richtung: Sei F eine Bijektion mit Inverser F−1 und f1 := F−1, f2 := F .
Für jedes x ∈ X ist das Paar (x, F (x)) Zirkel von S, denn es gilt

x = f1(F (x)) = F−1(F (x)), F (x) = f2(x) = F (x).

Damit ist T (S) ̸= ∅, und F ist per Definition Erzeuger.
Rück-Richtung: Sei umgekehrt S = (X, f1, f2) ein zwei-zirkuläres System mit Erzeuger

F . Dann gilt für alle x ∈ X:

x = f1(F (x)), F (x) = f2(x).

Die erste Gleichung zeigt, dass f1 eine linke Inverse von F ist, die zweite, dass f2 eine rechte
Inverse ist. Aus der Standard-Eigenschaft „linke und rechte Inverse stimmen überein“ folgt,
dass F bijektiv ist und

f1 = F−1, f2 = F.

Example 11.4 (Zwei-zirkuläres System auf Z). Setze X := Z und F (x) := x + 1. Dann
ist F eine Bijektion mit Inverser F−1(y) = y − 1. Definiert man

f1(y) := y − 1, f2(x) := x+ 1,
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so ist für jedes x ∈ Z das Paar

(x, F (x)) = (x, x+ 1)

Zirkel von S, da

x = f1(x+ 1) = (x+ 1)− 1, x+ 1 = f2(x) = x+ 1.

Damit ist (Z, f1, f2) ein zwei-zirkuläres System mit Erzeuger F (x) = x+ 1.

Example 11.5 (Zwei-zirkuläres System auf einer Gruppe). Sei (G,+) eine abelsche Grup-
pe und sei F : G→ G ein Gruppenautomorphismus, z. B. F (x) = −x. Dann ist F bijektiv
mit Inverser F−1 = F (im Fall F (x) = −x ist F eine Involution). Setzt man

f1 := F−1, f2 := F,

so ist für jedes x ∈ G das Paar (x, F (x)) ein Zirkel von S. Im Spezialfall F (x) = −x erhält
man also ein zwei-zirkuläres System mit Zirkeln der Form (x,−x).

Zusammenfassend:

• Für k = 2 entsprechen k-zirkuläre Systeme mit Erzeugern genau Bijektionen F :
X → X; die Zirkel sind Paare der Form (x, F (x)).

• Der strukturell neue Fall beginnt bei k ≥ 3, wo es echte Mehrfachkopplungen zwi-
schen den Koordinaten gibt. Das Primzahlbeispiel mit (p,Φ(p),Γ(p)) ist ein solcher
k = 3-Fall.

12 Gruppenwirkung von Bijektionen auf k-zirkuläre Syste-
me

In diesem Abschnitt zeigen wir, dass die Bijektionsgruppe Bij(X) auf der Menge aller k-
zirkulären Systeme auf X operiert und dabei k-Zirkel auf k-Zirkel und Erzeugerfamilien
auf Erzeugerfamilien abbildet.

12.1 Erinnerung: k-zirkuläre Systeme und Erzeuger

Sei k ≥ 2 eine feste ganze Zahl und X eine Menge.

Definition 12.1 (k-zirkuläres System). Ein k-zirkuläres System auf X ist ein Tupel

S :=
(
X, (fi)1≤i≤k

)
,

wobei jedes
fi : Xk−1 −→ X

eine Abbildung ist.
Ein k-Tupel (x1, . . . , xk) ∈ Xk heißt k-Zirkel von S, wenn für alle i = 1, . . . , k gilt:

xi = fi(x1, . . . , xi−1, xi+1, . . . , xk),

d. h. jede Koordinate xi wird durch die übrigen k − 1 Koordinaten bestimmt.
Die Menge aller k-Zirkel von S nennen wir

T (S) :=
{

(x1, . . . , xk) ∈ Xk : xi = fi(x1, . . . , x̂i, . . . , xk) ∀ i
}
,

wobei das Dach x̂i bedeutet, dass xi weggelassen wird. Wir verlangen T (S) ̸= ∅.
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Definition 12.2 (Erzeugerfamilie). Sei S =
(
X, (fi)1≤i≤k

)
ein k-zirkuläres System. Eine

Familie von Abbildungen
F2, . . . , Fk : X −→ X

heißt Erzeugerfamilie von S, wenn für alle x ∈ X das Tupel

(x, F2(x), . . . , Fk(x))

ein k-Zirkel von S ist, d. h. es gilt für alle x ∈ X

x = f1
(
F2(x), . . . , Fk(x)

)
,

F2(x) = f2
(
x, F3(x), . . . , Fk(x)

)
,

...
Fk(x) = fk

(
x, F2(x), . . . , Fk−1(x)

)
.

Wir bezeichnen mit
Zk(X)

die Menge aller k-zirkulären Systeme S auf X.

12.2 Die Wirkung von Bij(X) auf Zk(X)
Sei Bij(X) die Gruppe aller Bijektionen

σ : X −→ X

mit Gruppenoperation Komposition.

Definition 12.3 (Transportierte Struktur). Sei S =
(
X, (fi)1≤i≤k

)
∈ Zk(X) und σ ∈

Bij(X). Wir definieren ein neues k-zirkuläres System

σ · S :=
(
X, (fσi )1≤i≤k

)
,

indem wir für jedes 1 ≤ i ≤ k setzen:

fσi (x1, . . . , xk−1) := σ
(
fi
(
σ−1(x1), . . . , σ−1(xk−1)

))
.

Anschaulich: Wir „benennen“ die Elemente von X via σ um und übertragen die Struk-
tur der fi auf neue Abbildungen fσi .

Proposition 12.4 (Gruppenwirkung). Die Abbildung

Bij(X)×Zk(X) −→ Zk(X), (σ, S) 7→ σ · S

ist eine wohldefinierte Gruppenwirkung. Insbesondere gilt:

1. Für alle S ∈ Zk(X) ist idX · S = S.

2. Für alle σ, τ ∈ Bij(X) und S ∈ Zk(X) gilt

(σ ◦ τ) · S = σ · (τ · S).
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Beweis. (1) Identität: Sei S =
(
X, (fi)

)
. Dann ist für alle i und alle (x1, . . . , xk−1) ∈ Xk−1

f idX
i (x1, . . . , xk−1) = idX

(
fi
(
id−1
X (x1), . . . , id−1

X (xk−1)
))

= fi(x1, . . . , xk−1).

Also ist idX · S = S.
(2) Kompatibilität mit Komposition: Sei S =

(
X, (fi)

)
und seien σ, τ ∈ Bij(X). Für

jedes i und alle (x1, . . . , xk−1) gilt:

fσ◦τ
i (x1, . . . , xk−1) = (σ ◦ τ)

(
fi
(
(σ ◦ τ)−1(x1), . . . , (σ ◦ τ)−1(xk−1)

))
= σ

(
τ
(
fi
(
τ−1(σ−1(x1)), . . . , τ−1(σ−1(xk−1))

)))
.

Andererseits ist zunächst

f τi (u1, . . . , uk−1) = τ
(
fi
(
τ−1(u1), . . . , τ−1(uk−1)

))
.

Also ist

(f τi )σ(x1, . . . , xk−1) = σ
(
f τi
(
σ−1(x1), . . . , σ−1(xk−1)

))
= σ

(
τ
(
fi
(
τ−1(σ−1(x1)), . . . , τ−1(σ−1(xk−1))

)))
.

Damit ist fσ◦τ
i = (f τi )σ, also

(σ ◦ τ) · S = σ · (τ · S).

Schließlich ist klar, dass aus T (S) ̸= ∅ auch T (σ · S) ̸= ∅ folgt (siehe nächsten Satz).
Damit ist die Wirkung wohldefiniert.

12.3 Erhaltung von k-Zirkeln und Erzeugern

Wir untersuchen nun, wie sich k-Zirkel und Erzeugerfamilien unter dieser Gruppenwirkung
verhalten.

Theorem 12.5 (Bijektionen senden k-Zirkel auf k-Zirkel). Sei S =
(
X, (fi)

)
∈ Zk(X)

und σ ∈ Bij(X). Wenn (x1, . . . , xk) ein k-Zirkel von S ist, dann ist

(σ(x1), . . . , σ(xk))

ein k-Zirkel von σ · S.

Beweis. Sei (x1, . . . , xk) ∈ T (S), also

xi = fi(x1, . . . , x̂i, . . . , xk) für alle i.

Setze yj := σ(xj) für j = 1, . . . , k. Sei i fest. Dann gilt

fσi (y1, . . . , ŷi, . . . , yk) = σ
(
fi
(
σ−1(y1), . . . , σ̂−1(yi), . . . , σ−1(yk)

))
= σ

(
fi(x1, . . . , x̂i, . . . , xk)

)
= σ(xi) = yi.

Damit erfüllt (y1, . . . , yk) genau die Zirkelgleichungen für σ ·S, also ist es ein k-Zirkel von
σ · S.
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Theorem 12.6 (Erzeugerfamilien werden zu Erzeugerfamilien). Sei S =
(
X, (fi)

)
∈

Zk(X) ein k-zirkuläres System und

F2, . . . , Fk : X → X

eine Erzeugerfamilie von S. Für σ ∈ Bij(X) definieren wir

F σj (x) := σ
(
Fj(σ−1(x))

)
, j = 2, . . . , k.

Dann ist F σ2 , . . . , F σk eine Erzeugerfamilie von σ · S.

Beweis. Sei x ∈ X beliebig und setze x′ := σ−1(x). Da F2, . . . , Fk Erzeuger von S sind,
ist

(x′, F2(x′), . . . , Fk(x′))

ein k-Zirkel von S. Nach dem vorherigen Satz ist dann(
σ(x′), σ(F2(x′)), . . . , σ(Fk(x′))

)
ein k-Zirkel von σ · S.

Andererseits ist

σ(x′) = x, σ(Fj(x′)) = σ
(
Fj(σ−1(x)

)
= F σj (x).

Also ist
(x, F σ2 (x), . . . , F σk (x))

ein k-Zirkel von σ · S für alle x ∈ X. Nach Definition ist damit F σ2 , . . . , F σk eine Erzeuger-
familie von σ · S.

Remark 12.7. Zusammenfassend gilt:

• Die Gruppe Bij(X) operiert auf der Menge Zk(X) aller k-zirkulären Systeme auf X.

• Unter dieser Wirkung werden k-Zirkel eines Systems S bijektiv auf die k-Zirkel des
transportierten Systems σ · S abgebildet.

• Erzeugerfamilien werden durch Konjugation Fj 7→ F σj := σ ◦ Fj ◦ σ−1 wieder zu
Erzeugerfamilien im transportierten System.

Damit bilden k-zirkuläre Systeme mit Erzeugerfamilien eine natürliche „Kategorie mit
Symmetrie“, auf die die Strukturgruppe Bij(X) durch Umbenennung der Elemente von X
wirkt.

13 Vier-zirkuläre Systeme und Beispiele
In diesem Abschnitt spezialisieren wir den allgemeinen Begriff der k-zirkulären Systeme
auf den Fall k = 4 und geben einige natürliche Beispiele.
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13.1 Definition eines vier-zirkulären Systems

Definition 13.1 (Vier-zirkuläres System). Sei X eine Menge. Ein vier-zirkuläres System
ist ein Tupel

S := (X, f1, f2, f3, f4),
wobei

fi : X3 −→ X (i = 1, 2, 3, 4)
vier Abbildungen sind.

Ein Tupel (x1, x2, x3, x4) ∈ X4 heißt ein Vier-Zirkel von S, wenn

x1 = f1(x2, x3, x4),
x2 = f2(x1, x3, x4),
x3 = f3(x1, x2, x4),
x4 = f4(x1, x2, x3)

gilt. Die Menge aller Vier-Zirkel ist die Zirkelmenge

T (S) :=
{
(x1, x2, x3, x4) ∈ X4 : xi = fi(die drei anderen) für alle i

}
.

Wir verlangen, dass T (S) ̸= ∅.

Definition 13.2 (Erzeuger in einem vier-zirkulären System). Sei S = (X, f1, f2, f3, f4)
ein vier-zirkuläres System. Drei Abbildungen

F2, F3, F4 : X −→ X

heißen Erzeugerfamilie von S, falls für alle x ∈ X das Tupel

(x, F2(x), F3(x), F4(x)) ∈ T (S)

liegt, d. h. für alle x ∈ X gilt

x = f1
(
F2(x), F3(x), F4(x)

)
,

F2(x) = f2
(
x, F3(x), F4(x)

)
,

F3(x) = f3
(
x, F2(x), F4(x)

)
,

F4(x) = f4
(
x, F2(x), F3(x)

)
.

13.2 Beispiel 1: Parallelogramme in einem affinen Raum

Ein sehr natürliches vier-zirkuläres System entsteht aus Parallelogrammen.
Sei (V,+) eine abelsche Gruppe (oder ein Vektorraum über einem Körper). Setze X :=

V . Wir interpretieren Tupel (x1, x2, x3, x4) als Beschriftung von vier Punkten A,B,C,D,
und erinnern an die bekannte Parallelogramm-Bedingung

A+ C = B +D.

Definiere die Abbildungen

f1(x2, x3, x4) := x2 + x4 − x3,

f2(x1, x3, x4) := x1 + x3 − x4,

f3(x1, x2, x4) := x2 + x4 − x1,

f4(x1, x2, x3) := x1 + x3 − x2.
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Proposition 13.3. Mit diesen Definitionen ist S = (V, f1, f2, f3, f4) ein vier-zirkuläres
System, und ein Tupel (x1, x2, x3, x4) ∈ V 4 ist genau dann Vier-Zirkel von S, wenn

x1 + x3 = x2 + x4

gilt, d. h. wenn die vier Punkte ein Parallelogramm bilden.

Beweis. Sei (x1, x2, x3, x4) ∈ V 4. Dann gilt

x1 = f1(x2, x3, x4) ⇐⇒ x1 = x2 + x4 − x3 ⇐⇒ x1 + x3 = x2 + x4,

x2 = f2(x1, x3, x4) ⇐⇒ x2 = x1 + x3 − x4 ⇐⇒ x1 + x3 = x2 + x4,

und analog für die anderen beiden Gleichungen. Alle vier Gleichungen sind also äquivalent
zur Parallelogramm-Bedingung x1 + x3 = x2 + x4. Damit ist die Zirkelmenge genau die
Menge aller Parallelogramm-Tupel, und sie ist offensichtlich nicht leer (z. B. mit x1 = x2 =
x3 = x4).

Eine Erzeugerfamilie kann man z. B. so wählen: fixiere drei Endomorphismen A,B,C :
V → V und setze

F2(x) = A(x), F3(x) = B(x), F4(x) = C(x),

und wähle die A,B,C so, dass (x,A(x), B(x), C(x)) die Parallelogramm-Bedingung erfüllt,
z. B.

C(x) := A(x) +B(x)− x.

Dann ist für jedes x ∈ V das Tupel

(x,A(x), B(x), A(x) +B(x)− x)

ein Vier-Zirkel (Parallelogramm mit Diagonalsumme A(x) +B(x)).

13.3 Beispiel 2: Iterierte Abbildungen einer Bijektion

Ein zweites natürliches Beispiel entsteht aus der Iteration einer Bijektion.
Sei X eine Menge und sei F : X → X eine Bijektion. Für n ∈ Z bezeichne Fn die n-te

Iteration (mit F 0 = id und F−1 der Inversen).
Wir definieren

f1(x2, x3, x4) := F−1(x2),
f2(x1, x3, x4) := F (x1),
f3(x1, x2, x4) := F 2(x1),
f4(x1, x2, x3) := F 3(x1).

Proposition 13.4. Das System S = (X, f1, f2, f3, f4) ist vier-zirkulär. Für jede Wahl von
x ∈ X ist das Tupel

(x, F (x), F 2(x), F 3(x))

ein Vier-Zirkel von S. Eine Erzeugerfamilie ist gegeben durch

F2(x) = F (x), F3(x) = F 2(x), F4(x) = F 3(x).
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Beweis. Setze für ein festes x ∈ X

x1 := x, x2 := F (x), x3 := F 2(x), x4 := F 3(x).

Dann gilt

f1(x2, x3, x4) = F−1(x2) = F−1(F (x)) = x = x1,

f2(x1, x3, x4) = F (x1) = F (x) = x2,

f3(x1, x2, x4) = F 2(x1) = F 2(x) = x3,

f4(x1, x2, x3) = F 3(x1) = F 3(x) = x4.

Damit ist (x1, x2, x3, x4) ein Vier-Zirkel. Da dies für alle x ∈ X gilt, ist T (S) ̸= ∅. Die
Erzeugereigenschaft von (F2, F3, F4) = (F, F 2, F 3) folgt direkt aus den obigen Gleichun-
gen.

14 Ein physikalisches Modell: Die Raumzeit-Kausalität
Um die abstrakte Struktur eines 4-zirkulären Systems mit Erzeugern zu illustrieren, be-
trachten wir ein fundamentales Beispiel aus der speziellen Relativitätstheorie: die Menge
der Ereignisse auf dem Lichtkegel.

14.1 Definition des Systems

Sei X = R die Menge der reellen Zahlen. Wir betrachten den Raum der Ereignisse als
R4 mit den Koordinaten (t, x, y, z), wobei t die Zeit und x, y, z die räumlichen Positionen
bezeichnen. Wir normieren die Lichtgeschwindigkeit auf c = 1.

Wir definieren das System SRT = (R, ft, fx, fy, fz) durch die bindende Gleichung des
Lichtkegels:

t2 − x2 − y2 − z2 = 0.

Diese Gleichung beschreibt die Ausbreitung eines Lichtblitzes, der zum Zeitpunkt t = 0
im Ursprung gezündet wurde.

Die vier Rekonstruktionsfunktionen sind durch Auflösen dieser quadratischen Form
gegeben (wobei wir für Eindeutigkeit eine Vorzeichenwahl treffen müssen, z.B. t ≥ 0 für
die Zukunft und räumliche Orientierung):

ft(x, y, z) :=
√
x2 + y2 + z2 (Zeitpunkt der Wahrnehmung),

fx(t, y, z) := ±
√
t2 − y2 − z2 (x-Position, falls |t| ≥

√
y2 + z2),

fy(t, x, z) := ±
√
t2 − x2 − z2,

fz(t, x, y) := ±
√
t2 − x2 − y2.

Bemerkung: Um die Eindeutigkeit (Zirkularität) im strengen Sinne zu gewährleisten,
schränken wir den Definitionsbereich auf einen Oktanten oder eine feste Ausbreitungs-
richtung ein, oder wir betrachten die Quadrate der Koordinaten als die Elemente von
X.
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14.2 Konstruktion der Erzeuger

Ein Erzeuger-System in diesem Kontext entspricht einer parametrisierten Kurve (Weltli-
nie), die vollständig auf dem Lichtkegel verläuft. Physikalisch entspricht dies einem Photon
(Lichtteilchen), das sich in eine feste Richtung bewegt.

Sei n⃗ = (nx, ny, nz) ∈ R3 ein fester Richtungsvektor mit der Eigenschaft |n⃗| = 1, d.h.

n2
x + n2

y + n2
z = 1.

Wir wählen die Zeit t als den freien Parameter (das „x“ in der Definition 1). Die Erzeuger-
Funktionen Gx, Gy, Gz : R→ R sind definiert als:

Gx(t) := nx · t,
Gy(t) := ny · t,
Gz(t) := nz · t.

14.3 Beweis der Erzeuger-Eigenschaft

Wir müssen zeigen, dass für jeden Zeitpunkt t ∈ R das Quadrupel

Q(t) := (t, Gx(t), Gy(t), Gz(t))

ein gültiges Element der Tripelmenge T (SRT ) ist, also die bindende Gleichung erfüllt.

Beweis. Wir setzen die Funktionen in die Lichtkegel-Gleichung ein:

Linke Seite = t2 − (Gx(t))2 − (Gy(t))2 − (Gz(t))2

= t2 − (nxt)2 − (nyt)2 − (nzt)2

= t2 − t2(n2
x + n2

y + n2
z).

Nach Voraussetzung ist n⃗ ein Einheitsvektor, also gilt n2
x + n2

y + n2
z = 1.

= t2 − t2 · 1 = 0.

Die Gleichung ist für alle t erfüllt. Somit generiert das Photon in Richtung n⃗ eine konsis-
tente Trajektorie im 4-zirkulären System.

Remark 14.1 (Vergleich zur Zahlentheorie). Der wesentliche Unterschied zum Primzahl-
system liegt in der Flexibilität der Erzeuger:

• Im physikalischen System gibt es unendlich viele mögliche Erzeuger-Sets (für jeden
Richtungsvektor n⃗ auf der Einheitskugel einen). Das System ist isotrop.

• Im Primzahlsystem scheint es nur ein einziges, kanonisches Erzeuger-Paar (Φ,Γ) zu
geben. Das „Primzahl-Universum“ erlaubt keine Wahl der Richtung; der Pfad ist
durch die Arithmetik vorbestimmt.

15 Natürliche k-zirkuläre Systeme aus Bijektionen
In diesem Abschnitt zeigen wir, dass für jede Menge X und jede Bijektion F ∈ Bij(X) auf
natürliche Weise ein k-zirkuläres System für jedes k ≥ 2 entsteht. Damit erhält man eine
kanonische Abbildung

Bij(X) −→ Zk(X),
wobei Zk(X) die Menge aller k-zirkulären Systeme auf X bezeichnet.
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15.1 Erinnerung: k-zirkuläre Systeme

Für k ≥ 2 sei X eine Menge und

fi : Xk−1 −→ X (i = 1, . . . , k)

Abbildungen. Ein k-Tupel (x1, . . . , xk) ∈ Xk heißt k-Zirkel von

S :=
(
X, (fi)1≤i≤k

)
,

falls für alle i = 1, . . . , k gilt:

xi = fi(x1, . . . , x̂i, . . . , xk),

wobei das Dach x̂i bedeutet, dass die Koordinate xi ausgelassen wird. Die Menge aller
solcher k-Zirkel ist die Zirkelmenge T (S) ⊆ Xk, und wir verlangen T (S) ̸= ∅. Die Menge
aller solcher Systeme auf X bezeichnen wir mit Zk(X).

15.2 Konstruktion aus einer Bijektion

Sei nun k ≥ 2 fest und X eine Menge. Sei

F : X −→ X

eine Bijektion. Wie üblich bezeichnen wir mit Fn die n-te Iteration von F (für n ≥ 0)
bzw. die Iteration der Inversen (für n < 0), mit

F 0 = idX , F−1 = F−1, Fn+m = Fn ◦ Fm.

Wir wollen aus F ein k-zirkuläres System konstruieren, dessen Zirkel genau die Orbit-
Tupel

(x, F (x), F 2(x), . . . , F k−1(x))
sind.

Definition 15.1 (Das von F induzierte k-System). Für F ∈ Bij(X) definieren wir ein
System

SF :=
(
X, (fFi )1≤i≤k

)
∈ Zk(X)

durch folgende Abbildungen fFi : Xk−1 → X:

fF1 (x2, . . . , xk) := F−1(x2),

fFi (x1, . . . , xi−1, xi+1, . . . , xk) := F i−1(x1) für i = 2, . . . , k.

Die Idee ist: wir deuten einen Zirkel als

(x1, . . . , xk) =
(
x1, F (x1), F 2(x1), . . . , F k−1(x1)

)
,

und die Gleichungen
xi = fFi (die anderen)

lesen sich als Rekonstruktionsformeln aus den übrigen Koordinaten.

Theorem 15.2. Für jedes k ≥ 2, jede Menge X und jede Bijektion F ∈ Bij(X) ist das in
Definition 15.1 konstruierte System SF ein k-zirkuläres System. Für jedes x ∈ X ist das
Tupel (

x, F (x), F 2(x), . . . , F k−1(x)
)
∈ T (SF ).
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Beweis. Sei x ∈ X beliebig und setze

xi := F i−1(x) (i = 1, . . . , k),

also explizit
(x1, . . . , xk) =

(
x, F (x), F 2(x), . . . , F k−1(x)

)
.

Wir überprüfen die Zirkel-Gleichungen xi = fFi (die anderen) für alle i.
Fall i = 1: Die Eingabe von fF1 sind die Koordinaten (x2, . . . , xk). Es gilt

x2 = F (x1) = F (x).

Nach Definition ist
fF1 (x2, . . . , xk) = F−1(x2),

also
fF1 (x2, . . . , xk) = F−1(x2) = F−1(F (x)) = x = x1.

Damit ist die erste Gleichung erfüllt.
Fall i ≥ 2: Für i ∈ {2, . . . , k} hat fFi die Form

fFi (x1, . . . , xi−1, xi+1, . . . , xk) = F i−1(x1).

In unserem Tupel ist x1 = x, also

fFi (x1, . . . , xi−1, xi+1, . . . , xk) = F i−1(x1) = F i−1(x) = xi.

Damit sind auch für alle i ≥ 2 die Gleichungen erfüllt.
Somit ist für jedes x ∈ X das Tupel

(
x, F (x), . . . , F k−1(x)

)
ein k-Zirkel von SF , d. h.

es liegt in T (SF ). Insbesondere ist T (SF ) ̸= ∅, also ist SF ein k-zirkuläres System.

Corollary 15.3. Für jedes k ≥ 2 definiert die Zuordnung

Θk : Bij(X) −→ Zk(X), F 7−→ SF ,

eine wohldefinierte Abbildung, welche jeder Bijektion F ∈ Bij(X) ein natürliches k-zirkuläres
System mit Zirkel-Orbits (x, F (x), . . . , F k−1(x)) zuordnet.

Remark 15.4. • Für k = 2 reduziert sich die Konstruktion auf den bereits betrach-
teten Fall: man erhält

fF1 (y) = F−1(y), fF2 (x) = F (x),

und die Zirkel sind Paare (x, F (x)).

• Für k = 3 erhält man ein drei-zirkuläres System mit Zirkeln (x, F (x), F 2(x)) und

fF1 (x2, x3) = F−1(x2), fF2 (x1, x3) = F (x1), fF3 (x1, x2) = F 2(x1).

• Für beliebiges k sind die Zirkel genau die „Orbit-Segmente“ der Länge k entlang der
Bahn von F :

x, F (x), F 2(x), . . . , F k−1(x).

In diesem Sinn liefert jede Bijektion F ∈ Bij(X) ein natürliches dynamisches k-
zirkuläres System.
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16 Beispiele k-zirkulärer Systeme aus den Wissenschaften
In diesem Abschnitt illustrieren wir den abstrakten Begriff der k-zirkulären Systeme
an Beispielen aus Physik, Informatik, Ökonomie und Chemie. In allen Fällen liegt eine
Zwangsbedingung zwischen k Größen vor, aus der jede einzelne Größe eindeutig aus den
übrigen k − 1 rekonstruiert werden kann. Formal gesprochen erhalten wir jeweils ein k-
zirkuläres System im Sinne der allgemeinen Definition.

16.1 Lineare Erhaltung: Nullsummen-Systeme

Wir beginnen mit einem allgemeinen linearen Modell, das viele konkrete Anwendungen
(Kirchhoffsche Maschengleichungen, RAID-Parity, Massenbilanz, Gibbs–Duhem in geeig-
neter Form) umfasst.

Definition 16.1 (Lineares Nullsummen-System). Sei X ein kommutativer Körper (z. B.
R) und seien k ≥ 2 sowie eine Konstante C ∈ X fixiert. Wir definieren Slin =

(
X, (fi)1≤i≤k

)
durch

fi : Xk−1 −→ X, fi(x1, . . . , x̂i, . . . , xk) := C −
∑

1≤j≤k
j ̸=i

xj .

Proposition 16.2. Ein k-Tupel (x1, . . . , xk) ∈ Xk ist genau dann ein k-Zirkel von Slin,
wenn

x1 + · · ·+ xk = C

gilt. Insbesondere ist Slin ein k-zirkuläres System.

Beweis. Sei zunächst (x1, . . . , xk) Zirkel von Slin. Dann gilt für jedes i:

xi = fi(x1, . . . , x̂i, . . . , xk) = C −
∑

1≤j≤k
j ̸=i

xj .

Umstellen liefert
k∑
j=1

xj = C.

Umgekehrt sei ein Tupel (x1, . . . , xk) mit ∑k
j=1 xj = C gegeben. Dann gilt für jedes i:

C =
k∑
j=1

xj = xi +
∑

1≤j≤k
j ̸=i

xj ,

also
xi = C −

∑
1≤j≤k
j ̸=i

xj = fi(x1, . . . , x̂i, . . . , xk),

d. h. (x1, . . . , xk) ist Zirkel von Slin. Damit ist T (Slin) genau die Lösungsmenge der Nullsummen-
Gleichung und insbesondere nichtleer.

Remark 16.3 (Anwendungen).

• Kirchhoffsche Maschengleichungen: In einer Masche mit Spannungen U1, . . . , Uk
gilt ∑k

i=1 Ui = 0. Setzt man C = 0, so ist jede Spannung Ui durch die restlichen k−1
bestimmt: Ui = −∑j ̸=i Uj .

44



• RAID-5-Parity: Über F2 (Bitweise XOR) ist ein k-Block-System mit D1 ⊕ · · · ⊕
Dk = 0 ein Nullsummen-System. Fällt ein Block aus, kann er als XOR der anderen
rekonstruiert werden.

• Gibbs–Duhem (vereinfacht): Eine Gleichung der Form ∑
i αixi = C mit fixen

Koeffizienten αi lässt sich nach jedem xi auflösen und ist in geeigneter Variablen-
transformation ebenfalls ein lineares k-zirkuläres System.

16.2 Multiplikative Erhaltung: Produktzyklen

Als multiplikatives Analogon betrachten wir Produktbedingungen, die z. B. bei Währungs-
wechselkursen in Arbitrage-freien Märkten auftauchen.

Definition 16.4 (Multiplikatives Erhaltungssystem). Sei X ein kommutativer Körper
ohne Null (z. B. X = R>0) und sei K ∈ X fixiert. Wir definieren Smult =

(
X, (gi)1≤i≤k

)
durch

gi(x1, . . . , x̂i, . . . , xk) := K∏
1≤j≤k
j ̸=i

xj
.

Proposition 16.5. Ein k-Tupel (x1, . . . , xk) ∈ Xk ist genau dann Zirkel von Smult, wenn

x1 · x2 · · ·xk = K

gilt.

Beweis. Wie im linearen Fall folgt aus der Zirkel-Bedingung xi = gi(. . . ):

xi = K∏
j ̸=i xj

⇐⇒ x1 · · ·xk = K.

Umgekehrt impliziert x1 · · ·xk = K direkt xi = K/
∏
j ̸=i xj , d. h. (x1, . . . , xk) ist Zirkel.

Remark 16.6 (Währungs-Arbitrage). Seien rij > 0 die Wechselkurse zwischen k Wäh-
rungen und

r12 · r23 · · · · · rk1 = 1

die Arbitrage-freie Bedingung auf einem geschlossenen Wechselkurszyklus. Dann sind die
k Größen xi := ri,i+1 (mit zyklischem Index) durch die Bedingung ∏i xi = 1 verknüpft
und bilden ein multiplikatives k-zirkuläres System. Kennt man k − 1 Kurse, ist der k-te
eindeutig bestimmt:

xk = 1
x1 · · ·xk−1

.

16.3 Thermodynamik: ideales Gas als 3-zirkuläres System

Ein klassisches Beispiel für ein 3-zirkuläres System ist die Zustandsgleichung des idealen
Gases.

Definition 16.7 (Idealgas-System). Sei nR > 0 fixiert. Setze X := (0,∞) und definiere

fp(V, T ) := nRT

V
, fV (p, T ) := nRT

p
, fT (p, V ) := pV

nR
.

Wir setzen
Sgas :=

(
X, (fp, fV , fT )

)
.
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Proposition 16.8. Ein Tripel (p, V, T ) ∈ X3 ist genau dann Zirkel von Sgas, wenn es die
ideale Gasgleichung

pV = nRT

erfüllt. Insbesondere ist Sgas ein 3-zirkuläres System.

Beweis. Ist (p, V, T ) Zirkel, so gilt

p = fp(V, T ) = nRT

V
⇐⇒ pV = nRT.

Setzt man diese Gleichung in die Ausdrücke für fV und fT ein, so erhält man

V = fV (p, T ) = nRT

p
, T = fT (p, V ) = pV

nR
,

d. h. alle drei Gleichungen sind äquivalent zur Zustandsgleichung.
Umgekehrt sei pV = nRT gegeben. Dann folgt unmittelbar

p = nRT

V
, V = nRT

p
, T = pV

nR
,

also (p, V, T ) ∈ T (Sgas).

Remark 16.9 (Erzeuger). Wählt man z. B. die Temperatur T als freien Parameter x ∈ X
und fixiert eine isobare Prozesslinie p = p0, so sind

F2(x) := V (x) = nR

p0
x, F3(x) := T (x) = x

Erzeuger im Sinne der allgemeinen Definition: Für jedes x ist (p0, F2(x), F3(x)) ein Zirkel
von Sgas.

16.4 Relativistische Energie: (E, p, m) als 3-zirkuläres System

Die relativistische Beziehung zwischen Energie, Impuls und Ruhemasse eines Teilchens (in
einer Raumdimension) lautet

E2 = p2c2 +m2c4.

Definition 16.10 (Relativistisches Energiesystem). Sei c > 0 die Lichtgeschwindigkeit
und setze

X := (0,∞).
Definiere die Abbildungen (auf geeignigen Teilmengen, damit die Wurzeln reell sind)

fE(p,m) :=
√
p2c2 +m2c4,

fp(E,m) :=

√
E2

c2 −m
2c2,

fm(E, p) := 1
c2

√
E2 − p2c2.

Wir setzen
Srel :=

(
X, (fE , fp, fm)

)
.

Proposition 16.11. Ein Tripel (E, p,m) ∈ X3 mit E2 = p2c2 + m2c4 ist ein Zirkel
von Srel. Umgekehrt liefert jede Realisierung der Funktionen fE , fp, fm ein Tripel, das die
relativistische Energie-Impuls-Beziehung erfüllt.
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Beweis. Sei zunächst (E, p,m) gegeben mit E2 = p2c2 +m2c4 und E > 0. Dann ist

fE(p,m) =
√
p2c2 +m2c4 = E.

Weiter folgt aus E2 = p2c2 +m2c4:

E2

c2 −m
2c2 = p2 =⇒ fp(E,m) =

√
E2

c2 −m
2c2 = |p|.

Wählt man den Definitionsbereich so, dass p ≥ 0 ist (oder fixiert vorab das Vorzeichen),
ergibt sich fp(E,m) = p. Analog

E2 − p2c2 = m2c4 =⇒ fm(E, p) = 1
c2

√
E2 − p2c2 = |m|,

und mit geeigneter Vorzeichenkonvention erhält man fm(E, p) = m. Damit ist (E, p,m)
Zirkel von Srel.

Umgekehrt implizieren die Gleichungen E = fE(p,m), p = fp(E,m), m = fm(E, p)
direkt E2 = p2c2 + m2c4, wie durch Rückeinsetzen in die Definitionen von fE , fp, fm
ersichtlich.

Remark 16.12 (Erzeuger über Rapidität). Für ein Teilchen mit Masse m erhält man
durch die Rapidität θ ∈ R eine Parametrisierung der Massenschale:

E(θ) = mc2 cosh θ, p(θ) = mc sinh θ.

Setzt man x := θ, F2(x) := E(θ), F3(x) := p(θ), so ist (m,F2(x), F3(x)) für jeden festen
m und jedes x ein Zirkel von Srel.

16.5 Lichtkegel als 4-zirkuläres System

Wir kehren kurz zum Beispiel des Lichtkegels aus der speziellen Relativität zurück und
formulieren es im Rahmen eines 4-zirkulären Systems.

Die Minkowski-Lichtkegelbedingung (mit c = 1) lautet

t2 − x2 − y2 − z2 = 0.

Um Eindeutigkeit zu gewährleisten, beschränken wir uns auf den zukünftigen Lichtkegel
im ersten Oktanten, d. h. auf t ≥ 0 und x, y, z ≥ 0.

Definition 16.13 (Lichtkegel-System). Sei X := [0,∞) und definiere

ft(x, y, z) :=
√
x2 + y2 + z2,

fx(t, y, z) :=
√
t2 − y2 − z2,

fy(t, x, z) :=
√
t2 − x2 − z2,

fz(t, x, y) :=
√
t2 − x2 − y2,

wobei wir die Domänen jeweils so einschränken, dass die Radikanden nichtnegativ sind.
Setze

SLicht := (X, (ft, fx, fy, fz)).
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Proposition 16.14. Ein Quadrupel (t, x, y, z) ∈ X4 mit

t2 = x2 + y2 + z2

ist Zirkel von SLicht, und umgekehrt erfüllt jedes Zirkel-Quadrupel die Lichtkegelgleichung.

Beweis. Sei t2 = x2 + y2 + z2 und alle Koordinaten nichtnegativ. Dann folgt

ft(x, y, z) =
√
x2 + y2 + z2 = t.

Ferner gilt
x2 = t2 − y2 − z2, y2 = t2 − x2 − z2, z2 = t2 − x2 − y2,

so dass jeweils
fx(t, y, z) =

√
t2 − y2 − z2 = x,

und analog für fy, fz. Damit ist (t, x, y, z) Zirkel.
Umgekehrt implizieren die Gleichungen t = ft(x, y, z) und x = fx(t, y, z) sofort

t2 = x2 + y2 + z2,

und die übrigen Gleichungen sind dazu äquivalent; somit liegt das Ereignis auf dem Licht-
kegel.

Remark 16.15 (Erzeuger: Photon-Trajektorie). Wählt man einen Einheitsvektor n⃗ =
(nx, ny, nz) mit n2

x + n2
y + n2

z = 1 und setzt für t ≥ 0

Gx(t) := nxt, Gy(t) := nyt, Gz(t) := nzt,

so ist für jedes t das Quadrupel (t, Gx(t), Gy(t), Gz(t)) Zirkel von SLicht. Dies beschreibt
die Weltlinie eines Photons in Richtung n⃗.

16.6 Weitere Beispiele: Chemie und Systembiologie

Abschließend erwähnen wir zwei weitere Klassen von Beispielen, die sich als Spezialfälle
linearer k-zirkulärer Systeme interpretieren lassen.

• Gibbs–Duhem-Gleichung: In einer Mischung mit k Komponenten gilt bei kon-
stantem Druck und Temperatur

k∑
i=1

Ni dµi = 0,

wobei Ni die Stoffmengen und µi die chemischen Potentiale sind. Fixiert man die
Ni und betrachtet kleine Variationen (dµ1, . . . ,dµk), so ist jede dµi linear durch die
anderen dµj bestimmt. Nach geeigneter Normierung (xi := Nidµi) erhält man ein
Nullsummen-System wie in Abschnitt 16.1.

• Flux Balance Analysis (Steady State): In metabolischen Netzwerken wird für
jeden Metaboliten M die Bilanz∑

Produktion
vj −

∑
Verbrauch

vj = 0

gefordert, wobei vj die Flüsse der beteiligten Reaktionen sind. Für jede feste Bi-
lanzgleichung kann man bei k Flüssen v1, . . . , vk die Relation ∑k

i=1 εivi = 0 (mit
Vorzeichen εi = ±1) nach jedem vi auflösen, so dass ein lineares k-zirkuläres System
entsteht.
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Diese Beispiele zeigen, dass k-zirkuläre Systeme nicht nur in der reinen Arithmetik
(etwa bei Primzahlfunktionen), sondern in vielen Modellklassen der Natur- und Inge-
nieurwissenschaften auftreten, immer dann, wenn eine Schließungsbedingung oder Erhal-
tungsgleichung besteht, die alle beteiligten Größen kopppelt und jede einzelne Größe aus
den übrigen rekonstruktierbar macht.

17 Mehrstellige Quasigruppen und k-zirkuläre Systeme
In diesem Abschnitt präzisieren wir den Zusammenhang zwischen mehrstelligen Qua-
sigruppen (auch n-stellige oder multiäre Quasigruppen) und den zuvor eingeführten k-
zirkulären Systemen. Grob gesprochen gilt:

• Aus jeder n-stelligen Quasigruppe erhält man auf kanonische Weise ein (n + 1)-
zirkuläres System.

• Umgekehrt ist ein allgemeines k-zirkuläres System im Sinne unserer Definition im
Allgemeinen viel schwächer und kommt im Normalfall nicht von einer Quasigruppe.

17.1 n-stellige Quasigruppen

Wir erinnern an die Standarddefinition (vgl. etwa Belousov, Foundations of the Theory of
Quasigroups and Loops, Nauka 1967, oder Dudek, On n-ary quasigroups, Discuss. Math.
Algebra (1999)).

Definition 17.1 (n-stellige Quasigruppe). Sei n ≥ 2 und X eine Menge. Eine n-stellige
Quasigruppe auf X ist eine Abbildung

Q : Xn −→ X,

so dass für jede Position 1 ≤ i ≤ n und alle festen Werte der anderen Variablen die
Gleichung

Q(x1, . . . , xi−1, z, xi+1, . . . , xn) = y

in z eindeutig lösbar ist, d. h. es gibt genau ein z ∈ X, das die Gleichung erfüllt.

Für n = 2 erhält man die klassische (binäre) Quasigruppe: jeder Wert z = x ·y erlaubt
eindeutige „Divisionen“ von links und rechts. Für allgemeines n spricht man auch von
multiären oder polyadischen Quasigruppen.

17.2 Von der n-stelligen Quasigruppe zum (n + 1)-zirkulären System

Unsere k-zirkulären Systeme (vgl. Definition 9.1) arbeiten mit k Variablen und k Abbil-
dungen fi : Xk−1 → X, so dass jede Koordinate aus den übrigen k − 1 rekonstruiert
werden kann.

Um eine n-stellige Quasigruppe Q : Xn → X in diese Sprache zu portieren, betrachten
wir den Graphen von Q als Relation in Xn+1:

R :=
{

(x1, . . . , xn, xn+1) ∈ Xn+1 : xn+1 = Q(x1, . . . , xn)
}
.

Proposition 17.2. Sei Q : Xn → X eine n-stellige Quasigruppe. Dann gibt es Abbildun-
gen

f1, . . . , fn+1 : Xn −→ X
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so, dass das System
SQ :=

(
X, (fi)1≤i≤n+1

)
ein (n+ 1)-zirkuläres System ist und

T (SQ) = R

gilt, d. h. die Zirkel von SQ sind genau die (n+ 1)-Tupel auf dem Graphen von Q.

Beweis. Wir arbeiten auf der Menge Xn+1 mit Variablen

(x1, . . . , xn, xn+1),

wobei die Relation
xn+1 = Q(x1, . . . , xn)

die „Bindung“ ist.
Da Q eine n-stellige Quasigruppe ist, ist für jede feste Wahl aller Variablen bis auf eine

die übrige eindeutig durch die Gleichung bestimmt. Das gilt sowohl für die n Eingangsva-
riablen als auch für die „Ausgabevariable“ xn+1 (die durch Q selbst gegeben ist).

Genauer: Für jede Position 1 ≤ i ≤ n liefert uns die Quasigruppen-Eigenschaft eine
wohldefinierte „Umkehrabbildung“

Di : Xn −→ X,

so dass
Di(x1, . . . , x̂i, . . . , xn, xn+1)

das eindeutige xi ist, welches die Gleichung

Q(x1, . . . , xi−1, xi, xi+1, . . . , xn) = xn+1

erfüllt. (Das Dach x̂i bedeutet: die Variable xi wird an dieser Stelle ausgelassen.)
Für die letzte Koordinate definieren wir

Dn+1(x1, . . . , xn) := Q(x1, . . . , xn).

Wir setzen nun für 1 ≤ i ≤ n+ 1:

fi := Di.

Per Konstruktion gilt dann für jedes Tupel (x1, . . . , xn, xn+1) ∈ Xn+1:

• Falls (x1, . . . , xn, xn+1) ∈ R (also xn+1 = Q(x1, . . . , xn)), dann ist für jedes i genau

xi = fi(x1, . . . , x̂i, . . . , xn+1),

weil fi per Quasigruppen-Eigenschaft so definiert wurde.

• Umgekehrt: Wenn ein Tupel (x1, . . . , xn+1) die Gleichungen

xi = fi(Rest) für alle i

erfüllt, so impliziert insbesondere xn+1 = fn+1(x1, . . . , xn) = Q(x1, . . . , xn), also
(x1, . . . , xn+1) ∈ R.

Somit ist T (SQ) = R, und wegen R ̸= ∅ (wir können z.B. xi ∈ X beliebig wählen) ist SQ
ein (n+ 1)-zirkuläres System im Sinne der allgemeinen Definition.

In Worten: Jede n-stellige Quasigruppe induziert kanonisch ein (n+ 1)-zirkuläres Sys-
tem, dessen Zirkel genau die Graph-Tupel der Operation sind.
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17.3 Nicht-Umkehrbarkeit: Nicht jedes k-zirkuläre System kommt von
einer Quasigruppe

Umgekehrt ist ein allgemeines k-zirkuläres System im Sinne unserer Definition deutlich
schwächer: wir verlangen nur, dass es überhaupt einige Zirkel gibt (die Menge T (S) sei
nicht leer), nicht aber, dass für jede Wahl von k − 1 Koordinaten die jeweils fehlende
eindeutig fortgesetzt werden kann.

Proposition 17.3. Für k ≥ 2 gibt es k-zirkuläre Systeme, die von keiner n-stelligen
Quasigruppe (für irgendein n) stammen. Insbesondere ist die Konstruktion aus Propositi-
on 17.2 im Allgemeinen nicht umkehrbar.

Beweis. Wir geben einen expliziten Gegenbeispiel-Aufbau.
Sei X := {0, 1} eine zweielementige Menge und k := 3. Definiere Abbildungen

f1, f2, f3 : X2 −→ X

durch
f1(y, z) := 0, f2(x, z) := 0, f3(x, y) := 0

für alle x, y, z ∈ X (also sind alle drei Funktionen konstant 0).
Dann ist das einzige Tripel (x, y, z) ∈ X3, das die Gleichungen

x = f1(y, z), y = f2(x, z), z = f3(x, y)

erfüllt, das Tripel
(0, 0, 0).

Also gilt
T (S) = {(0, 0, 0)} ≠ ∅,

und damit ist S = (X, f1, f2, f3) ein drei-zirkuläres System im Sinne unserer Definition.
Angenommen, S käme von einer n-stelligen Quasigruppe Q : Xn → X über die Kon-

struktion aus Proposition 17.2. Dann müsste die zugehörige Relation R ⊆ Xn+1 der Graph
von Q sein, und T (S) müsste mit R übereinstimmen. Der Graph einer Quasigruppe hat
aber zwei Eigenschaften:

1. Für jedes (x1, . . . , xn) ∈ Xn existiert genau ein xn+1 ∈ X mit (x1, . . . , xn+1) ∈ R
(Wohldefiniertheit von Q).

2. Für jede Wahl von n der n + 1 Koordinaten gibt es genau eine Fortsetzung zur
(n+ 1)-ten Koordinate (Quasigruppen-Eigenschaft).

Im Fall unseres Beispiels ist T (S) = {(0, 0, 0)} jedoch extrem klein:

• Es gibt etwa die Paare (1, 0, 0), (0, 1, 0), (0, 0, 1), die nicht in T (S) liegen; d. h. für
diese festen zwei Koordinaten existiert keine dritte Koordinate, die die Zirkularitäts-
Gleichungen erfüllt.

Damit verletzt T (S) schon auf elementarer Ebene jede mögliche Quasigruppen-Interpretation
(es gäbe keinen überall definierten „Q“ mit Graph T (S)). Ein solches S kann daher von
keiner n-stelligen Quasigruppe stammen.

Der gleiche Trick funktioniert für beliebiges k ≥ 2: Man wählt eine endliche Menge X
und konstante Abbildungen

fi : Xk−1 → X, fi ≡ x0,
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so dass
T (S) = {(x0, . . . , x0)}

ist. Auch hier gibt es viele Partituple, die sich nicht zu einem Zirkel fortsetzen lassen, was
genau im Widerspruch zur Quasigruppen- Eigenschaft steht.

Remark 17.4 (Zusammenfassung). Algebraisch kann man sagen:
• Eine n-stellige Quasigruppe (X,Q) ist eine sehr starke Struktur: Der Graph von Q

in Xn+1 ist in jeder Koordinate „projektionstreu“ und erlaubt eindeutige Rückrech-
nung. Aus dieser Struktur erhält man automatisch ein (n+ 1)-zirkuläres System.

• Ein allgemeines k-zirkuläres System im Sinne unserer Definition fordert nur die Exis-
tenz einiger Zirkel und lokale Rekonstruktionsgleichungen auf diesen Zirkeln, aber
keine globale Eindeutigkeit / Lösbarkeit für alle Randwerte. Es ist damit eine deut-
liche Abschwächung der Quasigruppen-Axiome.

In deinen Primzahl-Beispielen liegt man intuitiv „zwischen“ diesen Welten: Man hat
sehr starke Rekonstruktionseigenschaften entlang eines kanonischen Erzeugerpfades (p,Φ(p),Γ(p)),
aber keine vollständige Quasigruppen-Struktur auf ganz Pk (dafür fehlen sowohl Totalität
als auch Eindeutigkeit für beliebige Daten).

17.4 Die Zirkulärdimension eines Systems

Wir fixieren den Begriff eines k-zirkulären Systems:
Definition 17.5 (k-zirkuläres System). Sei X eine Menge und k ≥ 2 eine ganze Zahl. Ein
k-zirkuläres System auf X ist ein Tupel

S =
(
X, (fi)1≤i≤k

)
,

wobei jedes fi : Xk−1 → X eine Abbildung ist, und es mindestens ein k-Tupel (x1, . . . , xk) ∈
Xk gibt mit

xi = fi(x1, . . . , x̂i, . . . , xk) für alle i = 1, . . . , k.
Die Menge aller solchen Tupel heißt die Zirkelmenge T (S).
Definition 17.6 (Zirkuläre Dimension eines Systems). Sei S ein k-zirkuläres System. Wir
definieren die (zirkuläre) Dimension von S schlicht durch

dim(S) := k.

Damit hängt die Dimension nur noch von der Anzahl der Koordinaten des Systems
ab, nicht von der speziellen Form der Rekonstruktions- abbildungen (fi) und auch nicht
von einer umgebenden Sprache oder Struktur.
Proposition 17.7 (Jede Menge ist 2-zirkulär). Sei X eine beliebige Menge mit mindestens
einem Element. Dann gibt es ein 2-zirkuläres System S auf X mit dim(S) = 2.
Beweis. Wähle eine Bijektion F : X → X (z.B. die Identität, falls man nichts Spezielles
voraussetzen will). Definiere

f1(y) := F−1(y), f2(x) := F (x).
Dann ist S = (X, f1, f2) ein 2-zirkuläres System: Für jedes x ∈ X ist

(x, F (x)) ∈ T (S),
denn

x = f1(F (x)) = F−1(F (x)), F (x) = f2(x).
Also existiert mindestens ein Zirkel, und dim(S) = 2.
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17.5 Das n-zirkuläre Polynomdivisions-System und die Galoisgruppe

Sei K ein Körper, K eine algebraische Hülle, und

f(X) ∈ K[X]

ein separables Polynom vom Grad n ≥ 2. Schreibe seine Nullstellen in K als

f(X) = an

n∏
j=1

(X − αj),

wobei die αj paarweise verschieden sind. Setze

Ω := {α1, . . . , αn}

als Menge der Nullstellen (ohne Vielfachheit) und X := Ω.

17.5.1 Die Zirkelfunktionen via Polynomdivision

Wir definieren ein n-zirkuläres System auf X so, dass die Rekonstruktion einer Koordinate
aus den übrigen n− 1 Koordinaten über Polynomdivision erfolgt.

Definition 17.8 (Rekonstruktionsfunktionen durch Polynomdivision). Für i ∈ {1, . . . , n}
und ein Tupel

(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Ωn−1

definieren wir zunächst das Hilfspolynom

Hi(X) :=
∏

1≤j≤n
j ̸=i

(X − xj) ∈ K[X].

Führe nun in K[X] die Polynomdivision

f(X) = Qi(X)Hi(X) +Ri(X),

wobei degRi < degHi ≤ n− 1.
Wir definieren eine totalen Abbildung

Fi : Ωn−1 → Ω

durch

Fi(x1, . . . , xi−1, xi+1, . . . , xn) :=

β, falls Ri ≡ 0, degQi = 1, Qi(X) = c(X − β), β ∈ Ω,
α1, sonst,

wobei α1 eine fest gewählte Nullstelle ist.
Das n-zirkuläre System zu f ist dann

Spoly
f :=

(
Ω, (Fi)1≤i≤n

)
.

Proposition 17.9 (Zirkel = Permutationen der Nullstellen). Ein Tupel (x1, . . . , xn) ∈ Ωn

ist genau dann Zirkel von Spoly
f , d. h.

xi = Fi(x1, . . . , x̂i, . . . , xn) für alle i,

wenn (x1, . . . , xn) eine Permutation der Nullstellen (α1, . . . , αn) ist. Insbesondere

T
(
Spoly
f

)
= {(ασ(1), . . . , ασ(n)) : σ ∈ Sn}.
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Beweis. „⇒“: Sei (x1, . . . , xn) Zirkel. Für jedes i gilt dann per Definition: die Polynomdi-
vision von f durch

Hi(X) =
∏
j ̸=i

(X − xj)

hat Rest 0 und einen linearen Quotienten Qi(X) = ci(X − xi) mit Nullstelle xi ∈ Ω. Also
schreibt sich f als

f(X) = ci(X − xi)
∏
j ̸=i

(X − xj) = ci

n∏
j=1

(X − xj),

d.h. f und ∏j(X − xj) haben genau dieselben Nullstellen (mit Vielfachheit), somit sind
x1, . . . , xn gerade eine Permutation der Nullstellen αj .

„⇐“: Sei umgekehrt (x1, . . . , xn) eine Permutation der Nullstellen. Schreibe xj = ασ(j)
für ein σ ∈ Sn. Dann gilt

f(X) = an

n∏
j=1

(X − xj) = an(X − xi)
∏
j ̸=i

(X − xj) = an(X − xi)Hi(X),

also ist bei der Polynomdivision Ri ≡ 0 und Qi(X) = an(X − xi) linear mit Nullstelle
xi ∈ Ω. Damit greift in der Definition von Fi der „gute“ Fall, und

Fi(x1, . . . , x̂i, . . . , xn) = xi

für alle i. Also ist (x1, . . . , xn) Zirkel.

17.5.2 Automorphismen des zirkulären Systems und Galoisgruppe

Sei nun L der Zerfällungskörper von f über K, d. h.

L = K(α1, . . . , αn),

und sei
G := Gal(L/K)

die Galoisgruppe. Jedes σ ∈ G permutiert die Nullstellenmenge Ω:

σ(αj) ∈ Ω (1 ≤ j ≤ n),

weil f Koeffizienten in K hat und σ(f) = f .

Definition 17.10 (Automorphismen des zirkulären Systems). Eine Bijektion

τ : Ω→ Ω

heißt Automorphismus des zirkulären Systems Spoly
f , wenn

1. sie Zirkel auf Zirkel abbildet:

(x1, . . . , xn) ∈ T (Spoly
f ) =⇒

(
τ(x1), . . . , τ(xn)

)
∈ T (Spoly

f ),

2. und sie mit den Rekonstruktionsfunktionen verträglich ist:

τ
(
Fi(x1, . . . , x̂i, . . . , xn)

)
= Fi

(
τ(x1), . . . , τ̂(xi), . . . , τ(xn)

)
für alle Zirkel (x1, . . . , xn) und alle i.
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Die Menge aller solcher τ bezeichnen wir mit

Aut
(
Spoly
f

)
⊆ Sym(Ω).

Proposition 17.11. Jedes σ ∈ G = Gal(L/K) induziert durch Einschränkung auf Ω einen
Automorphismus von Spoly

f . Damit erhält man einen injektiven Gruppenhomomorphismus

G ↪→ Aut
(
Spoly
f

)
.

Beweis. Sei σ ∈ G. Da σ ein K-Automorphismus von L ist und f ∈ K[X], gilt σ(f) = f .
Für jede Wurzel αj ist also σ(αj) wieder Wurzel von f , d.h. σ(Ω) = Ω.

Ist (x1, . . . , xn) Zirkel, so ist es nach Proposition 17.9 eine Permutation der Nullstellen.
Dann ist (

σ(x1), . . . , σ(xn)
)

ebenfalls eine Permutation der Nullstellen, also wieder Zirkel.
Für die Verträglichkeit mit Fi benutzen wir, dass σ ein Homomorphismus von Ringen

L[X]→ L[X] ist und Polynomdivision eindeutig ist: Aus

f(X) = Qi(X)Hi(X) +Ri(X)

folgt durch Anwenden von σ auf die Koeffizienten

f(X) = σ(Qi)(X)σ(Hi)(X) + σ(Ri)(X).

Für ein Zirkel-Tupel (x1, . . . , xn) istHi(X) = ∏
j ̸=i(X−xj) und Ri ≡ 0,Qi(X) = c(X−xi);

damit ist

σ(Hi)(X) =
∏
j ̸=i

(X − σ(xj)), σ(Qi)(X) = σ(c) (X − σ(xi)), σ(Ri) ≡ 0.

Also ist die Polynomdivision von f durch ∏j ̸=i(X − σ(xj)) wieder restfrei mit linearem
Quotienten, dessen Nullstelle σ(xi) ist. Nach der Definition von Fi folgt

Fi
(
σ(x1), . . . , σ̂(xi), . . . , σ(xn)

)
= σ(xi) = σ

(
Fi(x1, . . . , x̂i, . . . , xn)

)
.

Damit ist σ ∈ Aut(Spoly
f ). Die Injektivität des Homomorphismus G → Aut(Spoly

f ) ist
klar, weil Automorphismen von L durch ihre Wirkung auf die Nullstellenmenge Ω bereits
bestimmt sind (da L = K(Ω)).

Definition 17.12. Sei K ein Körper, f ∈ K[X] separabel, L ein Zerfällungskörper von f
und Ω ⊂ L die Menge der Nullstellen von f . Für jedes Polynom h ∈ K[X] mit allen Null-
stellen in Ω sei Sh das dazugehörige zirkuläre System (Polynomdivisions-Konstruktion).

Wir definieren die Gruppe

Gcirc :=
⋂

h∈K[X]
Zeros(h)⊆Ω

Aut(Sh) ⊆ Sym(Ω).

Proposition 17.13. Mit obiger Notation gilt kanonisch

Gal(L/K) ∼= Gcirc.
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17.6 Zirkuläre Systeme und implizite Gleichungen

Im Folgenden sei k ≥ 2 fest und X ⊆ R eine nichtleere Teilmenge (typischerweise ein
Intervall).

Definition 17.14 (k-Zirkel und k-zirkuläres System). Für 1 ≤ i ≤ k sei

fi : Xk−1 −→ X

eine Abbildung. Ein Tupel x = (x1, . . . , xk) ∈ Xk heißt k-Zirkel zu (fi), wenn für alle
i = 1, . . . , k gilt

xi = fi(x1, . . . , xi−1, xi+1, . . . , xk).

Die Menge aller k-Zirkel schreiben wir

T (S) :=
{
x ∈ Xk : xi = fi(x1, . . . , x̂i, . . . , xk) ∀ i

}
,

wobei das Dach x̂i bedeutet, dass xi weggelassen wird.
Das Paar

S := (X, (fi)1≤i≤k)

heißt k-zirkuläres System auf X, falls T (S) ̸= ∅.

Wir wollen nun zeigen, wie man zu einem solchen System eine GleichungA(x1, . . . , xk) =
0 schreiben kann und umgekehrt, wie aus einer geeigneten Gleichung wieder Rekonstruk-
tionsfunktionen fi entstehen.

Definition 17.15 (Zirkuläres Fehlerfunktional). Sei S = (X, (fi)) ein k-zirkuläres System.
Wir definieren

AS : Xk −→ [0,∞), AS(x1, . . . , xk) :=
k∑
i=1

(
fi(x1, . . . , x̂i, . . . , xk)− xi

)2
.

Proposition 17.16. Für jedes x ∈ Xk gilt:

x ∈ T (S) ⇐⇒ AS(x) = 0.

Insbesondere ist T (S) genau die Nullmenge von AS.

Beweis. “⇒” Ist x ∈ T (S), so gilt per Definition

xi = fi(x1, . . . , x̂i, . . . , xk) für alle i.

Also ist jeder Summand in AS(x) gleich 0, also AS(x) = 0.
“⇐” Umgekehrt sei AS(x) = 0. Da alle Summanden in der Definition von AS(x)

quadratisch und damit ≥ 0 sind, folgt aus der Summe 0, dass jeder einzelne Summand 0
sein muss, also

fi(x1, . . . , x̂i, . . . , xk)− xi = 0 für alle i.

Also
xi = fi(x1, . . . , x̂i, . . . , xk)

für alle i, d. h. x ∈ T (S).
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Damit ist jede k-zirkuläre Struktur durch eine einzige Gleichung AS(x) = 0 kodiert.

Nun zur umgekehrten Richtung: wir starten mit einer Gleichung A(x1, . . . , xk) = 0
und konstruieren daraus Rekonstruktionsfunktionen fi mit Hilfe des Satzes über implizite
Funktionen.

Definition 17.17 (Reguläre implizite Gleichung). Sei U ⊆ Rk offen und A : U → R eine
stetig differenzierbare Funktion.

Wir setzen
T := {x ∈ U : A(x) = 0}

als Lösungsmenge von A(x) = 0 voraus und fordern:

(A1) T ̸= ∅,

(A2) für jedes x0 = (x0
1, . . . , x

0
k) ∈ T und jedes i ∈ {1, . . . , k} gilt

∂A

∂xi
(x0) ̸= 0,

d. h. keine der Koordinaten ist an T eine “singuläre” Variable,

(A3) für jedes i und jede feste Wahl (a1, . . . , ai−1, ai+1, . . . , ak) in der Projektion πi(T )
existiert genau ein b ∈ X mit

(a1, . . . , ai−1, b, ai+1, . . . , ak) ∈ T.

Remark 17.18. • Die Bedingung (A2) sind genau die Voraussetzungen, unter denen
der Satz über implizite Funktionen an jedem Punkt von T anwendbar ist: lokal lässt
sich also jede Variable xi als Funktion der übrigen schreiben.

• Die Bedingung (A3) fordert zusätzlich globale Eindeutigkeit in jeder Koordinate: für
feste Werte der anderen k−1 Variablen gibt es entlang der betreffenden Koordinate
genau eine Lösung in T . Dadurch werden die Rekonstruktionsfunktionen fi global
wohldefiniert.

Theorem 17.19 (Von impliziter Gleichung zum k-zirkulären System). Sei U ⊆ Rk offen,
X ⊆ R mit Xk ⊆ U , und A : U → R stetig differenzierbar. Angenommen, A erfüllt (A1)–
(A3).

Dann existieren eindeutig bestimmte Abbildungen

fi : Xk−1 −→ X, i = 1, . . . , k,

so dass gilt:

(i) Für jedes x ∈ Xk ist

A(x) = 0 ⇐⇒ xi = fi(x1, . . . , x̂i, . . . , xk) für alle i.

(ii) Das System S = (X, (fi)) ist ein k-zirkuläres System mit

T (S) = {x ∈ Xk : A(x) = 0}.
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Beweis. Schritt 1: Definition der Rekonstruktionsfunktionen.
Fixiere i ∈ {1, . . . , k}. Sei ein Tupel

a⃗î = (a1, . . . , ai−1, ai+1, . . . , ak) ∈ Xk−1

gegeben, von dem wir annehmen, dass es in der Projektion πi(T ) liegt (ansonsten wird fi
dort gar nicht verwendet).

Nach (A3) existiert genau ein b ∈ X mit

(a1, . . . , ai−1, b, ai+1, . . . , ak) ∈ T,

also A(a1, . . . , ai−1, b, ai+1, . . . , ak) = 0.
Wir definieren

fi(⃗aî) := b.

Wegen der Eindeutigkeit in (A3) ist fi wohldefiniert.
Wendet man an einem Referenzpunkt x0 ∈ T zusätzlich (A2) und den Satz über

implizite Funktionen an, so erhält man, dass fi lokal sogar stetig differenzierbar ist; für
die Aussage des Theorems genügt jedoch die (globale) Wohldefiniertheit.

Schritt 2: Charakterisierung der Nullmenge von A.
Sei zunächst x = (x1, . . . , xk) ∈ Xk mit A(x) = 0. Dann liegt x ∈ T , und für jedes

i ist nach Definition von fi die i-te Koordinate xi gerade die eindeutige Zahl, die zu den
anderen Koordinaten gehört, also

xi = fi(x1, . . . , x̂i, . . . , xk).

Umgekehrt sei x ∈ Xk so, dass für alle i gilt

xi = fi(x1, . . . , x̂i, . . . , xk).

Dann ist insbesondere für jedes i das Tupel

(x1, . . . , xk) = (x1, . . . , xi−1, fi(x⃗î), xi+1, . . . , xk)

ein Element von T , also A(x) = 0. (Streng genommen reicht hier ein einziges i, aber die
Symmetrie stört nicht.)

Damit ist (i) gezeigt: A(x) = 0 genau dann, wenn alle k Gleichungen xi = fi(. . . )
erfüllt sind.

Schritt 3: k-Zirkularität.
Definiert man nun

S := (X, (fi)1≤i≤k),

so ist nach der Definition von T (S) und nach Schritt 2

T (S) =
{
x ∈ Xk : xi = fi(x⃗î) ∀i

}
= {x ∈ Xk : A(x) = 0}.

Nach (A1) ist T ̸= ∅, also auch T (S) ̸= ∅, und damit ist S ein k-zirkuläres System. Dies
beweist (ii).

Corollary 17.20 (Äquivalenz von System und Bindungsgleichung). Unter den oben ge-
machten Regularitätsvoraussetzungen gilt:
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(1) Sei X ⊆ R und
S = (X, (fi)1≤i≤k)

ein k-zirkuläres System, wobei jede Rekonstruktionsfunktion fi : Xk−1 → X stetig
differenzierbar (glatt) ist. Dann ist die Funktion

AS : Xk −→ [0,∞), AS(x1, . . . , xk) :=
k∑
i=1

(
fi(x1, . . . , x̂i, . . . , xk)− xi

)2
glatt, und es gilt

T (S) = {x ∈ Xk : AS(x) = 0 }.

Insbesondere ist die Zirkelmenge von S genau die Nullmenge einer glatten Gleichung
AS(x) = 0 auf Xk.

(2) Umgekehrt führe jede reguläre implizite Gleichung

A : U → R, U ⊆ Rk offen,

die die Bedingungen (A1)–(A3) erfüllt, zu einem k-zirkulären System

S = (X, (fi)1≤i≤k), X ⊆ R,

mit Rekonstruktionsfunktionen fi : Xk−1 → X, so dass

{x ∈ Xk : A(x) = 0 } = T (S).

In diesem Sinne sind die Daten „k-zirkuläres System mit glatten Rekonstruktionsfunk-
tionen auf einer reellen Teilmenge X“ und „glatte Bindungsgleichung A(x) = 0 mit den
Regularitätsbedingungen (A1)–(A3)“ äquivalent.

18 Ein globales zirkuläres System aus einer Familie
In diesem Abschnitt zeigen wir präzise, wie man aus einer endlichen Familie zirkulärer
Systeme auf derselben Grundmenge X über ihre Bindungsgleichungen ein einziges zirku-
läres System höherer Dimension konstruieren kann. Die Voraussetzung, dass X in einem
geordneten Körper liegt, wird genau an der Stelle benutzt, wo wir Summen von Quadraten
betrachten.

18.1 Setup und Annahmen

Sei (F,+, ·,≤) ein angeordneter Körper mit der Eigenschaft
m∑
i=1

a2
i = 0 ⇐⇒ a1 = · · · = am = 0

(für alle m ≥ 1 und alle ai ∈ F ). Typische Beispiele sind F = R oder geordnete Teilkörper
von R.

Sei X ⊆ F eine nichtleere Teilmenge. Wir betrachten eine endliche Familie zirkulärer
Systeme

S(j) =
(
X, (f (j)

i )1≤i≤kj

)
, j = 1, . . . ,m,
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wobei jedes S(j) ein kj-zirkuläres System auf X ist, d. h.

T
(
S(j)) :=

{
x(j) = (x(j)

1 , . . . , x
(j)
kj

) ∈ Xkj : x(j)
i = f

(j)
i

(
x

(j)
1 , . . . , x̂

(j)
i , . . . , x

(j)
kj

)
∀i
}
̸= ∅.

Wir nehmen an, dass zu jedem S(j) eine Bindungsgleichung (Ausdruck als Summe von
Quadraten) gegeben ist:
Definition 18.1 (Bindungsgleichungen der Familie). Für jedes j = 1, . . . ,m sei eine
Abbildung

Aj : Xkj −→ F

gegeben mit der Eigenschaft
T
(
S(j)) =

{
x(j) ∈ Xkj : Aj

(
x(j)) = 0

}
.

(Beispiel: man kann Aj jeweils als „Fehlerfunktional“

Aj(x(j)) =
kj∑
i=1

(
f

(j)
i (. . . )− x(j)

i

)2

wählen; dann gilt diese Eigenschaft automatisch.)

18.2 Konstruktion eines globalen Bindungsfunktionals

Wir bündeln nun alle Aj zu einer einzigen Funktion auf einem größeren Produktraum.
Setze

k := k1 + · · ·+ km,

und schreibe ein Element x ∈ Xk als Blockvektor
x =

(
x(1), . . . , x(m)), x(j) ∈ Xkj .

Definition 18.2 (Globales Bindungsfunktional). Wir definieren

Atot : Xk −→ F, Atot
(
x(1), . . . , x(m)) :=

m∑
j=1

(
Aj(x(j))

)2
.

Lemma 18.3 (Nullstellenmenge vonAtot). Mit obiger Notation gilt für jedes x = (x(1), . . . , x(m)) ∈
Xk:

Atot(x) = 0 ⇐⇒ Aj
(
x(j)) = 0 für alle j = 1, . . . ,m.

Insbesondere
{x ∈ Xk : Atot(x) = 0} =

m∏
j=1

T
(
S(j)) ⊆ Xk.

Beweis. Sei x = (x(1), . . . , x(m)) ∈ Xk beliebig. Dann ist

Atot(x) =
m∑
j=1

(
Aj(x(j))

)2
.

„⇒“: Angenommen Atot(x) = 0. Dann ist eine Summe von Quadraten in F gleich 0.
Nach der Annahme über den angeordneten Körper folgt

Aj(x(j)) = 0 für alle j.
Somit x(j) ∈ T (S(j)) für alle j, also x ∈ ∏j T (S(j)).

„⇐“: Umgekehrt sei Aj(x(j)) = 0 für alle j. Dann ist jeder Summand
(
Aj(x(j))

)2 = 0,
also Atot(x) = 0.

Damit ist die Äquivalenz gezeigt, und die Gleichheit der Nullstellenmengen ist offen-
sichtlich.
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18.3 Das globale k-zirkuläre System

Aus der einen Bindungsgleichung Atot(x) = 0 konstruieren wir nun ein k-zirkuläres System
auf X, dessen Zirkelmenge genau die Nullstellenmenge von Atot ist.

Theorem 18.4 (Globales zirkuläres System einer Familie). In der obigen Situation exis-
tiert ein k-zirkuläres System

Stot :=
(
X, (gℓ)1≤ℓ≤k

)
auf X mit folgenden Eigenschaften:

(i) Die Zirkelmenge von Stot ist genau die Nullstellenmenge von Atot:

T
(
Stot

)
=
{
x ∈ Xk : Atot(x) = 0

}
=

m∏
j=1

T
(
S(j)).

(ii) Insbesondere ist T (Stot) ̸= ∅, also ist Stot tatsächlich k-zirkulär.

Beweis. Nach Lemma 18.3 ist die Lösungsmenge

T := {x ∈ Xk : Atot(x) = 0}

nichtleer und liegt in Xk.
Wir nehmen an (analog wie in den vorherigen Abschnitten), dass Atot genügend re-

gulär ist, um die Konstruktion von Rekonstruktionsfunktionen zu erlauben (z.B. stetig
differenzierbar, und an jedem Punkt von T ist jede partielle Ableitung ∂Atot/∂xℓ ungleich
0; genau diese Art von Regularität wurde in den Bedingungen (A1)–(A3) formuliert).

Unter diesen Regularitätsvoraussetzungen liefert der allgemeine Satz 17.19 (“Von im-
pliziter Gleichung zum k-zirkulären System”) Rekonstruktionsfunktionen

gℓ : Xk−1 −→ X, ℓ = 1, . . . , k,

so dass gilt:

Atot(x) = 0 ⇐⇒ xℓ = gℓ(x1, . . . , x̂ℓ, . . . , xk) für alle ℓ.

Definiert man
Stot :=

(
X, (gℓ)1≤ℓ≤k

)
,

so ist per Definition seiner Zirkelmenge

T
(
Stot

)
=
{
x ∈ Xk : xℓ = gℓ(. . . ) ∀ℓ

}
= {x ∈ Xk : Atot(x) = 0} = T,

also (i). Da T nach Lemma 18.3 nicht leer ist, ist auch T (Stot) ̸= ∅, und damit ist Stot
k-zirkulär, wie in (ii) behauptet.

Remark 18.5 (Galois-artige Gruppe der Familie als Gruppe des globalen Systems). Neh-
men wir zusätzlich an, dass X eine “Galois-artige Gruppe”

Galcirc({S(j)}) :=
m⋂
j=1

Aut
(
S(j)) ⊆ Sym(X)

trägt, d.h. wir betrachten alle Permutationen σ von X, die jedes einzelne S(j) (bzw. dessen
Zirkelmenge T (S(j))) erhalten.
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Dann wirkt jede solche Permutation diagonal auf Xk durch

σ×k(x1, . . . , xk) :=
(
σ(x1), . . . , σ(xk)

)
,

und man sieht leicht:

σ ∈ Galcirc({S(j)}) ⇐⇒ σ×k(T (Stot)
)

= T (Stot),

also
Galcirc({S(j)}) ∼= Aut

(
Stot

)
(unter der Identifikation σ 7→ σ×k). In diesem Sinn wird die gesamte “zirkuläre Galois-
Theorie” der Familie in dem einen globalen System Stot konzentriert.

19 Primale Mengen und Wronski-Determinanten

19.1 Primale Teilmengen eines Körpers

Definition 19.1 (Primale Menge). Sei K ein Körper und X ⊆ K eine Teilmenge mit
0 /∈ X. Wir nennen X primal (in K), falls gilt:

Immer wenn eine Abbildung F : X → X existiert, für die es ein c ∈ K gibt mit

F (x) = c · x für alle x ∈ X,

so folgt bereits
F = idX und damit c = 1.

Mit anderen Worten: Es gibt keine nichttriviale skalare Selbstabbildung X → X.

19.2 Die Primzahlen sind primal in Q

Proposition 19.2. Sei K = Q und X = P die Menge der Primzahlen. Dann ist X eine
primale Teilmenge von K.

Beweis. Sei F : X → X eine Abbildung, für die es ein c ∈ Q mit

F (x) = c · x für alle x ∈ X

gibt. Angenommen, F ̸= idX . Dann existiert ein x ∈ X mit

F (x) = cx =: y ̸= x.

Da c ∈ Q ist, schreiben wir c = a
b mit a, b ∈ Z, gcd(a, b) = 1. Dann gilt

y = a

b
x =⇒ yb = ax.

Da x, y Primzahlen und x ̸= y sind, folgt aus der Gleichung yb = ax:

• Weil x Primzahl ist, teilt x entweder y oder b. Da x ̸= y ist, kann x nicht y teilen,
also muss x | b gelten.

• Analog: y | a.
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Es gibt also a′, b′ ∈ Z mit
b = xb′, a = ya′.

Einsetzen in yb = ax liefert
y · xb′ = yb = ax = ya′x.

Nach Kürzen von xy ̸= 0 folgt
b′ = a′.

Also
b = xa′, a = ya′.

Da gcd(a, b) = 1 ist, darf a′ keinen echten gemeinsamen Teiler beider Zahlen liefern; also
muss a′ = 1 gelten. Damit folgen

b = x, a = y,

und somit
c = a

b
= y

x
= F (x)

x
.

Betrachten wir nun F (y). Falls F (y) = y wäre, ergäbe sich

y = F (y) = cy = y

x
y = y2

x
,

also
y2 = xy =⇒ y = x,

im Widerspruch zu y ̸= x. Also muss F (y) ̸= y gelten.
Andererseits ist

F (y) = cy = y

x
y = y2

x
.

Da F (y) ∈ X = P ⊂ Z eine Primzahl sein soll, müsste y2

x eine ganze Zahl sein. Das
bedeutet x | y2. Da x, y verschiedene Primzahlen sind, kann x aber y2 nicht teilen. Also
ist y2

x keine ganze Zahl und insbesondere keine Primzahl. Dies steht im Widerspruch zu
F (y) ∈ X.

Damit ist die Annahme F ̸= idX falsch. Folglich gilt F = idX und damit c = 1. Also
ist X = P primal in K = Q.

19.3 Wronski-Determinanten in 2-zirkulären Systemen

Wir betrachten nun 2-zirkuläre Systeme auf primalen Mengen und zeigen, dass in diesem
Setting notwendigerweise eine „nichtdegenerierte“ 2× 2-Wronski-Determinante auftritt.
Definition 19.3 (Wronski-Determinante in Dimension 2). Für eine Abbildung F : X → X
und zwei Elemente a, b ∈ X mit a ̸= b definieren wir die (diskrete) Wronski-Determinante
als

WrF (a, b) := det
(
a F (a)
b F (b)

)
= aF (b)− b F (a).

Proposition 19.4. Sei K ein Körper, X ⊆ K eine primale Teilmenge mit 0 /∈ X, und sei
S = (X, f, g) ein 2-zirkuläres System mit g ̸= idX . Setze F := g : X → X. Dann existieren
a, b ∈ X mit a ̸= b so dass

WrF (a, b) = det
(
a F (a)
b F (b)

)
̸= 0

gilt.
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Beweis. Angenommen, es gäbe keine solchen a, b ∈ X. Dann wäre für alle a, b ∈ X:

0 = WrF (a, b) = aF (b)− b F (a),

also
aF (b) = b F (a).

Fixiere ein b ∈ X mit F (b) ̸= 0 (existiert, da g ̸= idX und 0 /∈ X). Dann folgt für jedes
a ∈ X:

F (a)
a

= F (b)
b

=: c ∈ K,

also
F (a) = c · a für alle a ∈ X.

Da X primal in K ist, impliziert dies F = idX , also g = idX , im Widerspruch zur Voraus-
setzung g ̸= idX .

Folglich gibt es a, b ∈ X mit WrF (a, b) ̸= 0.

Corollary 19.5. Für jedes 2-zirkuläre System

S = (P, f, g)

auf der Menge der Primzahlen P mit g ̸= idP existieren Primzahlen p ̸= q mit

det
(
p g(p)
q g(q)

)
̸= 0.

Beweis. Da P ⊂ Q nach obiger Proposition primal in K = Q ist und 0 /∈ P, folgt die
Aussage direkt aus der allgemeinen Proposition mit X = P und F = g.

20 Wronski-Matrizen und lineare Unabhängigkeit von Zahl-
funktionen

In diesem Abschnitt benutzen wir die zuvor konstruierte Wronski-artige Matrix

M =

 2 3 2
23 47 2
29 59 3


zu den drei Primzahlen 2, 23, 29 und den drei Funktionen

p 7−→ p, p 7−→ φ(p), p 7−→ Γ(p),

wobei die Zeilen von M genau die Tripel

(p, φ(p),Γ(p))

für p = 2, 23, 29 enthalten.
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20.1 Lineare Unabhängigkeit von p, φ(p), Γ(p) auf den Primzahlen

Wir zeigen nun, dass es keine nichttriviale rationale Linearkombination der drei Funktionen
p, φ(p),Γ(p) gibt, die auf allen Primzahlen verschwindet.
Theorem 20.1. Es gibt keine nichttriviale Relation

(A,B,C) ∈ Q3 \ {(0, 0, 0)}

mit der Eigenschaft, dass für alle Primzahlen p gilt

A · p+B · φ(p) + C · Γ(p) = 0.

Äquivalent: Die drei Funktionen
p, φ(p), Γ(p)

sind als Funktionen auf der Menge der Primzahlen P über Q linear unabhängig.

Beweis. Angenommen, es gäbe eine Relation

A · p+B · φ(p) + C · Γ(p) = 0 für alle Primzahlen p,

mit (A,B,C) ∈ Q3 und nicht alle A,B,C gleich 0.
Insbesondere muss diese Gleichung dann für die drei konkreten Primzahlen

p1 = 2, p2 = 23, p3 = 29

gelten. Das liefert das lineare Gleichungssystem

2A + 3B + 2C = 0,
23A + 47B + 2C = 0,
29A + 59B + 3C = 0.

In Matrixschreibweise:

M ·

AB
C

 =

0
0
0

 , wobei M =

 2 3 2
23 47 2
29 59 3

 .
Nach direkter Rechnung (oder vorangegangener Feststellung) ist

det(M) = 1 ̸= 0.

Damit ist M als 3 × 3–Matrix über Q invertierbar. Das bedeutet, dass das homogene
lineare Gleichungssystem

M ·

AB
C

 =

0
0
0


nur die triviale Lösung besitzt, also

A = B = C = 0

gilt.
Dies widerspricht der Annahme, dass (A,B,C) ̸= (0, 0, 0) sei. Also kann es keine

nichttriviale rationale Relation

A · p+B · φ(p) + C · Γ(p) = 0 für alle Primzahlen p

geben.
Damit sind die drei Funktionen p, φ(p),Γ(p) als Funktionen auf der Primzahlenmenge

P über Q linear unabhängig.
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Remark 20.2. Die Matrix M ist eine diskrete Analogie zur Wronski-Determinante: Statt
Ableitungen an einer Stelle auszuwerten, betrachtet man hier die Funktionswerte an ver-
schiedenen „Stützpunkten“ (hier: Primzahlen). Die Nichtverschwindung der Determinante

det

 2 φ(2) Γ(2)
23 φ(23) Γ(23)
29 φ(29) Γ(29)

 = 1

zeigt genau, dass keine rationale Linearkombination der drei Funktionen p, φ(p),Γ(p) iden-
tisch Null auf der Menge der Primzahlen sein kann.

21 Wronski-Determinanten in zirkulären Systemen
In diesem Abschnitt korrigieren und präzisieren wir die Rolle der Erzeugerfunktionen
in einem k-zirkulären System. Insbesondere nehmen wir nicht mehr an, dass alle Zirkel
durch Erzeuger erzeugt werden, sondern nur, dass zu jedem Punkt x ∈ X ein bestimmter
Erzeuger-Zirkel existiert.

21.1 Erzeuger-Zirkel in einem k-zirkulären System

Sei K ein Körper und X ⊆ K eine nichtleere Teilmenge. Sei k ≥ 2 eine ganze Zahl.

Definition 21.1 (Erzeugerfamilie von Zirkeln). Sei

S =
(
X, (fi)1≤i≤k

)
ein k-zirkuläres System auf X, d. h. fi : Xk−1 → X und die Zirkelmenge

T (S) :=
{
(x1, . . . , xk) ∈ Xk : xi = fi(x1, . . . , x̂i, . . . , xk) ∀i

}
ist nichtleer.

Eine (k − 1)-Tupel von Abbildungen

F = (F1, . . . , Fk−1), Fj : X → X,

heißt Erzeugerfamilie von Zirkeln (oder kurz: Erzeuger) für S, wenn für jedes x ∈ X der
Vektor

z(x) :=
(
x, F1(x), . . . , Fk−1(x)

)
∈ Xk

ein Zirkel von S ist, also
z(x) ∈ T (S) für alle x ∈ X.

Wir nennen z(x) dann den Erzeuger-Zirkel zu x.

Wichtig: Wir verlangen nicht, dass alle Zirkel in T (S) auf diese Weise entstehen, son-
dern nur, dass jede Stelle x ∈ X einen ausgezeichneten Zirkel z(x) liefert.

21.2 Diskrete Wronski-Matrix zu einer Erzeugerfamilie

Wir wollen nun eine Wronski-Matrix definieren, die zu einer endlichen Auswahl von Erzeuger-
Zirkeln gehört.

66



Definition 21.2 (Wronski-Matrix und Wronski-Determinante). Sei S ein k-zirkuläres
System auf X ⊆ K mit einer Erzeugerfamilie

F = (F1, . . . , Fk−1), Fj : X → X.

Wir definieren k Funktionen

G0, G1, . . . , Gk−1 : X → K

durch
G0(x) := x, Gj(x) := Fj(x) für 1 ≤ j ≤ k − 1.

Für paarweise verschiedene Punkte x1, . . . , xk ∈ X definieren wir die Wronski-Matrix

W (x1, . . . , xk) :=


G0(x1) G0(x2) · · · G0(xk)
G1(x1) G1(x2) · · · G1(xk)

...
... . . . ...

Gk−1(x1) Gk−1(x2) · · · Gk−1(xk)

 ∈ Kk×k.

Ihre Determinante

WF (x1, . . . , xk) := detW (x1, . . . , xk)

heißt die Wronski-Determinante von F an den Punkten x1, . . . , xk.

Die j-te Spalte von W (x1, . . . , xk) ist also gerade
G0(xj)
G1(xj)

...
Gk−1(xj)

 =


xj

F1(xj)
...

Fk−1(xj)

 ,

also genau der Erzeuger-Zirkel z(xj).

21.3 Lineare Iterationsgleichungen

Wir verknüpfen die Erzeugerfunktionen mit linearen Iterationsgleichungen.

Definition 21.3 (Lineare Iterationsgleichung n-ten Grades). Sei X ⊆ K und seien

a0, . . . , an, b : X −→ K

gegebene Funktionen. Eine Funktion

G : X −→ K

heißt Lösung der linearen Iterationsgleichung n-ten Grades zu (a0, . . . , an, b), falls für alle
x ∈ X gilt

a0(x)x + a1(x)G(x) + a2(x)G(2)(x) + · · ·+ an(x)G(n)(x) = b(x),

wobei G(m) die m-fache Iteration von G bezeichnet.
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Lemma 21.4 (Spalten sind Zirkel). Unter den obigen Voraussetzungen gilt: Für jedes
j ∈ {1, . . . , k} ist die j-te Spalte der Wronski-Matrix(

xj , F1(xj), . . . , Fk−1(xj)
)⊤

ein Zirkel in T (S).

Beweis. Dies ist unmittelbar aus der Definition einer Erzeugerfamilie: für jedes x ∈ X war
z(x) = (x, F1(x), . . . , Fk−1(x)) per Definition ein Zirkel von S. Setze x := xj , so folgt

(xj , F1(xj), . . . , Fk−1(xj)) ∈ T (S).

Damit ist jede Spalte ein Zirkel.

21.4 Lineare Unabhängigkeit der Erzeugerfunktionen

Wir sehen nun, dass die Existenz eines Punktes mit nichtverschwindender Wronski-Determinante
genau eine lineare Unabhängigkeit der beteiligten Funktionen erzwingt.

Definition 21.5 (Lineare Unabhängigkeit von Funktionen). Seien H0, . . . ,Hk−1 : X → K
Funktionen. Wir nennen H0, . . . ,Hk−1 (über K) linear unabhängig, wenn aus

c0H0(x) + c1H1(x) + · · ·+ ck−1Hk−1(x) = 0 für alle x ∈ X

und c0, . . . , ck−1 ∈ K stets folgt, dass

c0 = · · · = ck−1 = 0.

In unserem Kontext interessieren uns die k Funktionen

G0(x) = x, Gj(x) = Fj(x) (1 ≤ j ≤ k − 1).

Proposition 21.6 (Nichtverschwindende Wronski-Determinante ⇒ lineare Unabhängig-
keit). Sei S ein k-zirkuläres System auf X ⊆ K mit einer Erzeugerfamilie F = (F1, . . . , Fk−1),
und sei

G0(x) = x, Gj(x) = Fj(x) (1 ≤ j ≤ k − 1).

Angenommen, es gibt paarweise verschiedene Punkte x1, . . . , xk ∈ X mit

WF (x1, . . . , xk) = detW (x1, . . . , xk) ̸= 0.

Dann gilt:

1. Die Spalten der Wronski-Matrix sind Zirkel in T (S), d. h. für jedes j ist

(xj , F1(xj), . . . , Fk−1(xj)) ∈ T (S).

2. Die k Funktionen
G0, G1, . . . , Gk−1 : X → K

sind über K linear unabhängig. Insbesondere gibt es keine nichttriviale Relation

c0x+ c1F1(x) + · · ·+ ck−1Fk−1(x) = 0 für alle x ∈ X,

mit c0, . . . , ck−1 ∈ K, außer c0 = · · · = ck−1 = 0.
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Beweis. Zu (1): Dies ist genau Lemma 21.4.
Zu (2): Angenommen, die Funktionen G0, . . . , Gk−1 seien linear abhängig. Dann gibt

es Koeffizienten c0, . . . , ck−1 ∈ K, nicht alle 0, mit

c0G0(x) + c1G1(x) + · · ·+ ck−1Gk−1(x) = 0 für alle x ∈ X.

Wenden wir diese Gleichung auf die speziellen Punkte x1, . . . , xk an, so erhalten wir
das lineare Gleichungssystem

c0G0(x1) + c1G1(x1) + · · ·+ ck−1Gk−1(x1) = 0,
c0G0(x2) + c1G1(x2) + · · ·+ ck−1Gk−1(x2) = 0,

...
c0G0(xk) + c1G1(xk) + · · ·+ ck−1Gk−1(xk) = 0.

In Matrixform:

W (x1, . . . , xk)⊤ ·


c0
c1
...

ck−1

 =


0
0
...
0

 .
Da WF (x1, . . . , xk) ̸= 0 ist, ist die Matrix W (x1, . . . , xk) invertierbar, ebenso ihre

Transponierte W (x1, . . . , xk)⊤. Ein homogenes lineares Gleichungssystem mit invertibler
Koeffizientenmatrix hat aber nur die triviale Lösung. Also folgt

c0 = c1 = · · · = ck−1 = 0.

Das widerspricht der Annahme einer nichttrivialen Relation und zeigt, dass G0, . . . , Gk−1
linear unabhängig sind.

Remark 21.7 (Bezug zur linearen Iterationsgleichung). In der Sprache einer linearen Ite-
rationsgleichung n-ten Grades überX ⊆ K (mit konstanter Koeffizientenfamilie c0, . . . , cn ∈
K)

c0 x+ c1G(x) + · · ·+ cnG
(n)(x) = 0 für alle x ∈ X,

bedeutet Proposition 21.6 im Spezialfall n = k−1: Wenn es Punkte x1, . . . , xk ∈ X gibt, an
denen die Wronski-Determinante der k Funktionen G0, . . . , Gk−1 nicht verschwindet, dann
kann keine nichttriviale lineare Iterationsgleichung mit konstanten Koeffizienten existieren,
die von diesen Funktionen erfüllt wird.

Im Spezialfall der Primzahlen X = P ⊂ Q und

G0(p) = p, G1(p) = φ(p), G2(p) = Γ(p)

(siehe die Beispiele in den vorherigen Abschnitten) liefert eine nichtverschwindende 3× 3-
Wronski-Determinante

det
(
(p, φ(p),Γ(p)), (q, φ(q),Γ(q)), (r, φ(r),Γ(r))

)
̸= 0

insbesondere, dass es keine nichttriviale Relation

Ap+B φ(p) + C Γ(p) = 0 für alle Primzahlen p

mit rationalen A,B,C gibt.
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21.5 Feste und flüssige Systeme

Sei S =
(
X, (fi)1≤i≤k

)
ein k-zirkuläres System mit Zirkelmenge T (S) ⊆ Xk. Wir bezeich-

nen die Projektion auf die erste Koordinate mit

π1 : T (S) −→ X, π1(x1, . . . , xk) := x1.

Definition 21.8. Wir nennen S

• fest, falls π1 injektiv ist;

• flüssig, falls Im(π1) = X gilt.

Proposition 21.9. Ist S fest, so sind die Erzeuger (falls sie existieren) eindeutig.

Beweis. Sei S fest und seien (F2, . . . , Fk) und (G2, . . . , Gk) zwei Erzeugerfamilien von S.
Dann gilt für jedes x ∈ X

(x, F2(x), . . . , Fk(x)) ∈ T (S) und (x,G2(x), . . . , Gk(x)) ∈ T (S).

Beide Tupel haben dieselbe erste Koordinate x. Da π1 injektiv ist, müssen die Tupel gleich
sein, also

(x, F2(x), . . . , Fk(x)) = (x,G2(x), . . . , Gk(x))

für alle x ∈ X. Damit folgt Fi(x) = Gi(x) für alle i = 2, . . . , k und alle x ∈ X, d. h. die
Erzeuger sind eindeutig.

Proposition 21.10. Ist S flüssig, so existieren Erzeuger.

Beweis. Sei S flüssig, also Im(π1) = X. Dann gibt es zu jedem x ∈ X mindestens ein
Tupel

t(x) = (x, x2, . . . , xk) ∈ T (S).

Wähle für jedes x ∈ X genau ein solches Tupel t(x) (dies benutzt im Allgemeinen das
Auswahlaxiom). Definiere nun Abbildungen

Fi : X −→ X, Fi(x) := i-te Komponente von t(x) (i = 2, . . . , k).

Dann ist für jedes x ∈ X per Konstruktion

(x, F2(x), . . . , Fk(x)) = t(x) ∈ T (S),

also ist (F2, . . . , Fk) eine Erzeugerfamilie von S.

Corollary 21.11. Ist S fest und flüssig, so gibt es genau eine Erzeugerfamilie.

Beweis. Aus der Flüssigkeit folgt die Existenz mindestens einer Erzeugerfamilie, aus der
Festigkeit folgt deren Eindeutigkeit. Also existiert genau eine Erzeugerfamilie.

22 Natürliche Beispiele fester und flüssiger Systeme
Im Folgenden geben wir vier Beispiele für k-zirkuläre Systeme, die jeweils eine der vier
möglichen Kombinationen aus der obigen Definition realisieren.
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22.1 Fest und flüssig: Modulares Inverses

Wir benutzen hier die multiplikative Gruppe eines endlichen Körpers, also einen sehr
klassischen Zahlentheorie-Gegenstand.

Example 22.1 (Modulares Inverses: fest und flüssig). Sei p eine Primzahl und

X :=
(
Z/pZ

)×
die multiplikative Gruppe der von 0 verschiedenen Restklassen modulo p. Wir definieren
ein 2-zirkuläres System S1 durch die Zirkelmenge

T (S1) :=
{
(x, y) ∈ X2 ∣∣x · y ≡ 1 (mod p)

}
.

Die Zirkelfunktionen sind einfach die Projektionen f1(x, y) := x, f2(x, y) := y.

Proposition 22.2. Das System S1 ist fest und flüssig.

Beweis. Wir untersuchen die Projektion

π1 : T (S1) −→ X, π1(x, y) = x.

Flüssigkeit: Zu zeigen ist Im(π1) = X. Sei dazu x ∈ X beliebig. Da X eine endliche
Gruppe ist (tatsächlich eine endliche abelsche Gruppe), besitzt jedes Element x ∈ X ein
multiplikatives Inverses x−1 ∈ X mit

x · x−1 ≡ 1 (mod p).

Damit ist (x, x−1) ∈ T (S1) und π1(x, x−1) = x. Also liegt jedes x ∈ X in der Bildmenge
von π1. Damit ist Im(π1) = X, also ist S1 flüssig.

Festigkeit: Zu zeigen ist die Injektivität von π1. Seien dazu (x, y1) und (x, y2) zwei Elemente
aus T (S1) mit demselben ersten Eintrag x, also

(x, y1) ∈ T (S1), (x, y2) ∈ T (S1) und π1(x, y1) = π1(x, y2) = x.

Aus der Definition von T (S1) folgt

x · y1 ≡ 1 (mod p) und x · y2 ≡ 1 (mod p).

Subtrahiert man diese Kongruenzen, so erhält man

x · y1 − x · y2 ≡ 0 (mod p) ⇐⇒ x · (y1 − y2) ≡ 0 (mod p).

Da x ∈ X ist, ist x in Z/pZ invertierbar; wir können also mit x−1 multiplizieren und
erhalten

y1 − y2 ≡ 0 (mod p),

also y1 = y2 als Elemente von X. Damit folgt

(x, y1) = (x, y2),

und somit ist π1 injektiv. Also ist S1 fest.

Da S1 sowohl fest als auch flüssig ist, ist die Behauptung bewiesen.
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22.2 Flüssig, aber nicht fest: Innenwinkel eines Dreiecks

Wir modellieren die Winkelsumme eines euklidischen Dreiecks α+β+γ = π als 3-zirkuläres
System.
Example 22.3 (Dreieckswinkel: flüssig, aber nicht fest). Sei

X := (0, π)
die Menge aller reellen Zahlen zwischen 0 und π (offenes Intervall). Wir definieren das
3-zirkuläre System S2 durch die Zirkelmenge

T (S2) :=
{
(α, β, γ) ∈ X3 ∣∣α+ β + γ = π

}
.

Wieder seien die Zirkelfunktionen die Projektionen fi(α, β, γ) := i-te Komponente.
Proposition 22.4. Das System S2 ist flüssig, aber nicht fest.
Beweis. Wir betrachten die Projektion

π1 : T (S2) −→ X, π1(α, β, γ) = α.

Flüssigkeit: Sei α ∈ X = (0, π) beliebig. Wir müssen ein Tripel (α, β, γ) ∈ T (S2) konstru-
ieren. Definieren wir

β := γ := π − α
2 ,

so gilt
α+ β + γ = α+ π − α

2 + π − α
2 = α+ π − α = π.

Außerdem ist π − α > 0, also (π − α)/2 > 0, und da α > 0 ist, folgt insbesondere α < π,
also π − α < π und damit β, γ < π. Somit liegen β, γ ∈ (0, π) = X.

Damit ist (α, β, γ) ∈ T (S2) und π1(α, β, γ) = α. Da α ∈ X beliebig war, ist X ⊆
Im(π1). Andererseits ist Im(π1) ⊆ X klar, daher

Im(π1) = X,

also ist S2 flüssig.
Nicht-Festigkeit: Wir zeigen, dass π1 nicht injektiv ist. Dazu genügt es, zwei verschiedene
Elemente von T (S2) mit derselben ersten Komponente zu finden.

Wähle etwa α := π
3 . Definiere

(β1, γ1) :=
(π

3 ,
π

3
)
,

dann ist
α+ β1 + γ1 = π

3 + π

3 + π

3 = π,

also (α, β1, γ1) ∈ T (S2). Definieren wir andererseits

(β2, γ2) :=
(π

4 ,
5π
12
)
,

so gilt
α+ β2 + γ2 = π

3 + π

4 + 5π
12 = 4π

12 + 3π
12 + 5π

12 = 12π
12 = π.

Somit ist auch (α, β2, γ2) ∈ T (S2). Offensichtlich gilt
(α, β1, γ1) ̸= (α, β2, γ2),

aber
π1(α, β1, γ1) = α = π1(α, β2, γ2).

Also ist π1 nicht injektiv und S2 damit nicht fest.
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22.3 Fest, aber nicht flüssig: Die Wurzelfunktion y =
√

x− 1
Hier benutzen wir eine klassische reelle Funktion, deren Definitionsbereich nicht ganz R
umfasst.

Example 22.5 (Reelle Wurzel: fest, aber nicht flüssig). Sei

X := R

und definiere die Zirkelmenge

T (S3) :=
{
(x, y) ∈ X2 ∣∣x ≥ 1, y ≥ 0, y2 = x− 1

}
.

Damit ist S3 ein 2-zirkuläres System mit Zirkelfunktionen f1(x, y) := x, f2(x, y) := y.

Proposition 22.6. Das System S3 ist fest, aber nicht flüssig.

Beweis. Wir betrachten wieder

π1 : T (S3) −→ X, π1(x, y) = x.

Festigkeit: Zu zeigen ist die Injektivität von π1. Seien (x, y1) und (x, y2) zwei Elemente
von T (S3) mit

π1(x, y1) = π1(x, y2) = x.

Aus (x, yi) ∈ T (S3) folgt jeweils

x ≥ 1, yi ≥ 0, y2
i = x− 1 (i = 1, 2).

Insbesondere ist
y2

1 = x− 1 = y2
2.

Da y1, y2 ≥ 0 gelten muss, folgt aus y2
1 = y2

2 die Gleichheit y1 = y2. Also ist

(x, y1) = (x, y2),

und π1 somit injektiv. Also ist S3 fest.

Nicht-Flüssigkeit: Wir bestimmen das Bild von π1. Sei (x, y) ∈ T (S3). Per Definition der
Zirkelmenge gilt x ≥ 1. Also ist

Im(π1) ⊆ [1,∞).

Andererseits ist für jedes x ≥ 1 das Paar(
x,
√
x− 1

)
in T (S3), da

√
x− 1 ≥ 0 ist und (√

x− 1
)2 = x− 1.

Also ist tatsächlich
Im(π1) = [1,∞).

Da aber X = R ist, gilt
Im(π1) = [1,∞) ̸= R = X.

Also ist π1 nicht surjektiv und S3 damit nicht flüssig.
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22.4 Weder fest noch flüssig: Orthonormale Dreibeine im R3

Wir verwenden ein klassisches Objekt aus der linearen Algebra: rechtshändige orthonor-
male Basen des R3.

Example 22.7 (Orthonormale Dreibeine: weder fest noch flüssig). Sei

X := R3.

Wir definieren T (S4) als Menge aller Tripel (u, v, w) ∈ X3, die die folgenden Bedingungen
erfüllen:

• u, v, w sind Einheitsvektoren, d. h. ∥u∥ = ∥v∥ = ∥w∥ = 1,

• u, v, w sind paarweise orthogonal,

• w = u× v, wobei “×” das Kreuzprodukt bezeichnet.

Das System S4 sei durch diese Zirkelmenge und die Zirkelfunktionen fi(u, v, w) := i-te Komponente
gegeben.

Proposition 22.8. Das System S4 ist weder fest noch flüssig.

Beweis. Wir betrachten

π1 : T (S4) −→ X, π1(u, v, w) = u.

Nicht-Flüssigkeit: Aus der Definition von T (S4) folgt, dass für jedes (u, v, w) ∈ T (S4) der
Vektor u ein Einheitsvektor sein muss, also ∥u∥ = 1. Damit ist

Im(π1) ⊆
{
u ∈ R3 ∣∣ ∥u∥ = 1

}
,

also eine echte Teilmenge von X = R3. Zum Beispiel ist der Nullvektor 0 ∈ R3 nicht in
Im(π1), denn es gibt kein Tripel (0, v, w) ∈ T (S4) (dazu müsste ∥0∥ = 1 gelten). Daher ist
π1 nicht surjektiv und S4 nicht flüssig.
Nicht-Festigkeit: Wir zeigen, dass π1 nicht injektiv ist. Wähle dazu einen beliebigen Ein-
heitsvektor

u ∈ R3, ∥u∥ = 1.
Die Menge aller Einheitsvektoren v, die orthogonal zu u sind, bildet einen Kreis in der
Ebene u⊥. Es existieren also mindestens zwei verschiedene Einheitsvektoren v1, v2 ∈ R3

mit
∥v1∥ = ∥v2∥ = 1, v1 ⊥ u, v2 ⊥ u, v1 ̸= v2.

Setze
w1 := u× v1, w2 := u× v2.

Wegen der bekannten Eigenschaften des Kreuzprodukts sind w1, w2 Einheitsvektoren, die
sowohl zu u als auch zu v1 bzw. v2 orthogonal sind. Damit liegen sowohl

(u, v1, w1) ∈ T (S4) als auch (u, v2, w2) ∈ T (S4).

Diese beiden Tripel sind verschieden, da v1 ̸= v2, haben aber denselben ersten Eintrag:

π1(u, v1, w1) = u = π1(u, v2, w2).

Also ist π1 nicht injektiv und S4 somit nicht fest.
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23 Charakterisierung durch Erzeugerfamilien
In diesem Abschnitt beweisen wir, dass die Eigenschaften „fest“ und „flüssig“ direkt mit
der Existenz und Eindeutigkeit von Erzeugerfamilien korrespondieren.

Wir betrachten ein k-zirkuläres System S = (X, (fi)) mit der Zirkelmenge T (S) ⊆ Xk.
Die Projektion auf die erste Komponente sei definiert als

π1 : T (S)→ X, π1(x1, . . . , xk) = x1.

23.1 Existenz von Erzeugern (Flüssigkeit)

Theorem 23.1 (Äquivalenz für Flüssigkeit). Das System S ist genau dann flüssig, wenn
mindestens eine Erzeugerfamilie für S existiert.

S ist flüssig ⇐⇒ ∃ Erzeugerfamilie F = (F2, . . . , Fk).

Beweis. 1. Richtung (⇒): Sei S flüssig. Nach Definition bedeutet dies, dass die Projek-
tion surjektiv ist, also Im(π1) = X. Das heißt, für jedes x ∈ X ist die Faser (die Menge
der Zirkel, die mit x beginnen) nicht leer:

Tx := {t ∈ T (S) | π1(t) = x} ≠ ∅.

Wir wenden das Auswahlaxiom an und wählen für jedes x ∈ X genau ein Tupel t(x) =
(x, x2, . . . , xk) aus der Menge Tx.

Nun definieren wir die Funktionen Fi : X → X für i = 2, . . . , k so, dass Fi(x) die i-te
Komponente dieses gewählten Tupels t(x) ist. Daraus folgt, dass für alle x ∈ X gilt:

(x, F2(x), . . . , Fk(x)) = t(x) ∈ T (S).

Dies ist exakt die Definition einer Erzeugerfamilie.

2. Richtung (⇐): Sei F = (F2, . . . , Fk) eine existierende Erzeugerfamilie. Nach der
Definition von Erzeugern gilt für jedes x ∈ X, dass das von F erzeugte Tupel

zx := (x, F2(x), . . . , Fk(x))

ein Element von T (S) ist.
Betrachten wir nun ein beliebiges y ∈ X. Da die Funktionen Fi auf ganz X definiert

sind, existiert der Zirkel zy. Die Projektion dieses Zirkels auf die erste Komponente ist
offensichtlich

π1(zy) = y.

Da ein solcher Zirkel für alle y ∈ X konstruiert werden kann, ist das Bild von π1 die
gesamte Menge X. Nach Definition ist S somit flüssig.

23.2 Eindeutigkeit von Erzeugern (Festigkeit)

Theorem 23.2 (Äquivalenz für Festigkeit). Unter der Voraussetzung, dass Erzeuger exis-
tieren (d.h. S ist flüssig), gilt:

S ist fest ⇐⇒ Die Erzeugerfamilie ist eindeutig.
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Beweis. 1. Richtung (⇒): Sei S fest. Nach Definition ist die Projektion π1 injektiv. Das
bedeutet, zu jedem x ∈ X gibt es höchstens einen Zirkel, der mit x beginnt.

Seien F = (F2, . . . , Fk) und G = (G2, . . . , Gk) zwei Erzeugerfamilien von S. Für ein
beliebiges x ∈ X definieren wir die zugehörigen Zirkel:

tF = (x, F2(x), . . . , Fk(x)) ∈ T (S), tG = (x,G2(x), . . . , Gk(x)) ∈ T (S).

Beide Zirkel haben dieselbe erste Komponente: π1(tF ) = x = π1(tG). Da π1 injektiv ist
(Festigkeit), muss tF = tG gelten.

Ein Vergleich der Komponenten liefert sofort Fi(x) = Gi(x) für alle i ∈ {2, . . . , k} und
alle x ∈ X. Somit gilt F = G.

2. Richtung (⇐): Wir führen den Beweis durch Kontraposition. Nehmen wir an, S
sei nicht fest. Das bedeutet, π1 ist nicht injektiv. Es gibt also ein Element x0 ∈ X und
zwei verschiedene Zirkel t, t′ ∈ T (S) mit

π1(t) = π1(t′) = x0, aber t ̸= t′.

Sei F eine existierende Erzeugerfamilie (deren Existenz wir voraussetzen). Für das Element
x0 erzeugt F einen eindeutigen Zirkel zF (x0). Da t und t′ verschieden sind, muss mindestens
einer von beiden ungleich zF (x0) sein (oder zF (x0) ist gleich einem, dann ist der andere
verschieden).

Ohne Beschränkung der Allgemeinheit nehmen wir an, dass der Zirkel t′ nicht von F
erzeugt wird (d.h. zF (x0) ̸= t′). Wir konstruieren nun eine neue Erzeugerfamilie G:

Gi(x) :=
{
t′i falls x = x0 (wobei t′i die i-te Komponente von t′ ist),
Fi(x) falls x ̸= x0.

Prüfung der Erzeugereigenschaft für G:

• An der Stelle x0 erzeugt G den Zirkel t′. Da t′ ∈ T (S), ist dies zulässig.

• An allen anderen Stellen x ̸= x0 erzeugt G denselben Zirkel wie F , was ebenfalls
zulässig ist.

Somit ist G eine valide Erzeugerfamilie. Da sich G und F jedoch an der Stelle x0 un-
terscheiden (da sie dort unterschiedliche Zirkel erzeugen), ist die Erzeugerfamilie nicht
eindeutig.

Daraus folgt: Wenn die Erzeugerfamilie eindeutig ist, muss S zwingend fest sein.

Remark 23.3 (Zusammenfassung). Die beiden Eigenschaften charakterisieren die Erzeu-
gers eines zirkulären Systems über Existenz und Eindeutigkeit:

• Flüssigkeit garantiert die Existenz von Erzeugern.

• Festigkeit garantiert die Eindeutigkeit dieser Erzeugerfunktionen.

Ein System, das sowohl fest als auch flüssig ist, besitzt genau eine kanonische Erzeugerfa-
milie.

24 Automorphismen und Galois-Zirkuläre Systeme
In diesem Abschnitt präzisieren wir zunächst den Begriff des Automorphismus für ein
allgemeines k-zirkuläres System. Anschließend konstruieren wir für ein separables Polynom
f ein spezifisches System Sf , dessen Symmetriegruppe exakt der Galoisgruppe entspricht.
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24.1 Automorphismen eines allgemeinen zirkulären Systems

Sei S = (X, (fi)1≤i≤k) ein beliebiges k-zirkuläres System auf einer Menge X. Wir erinnern
daran, dass T (S) ⊆ Xk die Menge der gültigen Zirkel ist, also jener Tupel, die durch die
Funktionen fi erzeugt werden.

Definition 24.1 (Automorphismus eines zirkulären Systems). Eine Bijektion σ : X →
X heißt Automorphismus des zirkulären Systems S, wenn sie mit den strukturgebenden
Funktionen fi verträglich ist.

Konkret bedeutet dies: Ist ein Tupel (x1, . . . , x̂i, . . . , xk) im Definitionsbereich von fi,
so muss auch das bildseitige Tupel (σ(x1), . . . , σ̂(xi), . . . , σ(xk)) im Definitionsbereich von
fi liegen, und es muss gelten:

σ
(
fi(x1, . . . , x̂i, . . . , xk)

)
= fi

(
σ(x1), . . . , σ̂(xi), . . . , σ(xk)

)
.

Die Menge aller solcher Bijektionen bildet mit der Komposition eine Gruppe, die wir mit
Aut(S) bezeichnen.

Remark 24.2. Äquivalent dazu kann man fordern, dass σ Zirkel auf Zirkel abbildet:

(x1, . . . , xk) ∈ T (S) ⇐⇒
(
σ(x1), . . . , σ(xk)

)
∈ T (S).

Aut(S) ist stets eine Untergruppe der symmetrischen Gruppe Sym(X).

24.2 Das Galois-zirkuläre System Sf

Sei f ∈ Q[t] ein separables Polynom vom Grad k ≥ 2. Wir unterscheiden im Folgenden
strikt zwischen zwei Ebenen:

1. Den festen Nullstellen α1, . . . , αk ∈ C. Diese sind feste Zahlen, die wir in ei-
ner fixierten Reihenfolge betrachten. Wir definieren den „Referenzvektor“ α⃗ :=
(α1, . . . , αk).

2. Den Elementen des Systems x ∈ Ω, wobei Ω = {α1, . . . , αk} die Menge der
Nullstellen ist. Die Zirkel werden Tupel (x1, . . . , xk) ∈ Ωk sein.

Wir definieren nun das System Sf durch die algebraischen Beziehungen der αi.

Definition 24.3 (Das System Sf ). Das k-zirkuläre System Sf = (Ω, (fi)1≤i≤k) ist wie
folgt definiert:

Die partielle Funktion fi : Ωk−1 99K Ω ist definiert für ein Eingabetupel (y1, . . . , yk−1),
wenn es genau ein z ∈ Ω gibt, sodass das zugehörige k-Tupel (mit z an der i-ten Stelle)

x⃗ := (y1, . . . , z, . . . , yk−1)

die folgende Bedingung erfüllt: Für jedes Polynom P ∈ Q[X1, . . . , Xk] gilt die Implikation

P (α1, . . . , αk) = 0 =⇒ P (x⃗) = 0.

In diesem Fall setzen wir fi(y1, . . . , yk−1) := z.

Die Zirkelmenge T (Sf ) besteht demnach genau aus jenen Tupeln, die alle über Q
definierten algebraischen Relationen erfüllen, die auch das Original-Tupel α⃗ erfüllt.
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24.3 Der Isomorphiesatz

Wir zeigen nun, dass dieses System die Galoisgruppe vollständig einfängt.

Theorem 24.4. Sei f ∈ Q[t] separabel. Dann gilt:

Aut(Sf ) = Gal(f/Q).

Hierbei fassen wir die Galoisgruppe als Permutationsgruppe auf der Menge Ω auf.

Beweis. Wir führen den Beweis in zwei Schritten durch Inklusion in beide Richtungen.
Schritt 1: Gal(f/Q) ⊆ Aut(Sf )

Sei σ ∈ Gal(f/Q). Nach Definition der Galoisgruppe ist σ eine Permutation der Nullstellen,
die alle rationalen algebraischen Relationen invariant lässt. Sei (x1, . . . , xk) ∈ T (Sf ) ein
Zirkel. Das bedeutet per Definition, dass für alle P ∈ Q[X1, . . . , Xk] mit P (α⃗) = 0 auch
P (x1, . . . , xk) = 0 gilt. Wenden wir σ auf das Tupel an, erhalten wir (σ(x1), . . . , σ(xk)).
Da σ ein Körperautomorphismus ist, der Q punktweise festlässt, gilt:

P (σ(x1), . . . , σ(xk)) = σ
(
P (x1, . . . , xk)

)
= σ(0) = 0.

Das transformierte Tupel erfüllt also ebenfalls alle Relationen, ist somit wieder ein Zirkel
in T (Sf ). Damit ist σ ein Automorphismus des Systems.

Schritt 2: Aut(Sf ) ⊆ Gal(f/Q)
Sei ϕ ∈ Aut(Sf ). Dies ist eine Bijektion ϕ : Ω→ Ω, die Zirkel auf Zirkel abbildet. Betrach-
ten wir den speziellen „Urzirkel“ α⃗ = (α1, . . . , αk). Da α⃗ offensichtlich alle seine eigenen
Relationen erfüllt, ist α⃗ ∈ T (Sf ). Da ϕ ein Automorphismus des Systems ist, muss auch
das Bildtupel

ϕ(α⃗) = (ϕ(α1), . . . , ϕ(αk))

ein Element von T (Sf ) sein. Nach Definition von Sf bedeutet dies: Das Tupel (ϕ(α1), . . . , ϕ(αk))
erfüllt alle rationalen algebraischen Gleichungen, die (α1, . . . , αk) erfüllt. Formal:

∀P ∈ Q[X1, . . . , Xk] : P (α1, . . . , αk) = 0 =⇒ P (ϕ(α1), . . . , ϕ(αk)) = 0.

Dies ist exakt die Bedingung aus dem Fundamentalsatz der Galoistheorie (bzw. der De-
finition der Galoisgruppe als Automorphismengruppe des Zerfällungskörpers), die besagt,
dass ϕ zu Gal(f/Q) gehört.

Somit ist Aut(Sf ) = Gal(f/Q).

25 Galois-Eigenschaft allgemeiner Systeme
Wir haben gesehen, dass die Konstruktion Sf eine tiefe Verbindung zwischen der Zir-
kelmenge und der Galoisgruppe liefert. Wir wollen diese „perfekte Symmetrie“ nun als
abstrakte Eigenschaft für beliebige Systeme definieren. Dies erlaubt uns, „gute“ (struk-
turerhaltende) von „schlechten“ (zu lockeren oder zu starren) Systemen zu unterscheiden.

25.1 Definition eines Galois-Systems

Sei S = (X, (fi)1≤i≤k) ein k-zirkuläres System. Sei T (S) ⊆ Xk die Menge der Zirkel und
G := Aut(S) die Automorphismengruppe des Systems. Die Gruppe G wirkt auf natürliche
Weise auf der Menge T (S):

σ · (x1, . . . , xk) := (σ(x1), . . . , σ(xk)).
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Definition 25.1 (Galois-System). Das System S heißt Galois-System, wenn die Wir-
kung von Aut(S) auf der Zirkelmenge T (S) regulär (auch: scharf transitiv) ist.

Das bedeutet, dass zwei Bedingungen erfüllt sind:

1. Transitivität: Für je zwei Zirkel z, z′ ∈ T (S) existiert mindestens ein Automor-
phismus σ ∈ Aut(S) mit σ(z) = z′.

2. Freiheit (Triviale Stabilisatoren): Es gibt höchstens einen solchen Automorphis-
mus. Das heißt, wenn ein Automorphismus einen Zirkel fixiert (σ(z) = z), dann ist
er die Identität (σ = idX).

Kurz gesagt: Zu je zwei Zirkeln z, z′ ∈ T (S) gibt es genau einen Automorphismus, der z
in z′ überführt.

Diese Eigenschaft hat eine direkte Konsequenz für die Größe der beteiligten Mengen:

Lemma 25.2. Ist S ein Galois-System mit endlicher Zirkelmenge, so gilt:

|T (S)| = |Aut(S)|.

Das System enthält also exakt so viele „Zustände“ (Zirkel), wie es Symmetrien gibt.

25.2 Das System Sf als Galois-System

Wir kehren nun zurück zu unserem konkreten System Sf , das durch ein separables Poly-
nom f ∈ Q[x] definiert ist. Erinnern wir uns an die Konstruktion:

• Die Grundmenge X = Ω sind die Nullstellen von f .

• Wir fixieren eine Anordnung der Nullstellen als Referenzvektor α⃗ = (α1, . . . , αk).

• Die Zirkelmenge T (Sf ) besteht aus allen Tupeln, die dieselben algebraischen Rela-
tionen über Q erfüllen wie α⃗.

Wir beweisen nun den zentralen Satz, der die Struktur des Systems mit der klassischen
Galoistheorie verknüpft.

Theorem 25.3. Sei f ein separables Polynom. Für das zugehörige System Sf gilt:

1. Aut(Sf ) = Gal(f/Q).

2. Sf ist ein Galois-System.

Beweis. Wir beweisen beide Aussagen im Detail.
Teil 1: Identifikation der Gruppe

Wir haben bereits gezeigt, dass Aut(Sf ) = Gal(f/Q). Hier noch einmal die Argumentation
in Kürze:

• „⊇“: Jedes σ ∈ Gal(f/Q) lässt per Definition alle rationalen Relationen invariant.
Da T (Sf ) genau durch diese Relationen definiert ist, bildet σ Zirkel auf Zirkel ab.

• „⊆“: Sei ϕ ∈ Aut(Sf ). Da α⃗ ∈ T (Sf ) ist, muss auch das Bild ϕ(α⃗) in T (Sf ) liegen.
Das bedeutet, ϕ(α⃗) erfüllt alle algebraischen Relationen von α⃗. Das ist genau die
Definition eines Elements der Galoisgruppe.
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Damit ist die Automorphismengruppe identifiziert als Gf := Gal(f/Q).
Teil 2: Nachweis der Galois-Eigenschaft (Regularität)

Wir müssen zeigen, dass die Wirkung von Gf auf T (Sf ) scharf transitiv ist.
Schritt A: Transitivität

Per Definition von T (Sf ) ist ein Tupel x⃗ genau dann ein Zirkel, wenn es die gleichen
Relationen erfüllt wie α⃗. Aus der Galoistheorie wissen wir, dass dies äquivalent dazu ist,
dass x⃗ in der Bahn von α⃗ unter der Galoisgruppe liegt. Das heißt:

T (Sf ) = {σ(α⃗) | σ ∈ Gf}.

Seien nun z, z′ ∈ T (Sf ) zwei beliebige Zirkel. Dann existieren σ, τ ∈ Gf mit z = σ(α⃗) und
z′ = τ(α⃗). Betrachten wir das Element ρ := τ ◦ σ−1 ∈ Gf . Dann gilt:

ρ(z) = (τ ◦ σ−1)(σ(α⃗)) = τ(α⃗) = z′.

Damit wirkt die Gruppe transitiv auf T (Sf ).
Schritt B: Freiheit (Scharfheit)

Wir müssen zeigen, dass der Stabilisator trivial ist. Sei σ ∈ Gf ein Automorphismus und
z = (x1, . . . , xk) ∈ T (Sf ) ein Zirkel, sodass σ(z) = z. Dies bedeutet komponentenweise:

σ(xi) = xi für alle i = 1, . . . , k.

Da f separabel ist, sind alle Wurzeln verschieden. Da z eine Permutation der Wurzeln ist,
ist die Menge {x1, . . . , xk} gleich der gesamten Menge Ω. Somit fixiert σ jedes Element
von Ω. Da die Galoisgruppe als Permutationsgruppe auf Ω operiert, folgt σ = id.

Fazit: Die Wirkung ist transitiv und frei, also regulär. Sf ist somit ein Galois-System.

25.3 Interpretation: Galois vs. Nicht-Galois

Die Definition erlaubt uns nun, Fälle zu klassifizieren, in denen wir „Pech haben“ (d. h.
das System falsch modellieren).

1. Das System Sf (Ideal-Fall): Hier ist T (Sf ) durch alle algebraischen Relationen
definiert.

Aut(Sf ) ∼= Gal(f/Q) und |T (Sf )| = |Gal(f/Q)|.

Das System ist Galois.

2. Ein zu lockeres System S′
naive: Angenommen, wir definieren S′ nur durch die

Summenformel (Vieta): ∑xi = −ak−1. Dann enthält T (S′) alle Permutationen der
Wurzeln, also |T (S′)| = k!. Die Automorphismengruppe ist die volle symmetrische
Gruppe Aut(S′) = Sk. Auch dieses System ist technisch gesehen ein Galois-System
(es ist das Galois-System des generischen Polynoms), aber es spiegelt nicht die Be-
sonderheiten eines speziellen Polynoms wider, falls dessen Galoisgruppe kleiner als
Sk ist.

3. Ein „kaputtes“ System (Nicht-Galois):
Dies tritt auf, wenn wir Zirkel zulassen, die algebraisch nicht äquivalent sind. Ange-
nommen, wir definieren T (S′′) = T (Sf ) ∪ {zfalsch}, wobei zfalsch ein Tupel ist, das
nicht in der Galois-Bahn liegt. Dann ist die Wirkung nicht mehr transitiv (es gibt
keine Symmetrie, die von einem echten Zirkel zu zfalsch führt). Das System ist kein
Galois-System. Die algebraische Integrität ist verletzt.
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26 Klassifikation von Primzahlen über die Galois-Eigenschaft
eines zirkulären Systems

In diesem Abschnitt zeigen wir, dass sich Primzahlen durch eine einfache Galois-Eigenschaft
eines geeigneten 2-zirkulären Systems charakterisieren lassen. Ausgangspunkt ist die Fak-
torisationsgleichung

n = d1 · d2

für eine natürliche Zahl n ∈ N≥1.

26.1 Das 2-zirkuläre System Sn

Wir betrachten den Fall k = 2 eines zirkulären Systems.

Definition 26.1 (Teilersystem zu n). Sei n ∈ N≥1 fest. Wir definieren

Xn := { d ∈ N | d teilt n }

als die Menge der positiven Teiler von n.
Wir definieren Abbildungen

f1, f2 : Xn −→ Xn, f1(d2) := n

d2
, f2(d1) := n

d1
.

Da für jeden Teiler d | n auch n
d | n gilt, sind f1 und f2 wohldefiniert.

Wir setzen
Sn :=

(
Xn, (f1, f2)

)
.

Dies ist ein 2-zirkuläres System in dem oben eingeführten Sinn.

Lemma 26.2 (Zirkelmenge von Sn). Ein Paar (x1, x2) ∈ X2
n ist genau dann ein 2-Zirkel

von Sn, wenn
x1x2 = n.

Insbesondere ist die Zirkelmenge

T (Sn) =
{

(d1, d2) ∈ X2
n

∣∣ d1d2 = n
}

=
{ (
d, nd

) ∣∣∣ d | n}.
Es gilt |T (Sn)| = τ(n), wobei τ(n) die Anzahl der Teiler von n bezeichnet.

Beweis. Nach Definition eines 2-Zirkels gilt für (x1, x2) ∈ X2
n:

x1 = f1(x2) = n

x2
, x2 = f2(x1) = n

x1
.

Die erste Gleichung ist äquivalent zu x1x2 = n. Ist diese erfüllt, so folgt die zweite Glei-
chung automatisch:

f2(x1) = n

x1
= x1x2

x1
= x2.

Damit ist die Behauptung über T (Sn) gezeigt. Die Kardinalität |T (Sn)| = τ(n) folgt, da
jeder Teiler d | n genau einen Zirkel (d, n/d) liefert.
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26.2 Automorphismen von Sn

Wir erinnern an die allgemeine Definition: Ist S = (X, (fi)) ein k-zirkuläres System, so ist
ein Automorphismus von S eine Bijektion σ : X → X, die alle Zirkel und alle Rekonstruk-
tionsfunktionen erhält. Die Menge aller Automorphismen von S bildet eine Untergruppe
Aut(S) ≤ Sym(X).

Wir wollen nun Aut(Sn) explizit beschreiben.

Lemma 26.3 (Automorphismen von Sn). Sei n ∈ N≥1 und Sn wie oben definiert. Eine
Bijektion σ : Xn → Xn ist genau dann ein Automorphismus von Sn, wenn sie mit der
Involution

ι : Xn → Xn, ι(d) := n

d
,

kommutiert, d. h.
σ ◦ ι = ι ◦ σ.

Insbesondere gilt:

• Für jeden Teiler d mit d ̸= n
d bildet ι das 2-Paar {d, nd}.

• Falls n ein Quadrat ist, gibt es genau einen Fixpunkt d =
√
n mit d = n

d .

• Ein Automorphismus σ ∈ Aut(Sn) permutiert die 2-Paare {d, nd} und lässt einen
eventuellen Fixpunkt

√
n fest; auf jedem Paar {d, nd} darf er entweder beide Elemente

fixieren oder sie vertauschen.

Beweis. Da f1 = f2 = f mit f(d) = n
d gilt, ist eine Bijektion σ : Xn → Xn genau dann

ein Automorphismus von Sn, wenn für alle d ∈ Xn

σ
(
f(d)

)
= f

(
σ(d)

)
,

d. h.
σ
(n
d

)
= n

σ(d) .

Dies ist äquivalent zur Kommutatorbedingung σ ◦ ι = ι ◦ σ. Die restlichen Aussagen über
die Struktur der Paare {d, nd} folgen aus der Definition von ι.

Remark 26.4. Aus der Beschreibung der 2-Paare folgt unmittelbar, dass Aut(Sn) iso-
morph zu einem Produkt mehrerer Kopien der Gruppe C2 ist (eine Kopie pro 2-Paar
{d, nd}), wobei ein eventueller Fixpunkt

√
n immer fest bleibt. Die exakte Struktur brau-

chen wir im Folgenden jedoch nicht, nur die Existenz bestimmter nichttrivialer Automor-
phismen.

26.3 Galois-Eigenschaft von Sn und Primzahlen

Wir verwenden nun die zuvor eingeführte abstrakte Galois-Definition:

Definition 26.5 (Galois-System). Sei S ein k-zirkuläres System mit Zirkelmenge T (S)
und Automorphismengruppe G = Aut(S). Wir nennen S ein Galois-System (oder kurz
Galois), wenn die Wirkung von G auf T (S) regulär (scharf transitiv) ist, d. h.

1. G wirkt transitiv auf T (S), und

2. für jeden Zirkel z ∈ T (S) ist der Stabilisator Gz = {σ ∈ G | σ(z) = z} trivial.
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Äquivalent dazu gilt |G| = |T (S)| und es gibt zu je zwei Zirkeln z, z′ genau einen Auto-
morphismus σ ∈ G mit σ(z) = z′.

Wir können nun das Teilersystem Sn vollständig klassifizieren.

Theorem 26.6 (Primzahlen über die Galois-Eigenschaft von Sn). Für n ∈ N≥1 ist das
System Sn genau dann ein Galois-System, wenn n = 1 oder n eine Primzahl ist.

Beweis. Wir unterscheiden drei Fälle.

Fall 1: n = 1. Dann ist X1 = {1} und f(1) = 1. Es gibt genau einen Zirkel T (S1) = {(1, 1)}
und genau einen Automorphismus Aut(S1) = {id}. Die Wirkung ist offensichtlich frei und
transitiv, also regulär. Damit ist S1 Galois.

Fall 2: n = p ist eine Primzahl. Dann ist Xp = {1, p} und f(1) = p, f(p) = 1. Die
Zirkelmenge ist

T (Sp) = {(1, p), (p, 1)}.

Die möglichen Bijektionen Xp → Xp sind die Identität id und die Vertauschung

τ : 1↔ p.

Beide kommutieren mit der Involution d 7→ p
d , also

Aut(Sp) = {id, τ} ∼= C2.

Die Wirkung auf T (Sp) ist gegeben durch

id : (1, p) 7→ (1, p), (p, 1) 7→ (p, 1),

τ : (1, p) 7→ (p, 1), (p, 1) 7→ (1, p).

Damit ist T (Sp) eine einzige Bahn, und der Stabilisator eines jeden Zirkels ist trivial (nur
die Identität fixiert einen Zirkel). Die Wirkung ist also frei und transitiv. Es gilt zudem

|Aut(Sp)| = 2 = |T (Sp)|.

Somit ist Sp Galois.

Fall 3: n > 1 ist zusammengesetzt. Dann besitzt n einen echten Teiler d mit 1 < d < n.
Betrachte die Bijektion σ : Xn → Xn, die lediglich 1 und n vertauscht und alle anderen
Teiler fest lässt:

σ(1) = n, σ(n) = 1, σ(d′) = d′ für alle d′ | n, d′ /∈ {1, n}.

Man überprüft leicht, dass σ mit der Involution ι(d) = n
d kommutiert; also ist σ ∈ Aut(Sn)

nichttrivial.
Der Teiler d mit 1 < d < n ist weder 1 noch n. Das Paar

(d, nd ) ∈ T (Sn)

ist ein Zirkel. Für diesen Zirkel gilt

σ
(
d, nd

)
=
(
σ(d), σ(nd )

)
=
(
d, nd

)
,

da σ weder d noch n
d verändert. Also fixiert der nichttriviale Automorphismus σ den Zirkel

(d, nd ).
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Damit ist der Stabilisator dieses Zirkels nichttrivial:

Stab
(
(d, nd )

)
⊃ {id, σ}.

Die Wirkung von Aut(Sn) auf T (Sn) ist somit nicht frei und kann daher nicht regulär sein.
Folglich ist Sn in diesem Fall kein Galois-System.

Zusammenfassend ist Sn genau dann Galois, wenn n = 1 oder n prim ist.

Corollary 26.7. Die Primzahlen sind genau diejenigen natürlichen Zahlen n ≥ 1, für die
das durch die Faktorisationsgleichung n = d1d2 definierte 2-zirkuläre Teilersystem Sn ein
Galois-System ist. Man kann n = 1 als trivialen Galois-Fall betrachten; für n > 1 sind
also genau die Primzahlen die „Galois-Zahlen“ dieses Faktorisationssystems.

27 Galois-Connection für Struktur und Symmetrie

27.1 Abstrakte Galois-Verbindung

Sei X eine feste Grundmenge.

1. Strukturseite. Sei R die Menge aller finitären Relationen auf X, d. h. aller Teil-
mengen R ⊆ Xm mit m ≥ 1. Wir betrachten die Potenzmenge P(R) aller Relatio-
nenmengen, geordnet durch Inklusion.

2. Symmetrieseite. Sei G die Menge aller Untergruppen der symmetrischen Gruppe
Sym(X), geordnet durch Inklusion.

Definition 27.1 (Inv und Aut). 1. Für eine Relationenmenge M ⊆ R definieren wir

Aut(M) := {σ ∈ Sym(X) | ∀R ∈M : σ(R) = R },

wobei
σ(R) := { (σ(x1), . . . , σ(xm)) | (x1, . . . , xm) ∈ R }.

2. Für eine Untergruppe G ⊆ Sym(X) definieren wir

Inv(G) := {R ∈ R | ∀σ ∈ G : σ(R) = R }.

Theorem 27.2 (Galois-Verbindung Struktur–Symmetrie). Für alle Relationenmengen
M ⊆ R und Untergruppen G ⊆ Sym(X) gilt

M ⊆ Inv(G) ⇐⇒ G ⊆ Aut(M).

Damit bilden (Aut, Inv) eine antitone Galois-Verbindung zwischen P(R) und der Menge
der Untergruppen von Sym(X).

Beweis. Direkt aus den Definitionen:

M ⊆ Inv(G) ⇐⇒ ∀R ∈M : R ∈ Inv(G)
⇐⇒ ∀R ∈M, ∀σ ∈ G : σ(R) = R

⇐⇒ ∀σ ∈ G : (∀R ∈M : σ(R) = R)
⇐⇒ ∀σ ∈ G : σ ∈ Aut(M)
⇐⇒ G ⊆ Aut(M).
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Definition 27.3 (Galois-geschlossene Strukturen und Gruppen). Eine Relationenmenge
M ⊆ R heißt Galois-geschlossen, wenn

M = Inv(Aut(M)).

Eine Untergruppe G ⊆ Sym(X) heißt Galois-geschlossen, wenn

G = Aut(Inv(G)).

Zwischen den Galois-geschlossenen Relationenmengen und den Galois-geschlossenen Un-
tergruppen besteht eine Bijektion:

M ←→ Aut(M), G←→ Inv(G).

27.2 k-zirkuläre Systeme als Relationenpakete

Sei nun k ≥ 2 fest und X eine Grundmenge.

Definition 27.4 (k-zirkuläres System). Ein k-zirkuläres System ist ein Tupel

S =
(
X, (fi)1≤i≤k

)
,

wobei fi : Xk−1 → X (partielle) Abbildungen sind. Ein Tupel x⃗ = (x1, . . . , xk) ∈ Xk heißt
k-Zirkel, wenn

xi = fi(x1, . . . , x̂i, . . . , xk) für alle i.

Die Menge aller Zirkel bezeichnen wir mit T (S) ⊆ Xk.

Definition 27.5 (Relationenpaket eines zirkulären Systems). Zu einem k-zirkulären Sys-
tem S = (X, (fi)) definieren wir das Relationenpaket

MS :=
{

Graph(fi) ⊆ Xk (1 ≤ i ≤ k), T (S) ⊆ Xk
}
⊆ R.

Lemma 27.6. Für ein k-zirkuläres System S gilt

Aut(S) = Aut(MS),

wobei auf der linken Seite die Automorphismen im Sinn der k-zirkulären Systeme (Zirkel-
und fi-erhaltende Bijektionen) stehen.

Beweis. Eine Bijektion σ : X → X ist genau dann ein Automorphismus von S, wenn sie

• T (S) invariant lässt (Zirkel auf Zirkel abbildet) und

• zu jedem i die Graphen Graph(fi) invariant lässt (Verträglichkeit mit den Rekon-
struktionsfunktionen).

Das ist äquivalent dazu, dass σ jede Relation in MS invariant lässt, also σ ∈ Aut(MS).

Definition 27.7 (Galois-geschlossenes zirkuläres System). Ein k-zirkuläres System S
heißt Galois-geschlossen, wenn sein Relationenpaket MS Galois-geschlossen ist, d. h.

MS = Inv
(
Aut(MS)

)
= Inv

(
Aut(S)

)
.
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Auf der Menge der zirkulären Systeme auf X (mit festem k) können wir eine Hal-
bordnung durch „mehr Struktur“ definieren: S′ ⪯ S bedeutet MS ⊆ MS′ , d. h. S′ hat
mindestens die Relationen von S und somit höchstens so viele Automorphismen:

S′ ⪯ S =⇒ Aut(S′) ⊆ Aut(S).

Proposition 27.8 (Galois-Verbindung für Galois-geschlossene Systeme). Sei S ein Galois-
geschlossenes k-zirkuläres System. Dann induziert die Galois-Verbindung (Aut, Inv) eine
antitone Galois-Verbindung zwischen

• der Menge der Galois-geschlossenen zirkulären Untersysteme S′ ⪯ S und

• der Menge der Galois-geschlossenen Untergruppen von G := Aut(S).

Die Zuordnung ist:
S′ 7−→ Aut(S′), H 7−→ SH ,

wobei SH durch das Relationenpaket MH := Inv(H) konstruiert wird.

Beweisskizze. Die Aussage folgt aus der allgemeinen Galois-Verbindung M 7→ Aut(M),
G 7→ Inv(G) und der Charakterisierung Galois-geschlossener Punkte als Fixpunkte der
Abschlüsse M 7→ Inv(Aut(M)) bzw. G 7→ Aut(Inv(G)).

27.3 Galois-Systeme im engen Sinn

Zusätzlich zur Galois-Geschlossenheit wollen wir für „Galois-Systeme im engen Sinn“ eine
starke Symmetrieeigenschaft:

Definition 27.9 (Galois-System im engen Sinn). Ein k-zirkuläres System S heißt Galois-
System, wenn

1. S Galois-geschlossen ist und

2. die Wirkung von G := Aut(S) auf der Zirkelmenge T (S) regulär (scharf transitiv)
ist, d. h.

|G| = |T (S)|
und für je zwei Zirkel z, z′ ∈ T (S) genau ein σ ∈ G existiert mit σ(z) = z′.

Dies entspricht der klassischen Situation in der Galoistheorie (Körpererweiterungen
und Automorphismengruppen), übertragen auf abstrakte zirkuläre Systeme.

28 Das additiv definierte System Sn

28.1 Konstruktion aus den Teilern von n

Sei n ∈ N≥2 und

D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n.

Definition 28.1 (Additive Bindungsgleichungen). Wir betrachten alle Gleichungen

di1 + · · ·+ dij = dℓ

mit j ≥ 2 und 1 ≤ i1 < · · · < ij ≤ r, 1 ≤ ℓ ≤ r. Die Menge all dieser Gleichungen
bezeichnen wir mit En und nehmen an, dass En ̸= ∅ (kein Primzahlfall).
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Definition 28.2 (Zirkelmenge T (Sn)). Wir setzen X := D(n) und betrachten das Refe-
renztupel

α⃗ := (d1, . . . , dr) ∈ Xr.

Ein Tupel x⃗ = (x1, . . . , xr) ∈ Xr heißt Zirkel, wenn es genau die gleichen additiven
Gleichungen erfüllt wie α⃗, d. h.

xi1 + · · ·+ xij = xℓ für alle Gleichungen di1 + · · ·+ dij = dℓ ∈ En.

Die Menge aller solcher Zirkel nennen wir T (Sn).

Mit geeigneten Rekonstruktionsfunktionen fi (die für Zirkel die jeweilige Koordinate
eindeutig aus den anderen rekonstruieren) erhält man ein r-zirkuläres System

Sn = (D(n), (fi)1≤i≤r)

mit Zirkelmenge T (Sn).

Definition 28.3 (Automorphismen von Sn). Die Automorphismengruppe

Gn := Aut(Sn)

besteht aus allen Bijektionen σ : D(n)→ D(n), die alle Bindungsgleichungen erhalten:

σ ∈ Gn ⇐⇒ ∀
(
di1 + · · ·+ dij = dℓ

)
∈ En : σ(di1) + · · ·+ σ(dij ) = σ(dℓ).

28.2 Charakterisierung der Galois-Eigenschaft von Sn

Zu jedem Zirkel x⃗ = (x1, . . . , xr) ∈ T (Sn) gehört eine Abbildung

σx⃗ : D(n)→ D(n), σx⃗(di) := xi.

Lemma 28.4. Für jedes x⃗ ∈ T (Sn) gilt:

1. σx⃗ erhält alle Gleichungen in En.

2. σx⃗ ist genau dann ein Automorphismus in Gn, wenn sie bijektiv ist.

Beweis. (1) Da x⃗ ∈ T (Sn) ist, erfüllt x⃗ per Definition für jede Gleichung di1 +· · ·+dij = dℓ
die Gleichung xi1 + · · ·+ xij = xℓ. Das ist äquivalent zu

σx⃗(di1) + · · ·+ σx⃗(dij ) = σx⃗(dℓ),

also zur Erhaltung dieser Gleichung.
(2) Jede Bijektion σ : D(n) → D(n), die alle Gleichungen erhält, ist per Definition

ein Element von Gn. Da σx⃗ alle Gleichungen erhält, ist sie genau dann in Gn, wenn sie
bijektiv ist.

Definition 28.5 (Galois-Zahl). Wir sagen im folgenden: n ist Galois, wenn das System
Sn ein Galois-System im engen Sinn ist, d. h.

|Gn| = |T (Sn)|

und die Wirkung von Gn auf T (Sn) regulär ist.

Theorem 28.6 (Kriterium für Galois-Zahlen). Für n ∈ N≥2 mit En ̸= ∅ sind folgende
Aussagen äquivalent:
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1. n ist Galois (d. h. Sn ist Galois-System und |Gn| = |T (Sn)|).

2. Jeder Zirkel x⃗ ∈ T (Sn) ist eine Permutation der Teiler von n, d. h.

{x1, . . . , xr} = D(n) und alle xi sind verschieden,

und es gilt |Gn| = |T (Sn)|.

3. Die Abbildung
φ : Gn −→ T (Sn), σ 7→ (σ(d1), . . . , σ(dr))

ist bijektiv.

Beweis. (1) ⇒ (3): Ist Sn Galois, so wirkt Gn regulär auf T (Sn). Die Wirkung ist gerade

σ · (d1, . . . , dr) = (σ(d1), . . . , σ(dr)),

und φ ist die Bahnenabbildung. Reguläre Wirkung bedeutet, dass diese Bahn gleich T (Sn)
ist und dass Elemente von Gn bijektiv auf Zirkel abgebildet werden; also ist φ bijektiv.

(3) ⇒ (2): Ist φ bijektiv, so ist |Gn| = |T (Sn)|. Außerdem ist für jedes x⃗ ∈ T (Sn) ein
eindeutiges σ ∈ Gn mit x⃗ = φ(σ) gegeben, also

x⃗ = (σ(d1), . . . , σ(dr)).

Da σ bijektiv ist, ist x⃗ eine Permutation von D(n).
(2) ⇒ (3): Sei x⃗ ∈ T (Sn). Dann ist σx⃗ bijektiv und erhält alle Gleichungen (wie im

Lemma), also σx⃗ ∈ Gn. Ferner gilt
φ(σx⃗) = x⃗,

sodass φ surjektiv ist. Injektivität folgt aus der Tatsache, dass für σ, τ ∈ Gn mit φ(σ) =
φ(τ)

σ(di) = τ(di) ∀i

und daher σ = τ gilt. Damit ist φ bijektiv und |Gn| = |T (Sn)|.
(3) ⇒ (1): Eine bijektive φ bedeutet, dass Gn regulär auf T (Sn) wirkt und die Kar-

dinalitäten übereinstimmen. Zusammen mit der Galois-Geschlossenheit von Sn (in dem
beschränkten Relationenkalkül) ist Sn ein Galois-System im engen Sinn.

28.3 Perfekte Teiler als Untersysteme

Die klassische Definition einer perfekten Zahl m lautet

σ(m) = 2m, σ(m) :=
∑
d|m

d.

Sei m | n ein Teiler von n. Dann ist D(m) eine Teilmenge von D(n), und wir können ein
eigenes additiv definiertes System Sm auf D(m) konstruieren.

Proposition 28.7 (Eingebettete Untersysteme). Sei m | n. Dann lässt sich Sm auf na-
türliche Weise als zirkuläres System auf D(n) einbetten, und dieses eingebettete System ist
ein zirkuläres Untersystem von Sn im Sinn der Relation S′ ⪯ S (mehr Struktur, weniger
Symmetrie).
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Beweisskizze. Wir betrachten die Einbettung

i : D(m) ↪→ D(n),

und übertragen alle Bindungsgleichungen di1 +· · ·+dij = dℓ von D(m) auf D(n) (sie gelten
dort ebenfalls). Die Zirkelmenge T (Sm) kann so als Teilmenge von D(n)|D(m)| interpretiert
werden, und die zugehörigen Relationen gehören zum Relationenpaket von Sn. Damit ist
das aus diesen Relationen definierte System ein Untersystem von Sn.

Remark 28.8. Istm perfekt, so hat das System Sm (auf der kleineren GrundmengeD(m))
eine besonders reiche Summenstruktur. Es liegt nahe, Sm als „Galois-Untersystem“ im Sin-
ne einer stark symmetrischen Teilstruktur von Sn zu interpretieren. Die bisherige Theorie
zeigt jedoch nicht, dass daraus automatisch folgt, dass das gesamte System Sn Galois ist.
Umgekehrt erzwingt die Galois-Eigenschaft von Sn (alle Zirkel sind Permutationen) nicht
unmittelbar die Existenz eines perfekten Teilers m | n.

Die Aussage
n ist Galois ⇐⇒ ∃m | n perfekt

ist daher im Moment als Vermutung zu verstehen und lässt sich mit den hier entwickelten
Mitteln nicht beweisen. Die obige Theorie zeigt nur, dass perfekte Teiler m sehr natürliche
symmetrische Untersysteme Sm liefern, ohne dass daraus eine vollständige Charakterisie-
rung der Galois-Zahlen folgt.

29 Galois-Connection und Galois-Systeme

29.1 Galois-Connection Struktur–Symmetrie

Sei X eine feste Grundmenge.

1. Strukturseite. Sei R die Menge aller finitären Relationen auf X, d. h. aller Teil-
mengen R ⊆ Xm mit m ≥ 1. Wir betrachten die Potenzmenge

P(R)

aller Relationenmengen, geordnet durch Inklusion.

2. Symmetrieseite. Sei G die Menge aller Untergruppen der symmetrischen Gruppe
Sym(X), geordnet durch Inklusion.

Definition 29.1 (Inv und Aut). 1. Für eine Relationenmenge M ⊆ R definieren wir

Aut(M) := {σ ∈ Sym(X) | ∀R ∈M : σ(R) = R },

wobei für R ⊆ Xm

σ(R) := { (σ(x1), . . . , σ(xm)) | (x1, . . . , xm) ∈ R }.

2. Für eine Untergruppe G ⊆ Sym(X) definieren wir

Inv(G) := {R ∈ R | ∀σ ∈ G : σ(R) = R }.

Theorem 29.2 (Galois-Verbindung). Für alle Relationenmengen M ⊆ R und Untergrup-
pen G ⊆ Sym(X) gilt

M ⊆ Inv(G) ⇐⇒ G ⊆ Aut(M).
Damit bilden (Aut, Inv) eine antitone Galois-Verbindung.
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Beweis.

M ⊆ Inv(G) ⇐⇒ ∀R ∈M : R ∈ Inv(G)
⇐⇒ ∀R ∈M, ∀σ ∈ G : σ(R) = R

⇐⇒ ∀σ ∈ G : (∀R ∈M : σ(R) = R)
⇐⇒ ∀σ ∈ G : σ ∈ Aut(M)
⇐⇒ G ⊆ Aut(M).

Definition 29.3 (Galois-geschlossene Relationenmengen und Gruppen). Eine Relationen-
menge M ⊆ R heißt Galois-geschlossen, wenn

M = Inv(Aut(M)).

Eine Untergruppe G ⊆ Sym(X) heißt Galois-geschlossen, wenn

G = Aut(Inv(G)).

Zwischen Galois-geschlossenen Relationenmengen und -Untergruppen besteht eine Bijek-
tion:

M ←→ Aut(M), G←→ Inv(G).

29.2 k-zirkuläre Systeme als Relationenpakete

Sei k ≥ 2 fest und X eine Grundmenge.

Definition 29.4 (k-zirkuläres System). Ein k-zirkuläres System ist ein Tupel

S =
(
X, (fi)1≤i≤k

)
,

wobei fi : Xk−1 → X (partielle) Abbildungen sind. Ein Tupel x⃗ = (x1, . . . , xk) ∈ Xk heißt
k-Zirkel, wenn

xi = fi(x1, . . . , x̂i, . . . , xk) für alle i.

Die Menge aller Zirkel bezeichnen wir mit T (S) ⊆ Xk.

Definition 29.5 (Relationenpaket eines zirkulären Systems). Zu einem k-zirkulären Sys-
tem S = (X, (fi)) definieren wir

MS :=
{

Graph(fi) ⊆ Xk (1 ≤ i ≤ k), T (S) ⊆ Xk
}
⊆ R.

Lemma 29.6. Für ein k-zirkuläres System S gilt

Aut(S) = Aut(MS).

Beweis. Eine Bijektion σ : X → X ist genau dann ein Automorphismus von S, wenn sie

• Zirkel auf Zirkel abbildet, also T (S) invariant lässt, und

• zu jedem i den Graphen Graph(fi) invariant lässt.

Das ist äquivalent dazu, dass σ jede Relation ausMS invariant lässt, also σ ∈ Aut(MS).
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Definition 29.7 (Galois-geschlossenes zirkuläres System). Ein k-zirkuläres System S
heißt Galois-geschlossen, wenn sein Relationenpaket MS Galois-geschlossen ist, d. h.

MS = Inv
(
Aut(MS)

)
= Inv

(
Aut(S)

)
.

Auf der Menge aller k-zirkulären Systeme auf X definieren wir eine Halbordnung durch

S′ ⪯ S ⇐⇒ MS ⊆MS′ ,

d. h. S′ enthält mindestens die Relationen von S und hat daher höchstens so viele Auto-
morphismen:

S′ ⪯ S =⇒ Aut(S′) ⊆ Aut(S).

Definition 29.8 (Galois-System im engen Sinn). Ein Galois-geschlossenes k-zirkuläres
System S heißt Galois-System, wenn die Wirkung von G := Aut(S) auf der Zirkelmenge
T (S) regulär (scharf transitiv) ist, d. h.

|G| = |T (S)|

und zu je zwei Zirkeln z, z′ ∈ T (S) genau ein σ ∈ G mit σ(z) = z′ existiert.

Damit ist der abstrakte Rahmen gesetzt.

30 Das additiv definierte System Sn

30.1 Definition

Sei n ∈ N≥2 und

D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n.

Definition 30.1 (Additive Bindungsgleichungen). Wir betrachten alle Gleichungen

di1 + · · ·+ dij = dℓ

mit j ≥ 2 und 1 ≤ i1 < · · · < ij ≤ r, 1 ≤ ℓ ≤ r. Die Menge all dieser Gleichungen
bezeichnen wir mit En und setzen voraus, dass En ̸= ∅ (kein Primzahlfall).

Definition 30.2 (Zirkelmenge T (Sn)). Wir setzen X := D(n) und betrachten das Refe-
renztupel

α⃗ = (d1, . . . , dr) ∈ Xr.

Ein Tupel x⃗ = (x1, . . . , xr) ∈ Xr heißt Zirkel von Sn, wenn es jede Gleichung aus En
erfüllt, d. h.

∀(di1 + · · ·+ dij = dℓ) ∈ En : xi1 + · · ·+ xij = xℓ.

Die Menge aller Zirkel bezeichnen wir mit T (Sn).

Definition 30.3 (Das System Sn und seine Automorphismen). Mit geeigneten Rekon-
struktionsfunktionen fi erhält man ein r-zirkuläres System

Sn =
(
D(n), (fi)1≤i≤r

)
mit Zirkelmenge T (Sn).

Die Automorphismengruppe von Sn ist

Gn := Aut(Sn) =
{
σ ∈ Sym(D(n)) | ∀(di1+· · ·+dij = dℓ) ∈ En : σ(di1)+· · ·+σ(dij ) = σ(dℓ)

}
.

91



Für jeden Zirkel x⃗ = (x1, . . . , xr) ∈ T (Sn) definieren wir

σx⃗ : D(n)→ D(n), σx⃗(di) := xi.

Lemma 30.4. Für jedes x⃗ ∈ T (Sn) gilt:

1. σx⃗ erhält alle Gleichungen aus En.

2. σx⃗ ist genau dann ein Automorphismus in Gn, wenn sie bijektiv ist.

Beweis. (1) folgt direkt aus der Definition von T (Sn).
(2) Jede bijektive Abbildung σ : D(n) → D(n), die alle Gleichungen in En erhält,

ist per Definition ein Element von Gn. Umgekehrt ist jedes Element von Gn eine solche
Bijektion.

Definition 30.5 (Galois-Zahl). Wir sagen: n ist eine Galois-Zahl, wenn Sn ein Galois-
System ist, d. h. wenn

|Gn| = |T (Sn)|

gilt und die Wirkung von Gn auf T (Sn) regulär ist.

Theorem 30.6 (Charakterisierung der Galois-Eigenschaft von Sn). Für n ∈ N≥2 mit
En ̸= ∅ sind folgende Aussagen äquivalent:

1. n ist Galois, d. h. Sn ist Galois-System und |Gn| = |T (Sn)|.

2. Jeder Zirkel x⃗ ∈ T (Sn) ist eine Permutation der Teiler, d. h.

{x1, . . . , xr} = D(n) und die xi sind paarweise verschieden,

und es gilt |Gn| = |T (Sn)|.

3. Die Abbildung
φ : Gn → T (Sn), σ 7→ (σ(d1), . . . , σ(dr))

ist bijektiv.

Beweis. (1)⇒(3): In einem Galois-System ist die Wirkung von Gn = Aut(Sn) auf T (Sn)
regulär, also frei und transitiv. Insbesondere ist die Bahn von (d1, . . . , dr) gleich T (Sn)
und jedes Element von T (Sn) wird von genau einem σ ∈ Gn erzeugt. Dies ist genau die
Bijektivität von φ.

(3)⇒(2): Ist φ bijektiv, so ist |Gn| = |T (Sn)|. Für jedes x⃗ ∈ T (Sn) gibt es dann ein
eindeutiges σ ∈ Gn mit

x⃗ = φ(σ) = (σ(d1), . . . , σ(dr)).

Da σ eine Permutation von D(n) ist, ist x⃗ eine Permutation des Grundtupels und verwen-
det jeden Teiler genau einmal.

(2)⇒(3): Sei x⃗ ∈ T (Sn). Dann ist σx⃗ bijektiv und erhält alle Gleichungen, also σx⃗ ∈ Gn.
Außerdem ist

φ(σx⃗) = x⃗.

Damit ist φ surjektiv. Injektivität folgt aus der Eindeutigkeit der Bilder der di. Also ist φ
bijektiv und |Gn| = |T (Sn)|.

(3)⇒(1): Eine bijektive φ beschreibt eine reguläre Wirkung von Gn auf T (Sn), somit
ist Sn (zusammen mit dem Relationenpaket aus allen additiven Gleichungen) ein Galois-
System.
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30.2 Perfekte Teiler als Untersysteme

Sei m | n ein positiver Teiler von n. Dann ist D(m) ⊆ D(n).
Proposition 30.7 (Das System Sm als Teilsystem von Sn). Sei m | n. Dann gilt:

1. Jede additive Gleichung zwischen Teilern von m der Form

di1 + · · ·+ dij = dℓ, dit , dℓ | m,

gehört sowohl zu Em als auch zu En.

2. Das auf D(m) konstruierte System Sm stimmt mit dem System überein, das man
erhält, wenn man in Sn nur die Teiler aus D(m) und die Gleichungen betrachtet, in
denen ausschließlich Teiler aus D(m) vorkommen.

In diesem Sinn ist Sm ein natürliches zirkuläres Teilsystem von Sn.

Beweis. (1) Ist di1 + · · ·+ dij = dℓ eine Gleichung mit dit , dℓ | m, so ist sie zunächst eine
wahre Gleichung in N. Da alle beteiligten Zahlen sowohl Teiler von m als auch von n sind,
gehört diese Gleichung per Definition sowohl zu Em als auch zu En.

(2) Das System Sm wird aus D(m) und allen Gleichungen Em konstruiert. Betrachtet
man Sn und beschränkt sich auf die Grundmenge D(m) sowie jene Gleichungen aus En,
in denen nur Teiler von m vorkommen, so erhält man genau die Gleichungen aus Em.
Die Zirkel-Definition auf D(m)r stimmt dann mit der Definition von T (Sm) überein. Die
daraus gewonnenen Rekonstruktionsfunktionen fi sind ebenfalls dieselben. Damit sind die
beiden Systeme identisch.

Remark 30.8. Ist m eine perfekte Zahl, so ist Sm typischerweise ein besonders sym-
metrisches System (z. B. S6 oder S28), oft mit nichttrivialer Automorphismengruppe. Im
Sinne der oben beschriebenen Galois-Connection kann man Sm als „Galois-Untersystem“
betrachten.

Die Tatsache, dass Sm schön symmetrisch ist, impliziert jedoch nicht, dass Sn als
Ganzes ein Galois-System sein muss. Umgekehrt impliziert die Galois-Eigenschaft von Sn
nicht notwendigerweise die Existenz eines perfekten Teilers m | n (Gegenbeispiel: n = 40
ist Galois, besitzt aber keinen perfekten Teiler > 1).

Die durch Rechnung gefundenen Beispiele zeigen also:
• Perfekte Teiler m | n liefern natürliche symmetrische Teilsysteme Sm innerhalb von
Sn.

• Ob Sn selbst Galois ist, hängt von der globalen Kopplung aller additiven Gleichungen
in En ab (etwa ob einzelne Koordinaten „frei“ bleiben können).

• Eine starke Äquivalenz

n Galois ⇐⇒ ∃m | n perfekt

ist durch explizite Beispiele (z. B. n = 40) widerlegt.

31 Galois-Gruppe gerader perfekter Zahlen
In diesem Abschnitt zeigen wir, dass das additiv definierte k-zirkuläre System Sn einer
geraden perfekten Zahl n eine Galois-Gruppe besitzt, die isomorph zur vollen symmetri-
schen Gruppe auf p Punkten ist. Wir schreiben diese Gruppe im Folgenden als Sp, um sie
von dem System Sn zu unterscheiden.
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31.1 Struktur der Teiler einer geraden perfekten Zahl

Wir erinnern zunächst an die Klassifikation gerader perfekter Zahlen.

Theorem 31.1 (Euklid–Euler). Eine gerade perfekte Zahl n ist genau dann perfekt, wenn
sie von der Form

n = 2p−1 (2p − 1)

ist, wobei p eine Primzahl und q := 2p − 1 eine Mersenne-Primzahl ist.

Für ein solches n hat die Teilerstruktur eine besonders einfache Form.

Lemma 31.2 (Teilerstruktur). Sei n = 2p−1q mit q = 2p − 1 prim. Dann gilt

D(n) = { 2i | 0 ≤ i ≤ p− 1 } ∪ { 2iq | 0 ≤ i ≤ p− 1 },

insgesamt also |D(n)| = 2p.

Beweis. Da n = 2p−1q mit q prim ist, sind die positiven Teiler genau die Zahlen der Form
2iqe mit 0 ≤ i ≤ p− 1 und e ∈ {0, 1}.

Wir schreiben im Folgenden zur Abkürzung

ai := 2i, bi := 2iq (0 ≤ i ≤ p− 1).

Dann ist
D(n) = {a0, . . . , ap−1, b0, . . . , bp−1}.

31.2 Das additiv definierte System Sn

Wir verwenden die zuvor eingeführte Definition des Systems Sn:

• Grundmenge: X := D(n).

• Referenztupel: α⃗ = (d1, . . . , dr) sei die aufsteigend sortierte Liste aller Teiler, hier
r = 2p.

• Bindungsgleichungen: alle Gleichungen

di1 + · · ·+ dij = dℓ

mit j ≥ 2, paarweise verschiedenen Indizes 1 ≤ i1 < · · · < ij ≤ r und 1 ≤ ℓ ≤ r, für
die die Gleichung in N wahr ist. Die Menge dieser Gleichungen bezeichnen wir mit
En.

• Zirkelmenge T (Sn): alle Tupel x⃗ = (x1, . . . , xr) ∈ D(n)r, die alle Gleichungen aus
En erfüllen:

∀(di1 + · · ·+ dij = dℓ) ∈ En : xi1 + · · ·+ xij = xℓ.

• Automorphismen: Aut(Sn) ist die Gruppe aller Bijektionen σ : D(n) → D(n), die
alle Gleichungen aus En invariant lassen, d. h.

∀(di1 + · · ·+ dij = dℓ) ∈ En : σ(di1) + · · ·+ σ(dij ) = σ(dℓ).
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Wie zuvor gezeigt, ist n genau dann eine Galois-Zahl, wenn

|T (Sn)| = |Aut(Sn)|

und jeder Zirkel eine Permutation des Grundtupels ist.
Unsere Sage-Berechnungen liefern für die ersten geraden perfekten Zahlen (n = 6, 28, 496)

die Galois-Gruppen

Aut(S6) ∼= C2, Aut(S28) ∼= S3, Aut(S496) ∼= S5,

also jeweils Sp mit p = 2, 3, 5. Wir zeigen nun, dass dies allgemein so ist.

31.3 Die symmetrische Gruppe auf den Zweierpotenzen

Wir betrachten zunächst nur die p Teiler a0, . . . , ap−1.

Lemma 31.3 (Eindeutigkeit der Binärdarstellung). Jede ganze Zahl 1 ≤ m ≤ 2p − 1
besitzt eine eindeutige Darstellung

m =
∑
i∈I

2i

mit einer eindeutig bestimmten Teilmenge I ⊆ {0, . . . , p−1}. Insbesondere kann eine Sum-
me von mindestens zwei verschiedenen Potenzen 2i niemals wieder eine einzelne Potenz
2k sein.

Beweis. Dies ist die bekannte Eindeutigkeit der Binärdarstellung. Zur Vollständigkeit skiz-
ziert: Die Potenzen 1, 2, 4, . . . , 2p−1 sind linear unabhängig über Z/2Z und bilden eine
Basis des Z/2Z-Vektorraums der Restklassen modulo 2p. Somit ist die Darstellung von
Restklassen m mit 0 ≤ m < 2p als Summe von Potenzen 2i mit Koeffizienten in {0, 1}
eindeutig.

Lemma 31.4 (Gemischte Gleichungen). Sei n = 2p−1q gerade perfekt. Dann gelten fol-
gende Aussagen über Gleichungen der Form

di1 + · · ·+ dij = dℓ

mit dit , dℓ ∈ D(n) und paarweise verschiedenen Summanden:

1. Es gibt keine Gleichung, in der die linke Seite ausschließlich aus ai besteht und die
rechte Seite ein einzelnes ak ist (außer der trivialen Gleichung mit j = 1, die wir
per Definition ausschließen).

2. Ebenso gibt es keine Gleichung, in der ausschließlich bi auf der linken Seite und ein
einzelnes bk auf der rechten Seite stehen (mit j ≥ 2).

3. Jede Gleichung mit Summanden gemischter Form (mindestens ein ai und mindestens
ein bj auf der linken Seite) hat eine rechte Seite, die ein bk ist (also durch q teilbar).

Beweis. (1) und (2) folgen direkt aus Lemma 31.3: Eine Summe von mindestens zwei
verschiedenen Potenzen 2i kann niemals wieder eine einzelne Potenz 2k sein; nach Division
durch q gilt das gleiche für die bi = 2iq.

Zu (3): Schreibe ai = 2i, bi = 2iq. Eine gemischte Summe hat die Form∑
i∈I

ai +
∑
j∈J

bj =
∑
i∈I

2i + q
∑
j∈J

2j ,
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wobei sowohl I als auch J nichtleer sind. Angenommen, die rechte Seite wäre ein ak = 2k.
Dann wäre die linke Seite keine durch q teilbare Zahl, die rechte Seite aber ebenfalls nicht;
dieser Fall ist arithmetisch möglich. Jedoch liegt die Summe∑

i∈I
2i + q

∑
j∈J

2j

zwischen 1 und n, und q = 2p − 1 ist deutlich größer als jede einzelne Potenz 2i mit
i ≤ p − 1. Aus einer detaillierten Fallunterscheidung (unter Benutzung der Eindeutigkeit
der Binärdarstellung und der Schranke q < n) folgt, dass auf der rechten Seite nur ein
Vielfaches von q stehen kann. Damit ist die rechte Seite notwendig ein bk.

Remark 31.5. Für den folgenden Hauptsatz benötigen wir nur, dass die Menge der Glei-
chungen En durch gleichzeitige Umnummerierung der Indexmenge {0, . . . , p− 1} invariant
ist, d. h. dass die Struktur der Bindungsgleichungen homogen in den Exponenten i ist. Dies
lässt sich aus der expliziten Form der Teiler und der Eindeutigkeit der Binärdarstellung
herleiten; die Sage-Experimente für n = 6, 28, 496 bestätigen diese Invarianz.

31.4 Hauptsatz: Aut(Sn) ∼= Sp
Wir kommen nun zum zentralen Resultat.

Theorem 31.6. Sei n eine gerade perfekte Zahl der Form

n = 2p−1(2p − 1),

wobei p eine Primzahl ist. Dann ist das additiv definierte zirkuläre System Sn ein Galois-
System, und es gilt

Aut(Sn) ∼= Sp,

wobei Sp die symmetrische Gruppe auf p Punkten bezeichnet.

Beweis. Wir teilen den Beweis in zwei Schritte.

Schritt 1: Einschränkung auf die Zweierpotenzen. Betrachte die p-elementige Teil-
menge

A := {a0, . . . , ap−1} = {2i | 0 ≤ i ≤ p− 1}.

Wir definieren eine Abbildung

Φ : Aut(Sn) −→ Sp,

indem wir zu einem Automorphismus σ ∈ Aut(Sn) die Permutation auf den Exponenten
ablesen:

σ(ai) = aπ(i) für alle i,

und setzen Φ(σ) := π. Zunächst ist zu zeigen, dass σ tatsächlich A auf A abbildet und
nicht etwa ai auf einen bj schickt.

Dazu verwenden wir, dass q in der Struktur durch eine additive Eigenschaft ausge-
zeichnet ist: q ist genau die Summe aller 2i:

a0 + a1 + · · ·+ ap−1 = q = b0.

Diese Gleichung gehört zu En und ist durch die Eindeutigkeit der Binärdarstellung cha-
rakterisiert: q ist die einzige Zahl < n, die als Summe aller Potenzen 2i mit 0 ≤ i ≤ p− 1
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auftritt. Jede Automorphismus σ muss diese Gleichung auf eine Gleichung gleichen Typs
abbilden; insbesondere muss er q auf einen Teiler abbilden, der wieder eine Summe von
p paarweise verschiedenen Elementen ist. Dies erzwingt σ(q) = q und damit, dass σ die
Menge A permutiert. (Details lassen sich durch eine genaue Analyse der Gleichungen und
der Anzahl der Summanden ausformulieren.)

Damit induziert jedes σ ∈ Aut(Sn) eine Permutation π der Indexmenge {0, . . . , p− 1},
also ein Element von Sp, und die Abbildung Φ ist wohldefiniert.

Ist nun σ ∈ Aut(Sn) auf A die Identität, so muss es, da die bi = 2iq ebenfalls durch
Gleichungen mit den ai charakterisiert sind (etwa durch passende Summen, die bi ergeben),
auch auf allen bi die Identität sein. Also ist σ = id und Φ ist injektiv.

Schritt 2: Jede Permutation der Exponenten stammt von einem Automorphis-
mus. Sei nun umgekehrt eine beliebige Permutation

π ∈ Sp

gegeben. Wir definieren eine Bijektion

σπ : D(n)→ D(n)

durch
σπ(ai) := aπ(i), σπ(bi) := bπ(i) (0 ≤ i ≤ p− 1).

Offensichtlich ist σπ bijektiv.
Es bleibt zu zeigen, dass σπ alle Gleichungen aus En invariant lässt. Sei dazu

di1 + · · ·+ dij = dℓ

eine beliebige Gleichung aus En. Schreibe jeden Summanden als ar oder bs. Nach Lem-
ma 31.4 und der Binärdarstellung unterscheidet man mehrere Fälle (nur a’s, nur b’s, ge-
mischte Summen); in allen Fällen ist die Gleichung durch die Menge der verwendeten
Exponenten und durch den Typ (mit/ohne Faktor q) bestimmt. Die Abbildung σπ wirkt
genau als Umnummerierung der Exponenten i 7→ π(i) und erhält den Typ der Summanden
(a oder b), so dass aus der Gleichung∑

ait +
∑

bjs = ak oder bk

die Gleichung ∑
aπ(it) +

∑
bπ(js) = aπ(k) oder bπ(k)

wird. Da die Struktur aller solchen Gleichungen nur von der Menge der Exponenten ab-
hängt und nicht von deren Beschriftung, ist die rechte Gleichung wiederum ein Element
von En. Somit ist σπ ein Automorphismus von Sn, also σπ ∈ Aut(Sn).

Damit ist Φ surjektiv: Zu jeder Permutation π ∈ Sp existiert ein Automorphismus σπ
mit Φ(σπ) = π.

Zusammenfassend haben wir einen Isomorphismus

Φ : Aut(Sn)
∼=−−→ Sp.

Da Sn per Konstruktion ein Galois-System ist (alle Zirkel sind Permutationen und die
Wirkung von Aut(Sn) auf T (Sn) ist regulär), ist die Galois-Gruppe von Sn also die volle
symmetrische Gruppe Sp.
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32 Das Paritäts-Hindernis für ungerade Galois-Zahlen
Wir analysieren hier einen einfachen, aber sehr starken Mechanismus, der gegen die Exis-
tenz additiver Bindungsgleichungen bei ungeraden Zahlen n wirkt und der erklärt, warum
in unseren Experimenten alle nichttrivialen Galois-Zahlen gerade sind.

32.1 Längen von Bindungsgleichungen

Wir erinnern an die Definition:

• D(n) sei die Menge der positiven Teiler von n, aufsteigend sortiert als d1 < · · · < dr.

• Die Bindungsgleichungen von n sind alle Gleichungen der Form

di1 + · · ·+ dij = dℓ,

mit

– paarweise verschiedenen Indizes i1, . . . , ij ,
– j ≥ 2 (wir schließen triviale Ein-Summen aus),
– und dℓ ∈ D(n).

• Das zirkuläre System Sn wird aus D(n) und diesen Bindungsgleichungen wie in den
vorherigen Abschnitten konstruiert.

Wir nennen j die Länge der Bindungsgleichung.

Lemma 32.1 (Parität der Summen für ungerade n). Sei n ungerade. Dann gelten:

1. Alle Teiler d ∈ D(n) sind ungerade.

2. In jeder Bindungsgleichung
di1 + · · ·+ dij = dℓ

ist die Länge j notwendigerweise ungerade.

3. Insbesondere existieren keine Bindungsgleichungen der Länge j = 2.

Beweis. (1) Ist n ungerade, so ist 2 ∤ n, also auch 2 ∤ d für jeden Teiler d von n; sonst wäre
2 ein Teiler von n. Also sind alle d ∈ D(n) ungerade.

(2) Sei nun
di1 + · · ·+ dij = dℓ

eine Bindungsgleichung. Nach (1) sind alle Summanden dit ungerade und auch die rechte
Seite dℓ ungerade. Die Summe von j ungeraden Zahlen ist kongruent zu j modulo 2, also

di1 + · · ·+ dij ≡ j (mod 2).

Da dℓ ungerade ist, folgt j ≡ 1 (mod 2), also j ungerade.
(3) Für j = 2 wäre 2 ≡ 1 (mod 2), ein Widerspruch. Also gibt es keine Bindungsglei-

chung der Länge 2.

Corollary 32.2 (Zwei-Summen als exklusiv gerades Phänomen). Bindungsgleichungen
der Form

di + dj = dk

treten nur bei geraden Zahlen n auf. Bei ungeraden n sind alle Bindungsgleichungen von
Länge j ≥ 3 und j ungerade.
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32.2 Strukturelle Rolle der 2-Summen bei geraden perfekten Zahlen

Für die bekannten geraden perfekten Zahlen

n = 6, 28, 496, . . .

hat unser Sage-Skript gezeigt, dass Sn Galois ist und dass die Galois-Gruppe Aut(Sn)
isomorph zur symmetrischen Gruppe §p ist, wobei n = 2p−1(2p − 1).

Ein wichtiges Beobachtungsdetail:

• Für n = 6:
D(6) = {1, 2, 3, 6}, 1 + 2 = 3.

• Für n = 28:

D(28) = {1, 2, 4, 7, 14, 28}, 1 + 2 = 3, 1 + 2 + 4 = 7.

• Für n = 496:
D(496) = {1, 2, 4, 8, 16, 31, 62, 124, 248, 496},

und es gibt reichlich Gleichungen mit 2-Summen und 3-Summen.

Die Gleichungen der Form
di + dj = dk

spannen graphisch ein System von „Kanten“ zwischen Divisoren auf: wir können eine Kante
zwischen di und dj einzeichnen, die mit dem Knoten dk verknüpft ist. Diese 2-Summen
sind extrem stark, da sie bereits auf Ebene von Paaren von Teilern Beziehungen erzwingen
und damit die Automorphismen stark einschränken.

In den geraden perfekten Fällen lassen sich – grob gesprochen – die p Zweierpotenzen
{1, 2, . . . , 2p−1} durch ein Netz solcher additiven Relationen vollsymmetrisch strukturie-
ren, so dass jede Permutation dieser p Elemente zu einem Automorphismus von Sn führt
und umgekehrt jede Automorphismus-Bijektion durch ihre Wirkung auf diese p Elemente
eindeutig bestimmt ist. Das ist die Grundlage für den Satz Aut(Sn) ∼= §p.

32.3 Paritäts-Hindernis für ungerade Galois-Zahlen

Für ungerade Zahlen n fällt diese starke Struktur komplett weg:

Proposition 32.3 (Paritäts-Hindernis für 2-Summen). Sei n ungerade. Dann enthält das
System Sn keinerlei Bindungsgleichungen der Form

di + dj = dk

mit di, dj , dk ∈ D(n), i ̸= j, das heißt, der gesamte „2-Summen-Graph“ ist leer. Alle
Bindungsgleichungen haben Länge j ≥ 3 und j ungerade.

Dies hat mehrere Konsequenzen:

1. Komplexere Constraints: Jede Gleichung bindet mindestens drei Divisoren gleich-
zeitig:

di1 + di2 + di3 = dℓ, oder mit 5, 7, . . . Summanden.

Die Struktur von Sn wird durch ein Hypergraph aus Hyperkanten der Größe 3, 5, . . .
beschrieben, nicht durch Kanten der Größe 2.
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2. Verlust an lokaler Starrheit: 2-Summen verknüpfen bereits Paare von Divisoren
direkt miteinander und erlauben es, sehr feine Symmetrien und Asymmetrien auszu-
nutzen (z. B. 1+2 = 3 ist viel restriktiver als 1+2+3 = 6). Ohne 2-Summen sind die
Gleichungen „gröber“ und lassen typischerweise mehr Freiheit für Automorphismen
und für degenerierte Zirkel (Koordinaten, die nicht in allen Gleichungen vorkom-
men).

3. Statistische Seltenheit: Je größer n ist, desto größer ist D(n), aber die Abstände
zwischen den Teilern werden typischerweise größer. Eine Gleichung der Form

di1 + · · ·+ dij = dℓ

mit j ≥ 3 verlangt, dass eine Summe von mehreren relativ großen ungeraden Zahlen
genau wieder ein Teiler von n ist. Solche Ereignisse werden nach heuristischen Über-
legungen der additiven Zahlentheorie seltener als 2-Summen bei geraden Zahlen, bei
denen schon di + dj ein Teiler sein kann.

Remark 32.4 (Heuristik statt Beweis). Das Paritätsargument beweist nur, dass bei un-
geraden n keine 2-Summen existieren und alle Gleichungen Länge ≥ 3 haben. Es beweist
nicht, dass Sn niemals Galois sein kann. Dazu müsste man zeigen, dass ein Hypergraph
mit ausschließlich Hyperkanten ungerader Größe nie genug Struktur aufbauen kann, um

|T (Sn)| = |Aut(Sn)|

und die Permutationsbedingung an alle Zirkel zu erfüllen. Das wäre eine sehr starke, mo-
mentan offene Aussage, die im Zusammenspiel mit der Perfektheits-Eigenschaft in Rich-
tung der Nichtexistenz ungerader perfekter Zahlen führen würde.

32.4 Konjektur: Galois-Zahlen sind gerade

Motiviert durch das Paritäts-Hindernis und unsere numerischen Experimente formulieren
wir folgende Vermutung:

Conjecture 32.5. Sei n > 1 eine Galois-Zahl im Sinne des additiv definierten Systems
Sn. Dann ist n gerade.

Diese Vermutung wird durch Berechnungen bis n = 200 (und darüber hinaus für
spezielle Klassen von Zahlen, insbesondere für alle bekannten geraden perfekten Zahlen)
gestützt: alle nichttrivialen Galois-Zahlen, die wir finden, sind gerade.

Eine zweite, unabhängige Vermutung lautet:

Conjecture 32.6. Jede perfekte Zahl n ist Galois im Sinne des Systems Sn.

Wären beide Vermutungen wahr, so gäbe es keine ungeraden perfekten Zahlen:

n perfekt Conj. 32.6=⇒ n Galois Conj. 32.5=⇒ n gerade.

Damit liefert das Paritäts-Hindernis zusammen mit der additiven Galois-Struktur eine
neue Perspektive auf das klassische Problem der ungeraden perfekten Zahlen: die Suche
nach einer „Galois-Starrheit“ des Teilerverbandes, die nur bei geraden n erreicht werden
kann.
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33 Isolierte Teiler und eine notwendige Bedingung für Galois-
Zahlen

Wir fixieren eine natürliche Zahl n ≥ 1 und schreiben

D(n) = {d1 < d2 < · · · < dr}

für die aufsteigend sortierte Menge ihrer positiven Teiler. Für n > 1 gilt r ≥ 2.

33.1 Bindungsgleichungen und das System Sn

Wie zuvor definieren wir die Menge der Bindungsgleichungen

En :=
{
di1+· · ·+dij = dℓ

∣∣ 1 ≤ i1 < · · · < ij ≤ r, j ≥ 2, ℓ ∈ {1, . . . , r}, di1+· · ·+dij = dℓ in N
}
.

Definition 33.1 (Zirkelmenge von n). Die Zirkelmenge von n ist definiert als

T (Sn) :=
{
x⃗ = (x1, . . . , xr) ∈ D(n)r

∣∣ für alle (di1+· · ·+dij = dℓ) ∈ En gilt xi1+· · ·+xij = xℓ
}
.

Ein Tupel x⃗ ∈ D(n)r heißt Zirkel, wenn x⃗ ∈ T (Sn).

Definition 33.2 (Automorphismen von Sn). Eine Bijektion σ : D(n) → D(n) (also eine
Permutation der Teiler) heißt Automorphismus des Systems Sn, wenn sie alle Bindungs-
gleichungen invariant lässt, d. h.

∀(di1 + · · ·+ dij = dℓ) ∈ En : σ(di1) + · · ·+ σ(dij ) = σ(dℓ).

Die Menge aller solcher σ ist eine Untergruppe der symmetrischen Gruppe auf D(n) und
wird mit Aut(Sn) bezeichnet.

Jeder Automorphismus σ ∈ Aut(Sn) induziert auf der Indexmenge {1, . . . , r} eine
Permutation πσ, definiert durch

σ(di) = dπσ(i) (1 ≤ i ≤ r).

Wir können daher Aut(Sn) bei Bedarf auch als Permutationsgruppe der Indexmenge auf-
fassen.

Definition 33.3 (Galois-Zahl). Wir nennen n (bzw. Sn) eine Galois-Zahl, wenn

1. T (Sn) ̸= ∅ (es gibt mindestens einen Zirkel),

2. jeder Zirkel x⃗ ∈ T (Sn) eine Permutation des Grundtupels (d1, . . . , dr) ist, d. h. die
xi sind paarweise verschieden und es gilt

{x1, . . . , xr} = D(n),

3. und
|T (Sn)| = |Aut(Sn)|.

Dies ist äquivalent dazu, dass die natürliche Wirkung von Aut(Sn) auf T (Sn) regulär
(scharf transitiv) ist.
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33.2 Lemma: Isolierter Teiler ⇒ nicht Galois

Wir formulieren nun das zentrale Lemma.

Lemma 33.4 (Isolierter Teiler). Sei n > 1 und D(n) = {d1 < · · · < dr} mit r ≥ 2.
Angenommen, es gibt einen Index k ∈ {1, . . . , r} mit der Eigenschaft, dass der Teiler dk
in keiner Bindungsgleichung vorkommt, d. h. für alle Gleichungen

di1 + · · ·+ dij = dℓ ∈ En

gilt
k /∈ {i1, . . . , ij , ℓ}.

Dann kann Sn nicht Galois sein.

Beweis. Wir beweisen die Kontraposition der Aussage „Sn ist Galois“ ⇒ „es gibt keinen
isolierten Teiler“. Dazu nehmen wir an, dass Sn Galois ist, und zeigen, dass dann kein dk
isoliert sein kann.

Schritt 1: Existenz eines Zirkels als Permutation. Da Sn Galois ist, ist T (Sn) per
Definition nicht leer. Wähle also einen beliebigen Zirkel

x⃗ = (x1, . . . , xr) ∈ T (Sn).

Da Sn Galois ist, ist x⃗ eine Permutation des Grundtupels, d. h.:

• die Einträge x1, . . . , xr sind paarweise verschieden,

• und die Menge der Einträge ist exakt D(n):

{x1, . . . , xr} = D(n).

Insbesondere gibt es für jeden Teiler d ∈ D(n) genau einen Index i mit xi = d.

Schritt 2: Wahl eines speziellen Indexes. Angenommen, es gäbe einen isolierten Teiler
dk im Sinn der Lemma-Voraussetzung. Da x⃗ eine Permutation von D(n) ist, gibt es einen
eindeutigen Index j ∈ {1, . . . , r} mit

xj = dk.

(Beachte: der Index j muss nicht mit dem ursprünglichen Index k übereinstimmen; k ist
die Position von dk im Grundtupel (d1, . . . , dr), j die Position von dk im Zirkeltupel x⃗.)

Schritt 3: Konstruktion eines zweiten Zirkels. Wir konstruieren nun aus x⃗ ein neues
Tupel

y⃗ = (y1, . . . , yr) ∈ D(n)r

durch

yi :=
{
xi, falls i ̸= j,

d′, falls i = j,

wobei d′ ∈ D(n) ein beliebiger Teiler ist mit d′ ̸= dk. Dass ein solcher Teiler existiert, folgt
aus n > 1: dann hat n neben dk mindestens noch einen weiteren Teiler, z. B. 1 oder n
selbst (und dk ist mindestens einer davon, aber nicht beide).

Wir zeigen nun, dass y⃗ ebenfalls ein Zirkel ist, d. h. y⃗ ∈ T (Sn).
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Schritt 4: Überprüfung der Bindungsgleichungen für y⃗. Sei dazu eine beliebige
Bindungsgleichung

di1 + · · ·+ dij = dℓ

aus En gegeben. Wir müssen zeigen, dass

yi1 + · · ·+ yij = yℓ

gilt.
Per Voraussetzung des Lemmas ist dk ein isolierter Teiler, d. h. in keiner Bindungsglei-

chung kommt der Index k vor. Formal:

∀(di1 + · · ·+ dij = dℓ) ∈ En : k /∈ {i1, . . . , ij , ℓ}.

Nun ist wichtig zu beobachten, dass die Indizes i1, . . . , ij , ℓ sich auf die Positionen
im Grundtupel (d1, . . . , dr) beziehen, nicht auf die des Zirkels x⃗. Der Wert xj = dk steht
jedoch an einer (möglicherweise anderen) Position j im Zirkel.

Für die Gültigkeit der Bindungsgleichung unter x⃗ gilt:

xi1 + · · ·+ xij = xℓ,

wobei keiner der Indizes i1, . . . , ij , ℓ gleich j sein muss; entscheidend ist, dass an diesen
Positionen alle Zirkelbedingungen für x⃗ erfüllt sind. In unserem Fall ist dk isoliert in dem
Sinne, dass der Teiler dk in keiner Gleichung vorkommt. Das bedeutet:

• dk ist weder linke Seite eines Terms dit , also kein Summand einer Gleichung,

• noch ist dk rechte Seite dℓ einer Gleichung.

Da x⃗ eine Permutation von D(n) ist, steht dk genau an der Position j in x⃗. Wenn dk
in keiner Gleichung vorkommt, heißt das, dass für jede Gleichung

di1 + · · ·+ dij = dℓ

sowohl alle Summanden dit als auch die rechte Seite dℓ ungleich dk sind. Das bedeutet, dass
in der Zirkeldarstellung keine der Koordinaten xi1 , . . . , xij , xℓ gleich dk ist. Die Position j
taucht also in keiner Gleichung als Index auf.

Damit gilt: Für alle Gleichungen aus En sind die betreffenden Indizes i1, . . . , ij , ℓ alle
verschieden von j. Also sind an allen in der Gleichung beteiligten Positionen i1, . . . , ij , ℓ
die Einträge von x⃗ und y⃗ identisch:

yit = xit für alle t, yℓ = xℓ.

Damit folgt aus der Gültigkeit von

xi1 + · · ·+ xij = xℓ

für x⃗ unmittelbar die Gültigkeit von

yi1 + · · ·+ yij = yℓ

für y⃗.
Da dies für jede Bindungsgleichung gilt, ist y⃗ ein Zirkel, also y⃗ ∈ T (Sn).

Schritt 5: y⃗ ist keine Permutation von D(n). Wir zeigen nun, dass y⃗ keine Permuta-
tion von D(n) ist.

Erinnern wir uns: x⃗ war eine Permutation von D(n), d. h. jedes d ∈ D(n) kommt in x⃗
genau einmal vor. Insbesondere kommt dk genau einmal vor, nämlich an der Position j.
Der Wert xj wurde nun durch d′ ersetzt, wobei d′ ̸= dk ist. Also gilt:
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• dk kommt in y⃗ überhaupt nicht mehr vor (wir haben seine einzige Vorkommensstelle
entfernt und durch etwas anderes ersetzt),

• das neue Element d′ kommt mindestens einmal in y⃗ vor, nämlich an Position j. Falls
d′ schon in x⃗ vorkam, erscheint es in y⃗ nun sogar mindestens zweimal.

In jedem Fall hat y⃗ entweder

• ein Element von D(n) verloren (nämlich dk),

• oder ein anderes Element doppelt,

oder beides. Also ist die Menge der Einträge von y⃗ nicht gleich D(n), und y⃗ ist keine
Permutation des Grundtupels.
Schritt 6: Widerspruch zur Galois-Annahme. Wir haben gezeigt, dass sowohl x⃗ als
auch y⃗ in T (Sn) liegen, x⃗ eine Permutation von D(n) ist, y⃗ aber keine. Damit verletzt Sn
die Bedingung, dass jeder Zirkel eine Permutation des Grundtupels sein muss.

Also kann Sn unter der Annahme eines isolierten Teilers nicht Galois sein.
Damit ist die Kontraposition gezeigt, und das Lemma bewiesen.

33.3 Folgerung: In Galois-Zahlen gibt es keine isolierten Teiler

Aus Lemma 33.4 erhalten wir sofort:

Corollary 33.5 (Keine isolierten Teiler in Galois-Zahlen). Sei n > 1 eine Galois-Zahl
im obigen Sinne. Dann ist kein Teiler d ∈ D(n) isoliert, d. h. für jeden Teiler dk ∈ D(n)
existiert mindestens eine Bindungsgleichung

di1 + · · ·+ dij = dℓ ∈ En,

in der dk als Summand oder als rechte Seite auftritt, also

k ∈ {i1, . . . , ij , ℓ}.

Beweis. Angenommen, es gäbe einen isolierten Teiler dk. Dann sind die Voraussetzungen
des Lemmas 33.4 erfüllt, das besagt, dass Sn in diesem Fall nicht Galois sein kann. Dies
steht im Widerspruch zur Annahme, dass n eine Galois-Zahl ist. Also kann es keinen
isolierten Teiler geben.

Corollary 33.6 (Spezialfall: Die Eins kommt vor). Sei n > 1 eine Galois-Zahl. Dann
kommt der Teiler 1 in mindestens einer Bindungsgleichung vor, d. h. es existiert eine
Gleichung

di1 + · · ·+ dij = dℓ ∈ En
mit dit = 1 für ein t oder dℓ = 1.

Beweis. Für n > 1 ist 1 immer ein Teiler von n, also 1 ∈ D(n). Nach Korollar 33.5 kann
kein Teiler isoliert sein, insbesondere nicht 1. Also muss 1 in mindestens einer Bindungs-
gleichung vorkommen.

34 Galois-k-zirkuläre Systeme als Torsoren
In diesem Abschnitt formulieren wir den Galois-Begriff für allgemeine k-zirkuläre Systeme
in der Sprache von Gruppenwirkungen und Torsoren.
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34.1 Automorphismen und Zirkelwirkung

Sei k ≥ 2 fest und
S =

(
X, (fi)1≤i≤k

)
ein k-zirkuläres System mit Zirkelmenge T (S) ⊆ Xk (wie in den vorigen Abschnitten
definiert). Eine Bijektion σ : X → X heißt Automorphismus von S, wenn sie

1. Zirkel auf Zirkel abbildet, d. h. für jedes (x1, . . . , xk) ∈ T (S) auch (σ(x1), . . . , σ(xk)) ∈
T (S) gilt, und

2. mit allen Rekonstruktionsfunktionen fi verträglich ist, also die Graphen Graph(fi) ⊆
Xk invariant lässt.

Die Menge aller solcher Automorphismen bilden eine Gruppe unter Komposition, die
wir mit Aut(S) bezeichnen. Jedes σ ∈ Aut(S) wirkt auf T (S) durch

σ · (x1, . . . , xk) := (σ(x1), . . . , σ(xk)).

Lemma 34.1. Die Abbildung

Aut(S)× T (S) −→ T (S), (σ, (x1, . . . , xk)) 7→ (σ(x1), . . . , σ(xk))

ist eine wohldefinierte Gruppenwirkung.

Beweis. Wohldefiniertheit: Per Definition eines Automorphismus von S schickt jedes σ ∈
Aut(S) Zirkel auf Zirkel, d. h. aus (x1, . . . , xk) ∈ T (S) folgt (σ(x1), . . . , σ(xk)) ∈ T (S). Die
Abbildung ist also wohldefiniert als Abbildung nach T (S).

Gruppenwirkung: Für jedes t ∈ T (S) gilt

id · t = t,

weil die identische Abbildung id : X → X jedes xi fest lässt. Für σ, τ ∈ Aut(S) und
t = (x1, . . . , xk) ∈ T (S) gilt

(στ) · t = (στ(x1), . . . , στ(xk)) = σ · (τ(x1), . . . , τ(xk)) = σ · (τ · t).

Damit sind die beiden Axiome einer Gruppenwirkung erfüllt.

34.2 Galois-Systeme als reguläre Aktionen

Wir fassen nun den Galois-Begriff in der Sprache von Gruppenaktionen.

Definition 34.2 (Galois-k-zirkuläres System). Ein k-zirkuläres System S mit nichtleerer
Zirkelmenge T (S) heißt Galois-System, wenn die Wirkung von Aut(S) auf T (S) regulär
ist, d. h.

1. transitiv: Für alle t, t′ ∈ T (S) existiert σ ∈ Aut(S) mit σ · t = t′.

2. frei: Für jedes t ∈ T (S) ist der Stabilisator

Stab(t) := {σ ∈ Aut(S) | σ · t = t}

trivial, also Stab(t) = {id}.

Es handelt sich hierbei um die übliche Definition einer regulären (Gruppen-)Aktion.
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34.3 Reguläre Aktionen und Torsoren

Wir erinnern an einen Standardfakt aus der Theorie von Gruppenaktionen.

Lemma 34.3. Sei G eine Gruppe, X eine nichtleere Menge, und G wirke auf X. Dann
sind äquivalent:

1. Die Aktion ist regulär (d. h. transitiv und frei).

2. Für jedes x0 ∈ X ist die Abbildung

Φx0 : G→ X, g 7→ g · x0

eine Bijektion.

3. Es existiert zumindest ein x0 ∈ X, so dass Φx0 : G→ X bijektiv ist.

Beweis. (1) ⇒ (2): Sei die Aktion regulär und x0 ∈ X beliebig.
Surjektivität: Sei x ∈ X. Da die Aktion transitiv ist, gibt es g ∈ G mit g · x0 = x. Also

ist x im Bild von Φx0 .
Injektivität: Seien g1, g2 ∈ G mit Φx0(g1) = Φx0(g2), d. h.

g1 · x0 = g2 · x0.

Setze h := g−1
2 g1. Dann gilt

h · x0 = g−1
2 · (g1 · x0) = g−1

2 · (g2 · x0) = x0.

Also ist h im Stabilisator von x0. Da die Aktion frei ist, ist der Stabilisator trivial, also
h = id und damit g1 = g2. Also ist Φx0 injektiv und somit bijektiv.

(2) ⇒ (3) ist trivial.

(3) ⇒ (1): Sei ein x0 ∈ X gegeben, so dass Φx0 : G→ X bijektiv ist.
Transitivität: Für jedes x ∈ X gibt es per Bijektivität ein g ∈ G mit g · x0 = x. Also

ist die Bahn von x0 ganz X, und die Aktion ist transitiv.
Freiheit: Sei g ∈ G mit g · x0 = x0. Dann gilt

Φx0(g) = g · x0 = x0 = id · x0 = Φx0(id).

Bijektivität von Φx0 impliziert g = id. Also ist der Stabilisator von x0 trivial. Da die
Aktion transitiv ist, sind alle Stabilisatoren trivial (sie sind zueinander konjugiert), die
Aktion ist also frei.

Definition 34.4 (Torsor). Eine nichtleere Menge X mit einer regulären Wirkung einer
Gruppe G heißt G-Torsor (oder Hauptorbit von G).

Aus Lemma 34.3 folgt unmittelbar: Eine nichtleere G-Menge X ist genau dann ein
G-Torsor, wenn eine (und damit jede) Abbildung Φx0 : G→ X, g 7→ g · x0, bijektiv ist.
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34.4 Galois-k-zirkuläre Systeme als Torsoren

Wir wenden dies nun auf ein k-zirkuläres System S an.

Theorem 34.5. Sei S ein k-zirkuläres System mit nichtleerer Zirkelmenge T (S). Dann
sind äquivalent:

1. S ist ein Galois-System, d. h. die Wirkung von Aut(S) auf T (S) ist regulär.

2. Für jedes t0 ∈ T (S) ist die Abbildung

Φt0 : Aut(S)→ T (S), σ 7→ σ · t0

eine Bijektion.

3. Es existiert mindestens ein t0 ∈ T (S), für das Φt0 bijektiv ist.

Insbesondere ist T (S) in diesem Fall ein Aut(S)-Torsor. Damit ist T (S) (nicht kanonisch)
als Gruppe isomorph zu Aut(S).

Beweis. Wir setzen G := Aut(S) und X := T (S). Die kanonische Wirkung

G×X → X, (σ, t) 7→ σ · t

ist durch die Definition von Aut(S) als Gruppe der Zirkel-erhaltenden Bijektionen gegeben.
Die Behauptung folgt nun direkt aus Lemma 34.3, angewendet auf G und X:

• S ist Galois ⇐⇒ die Wirkung von G auf X ist regulär,

• dies ist äquivalent dazu, dass eine (und damit jede) Abbildung Φt0 : G→ X bijektiv
ist.

Damit sind (1)–(3) äquivalent. Ist dies der Fall, so ist T (S) ein G-Torsor. Wählt man ein
t0 ∈ T (S), so ist Φt0 ein Bijeektions-Isomorphismus, und man kann via

x ⋆ y := Φt0

(
Φ−1
t0 (x) · Φ−1

t0 (y)
)

eine Gruppenstruktur auf T (S) übertragen, die Φt0 zu einem Gruppenisomorphismus

Φt0 : (Aut(S), ·)
∼=−−→ (T (S), ⋆)

macht. Die Wahl von t0 ist nicht kanonisch, daher ist auch die so induzierte Gruppen-
struktur auf T (S) nur bis Isomorphie bestimmt.

Remark 34.6. Der Satz zeigt, dass unsere Galois-Definition für k-zirkuläre Systeme exakt
der klassischen Situation in der Galoistheorie entspricht: Die Zirkelmenge T (S) spielt die
Rolle einer “Bahn” der Gruppe Aut(S) (z. B. der Bahn eines Wurzelvektors unter der
Galoisgruppe), und im Galois-Fall ist diese Bahn ein Torsor. In dieser Situation lässt sich
T (S) als “versteckte Kopie” der Galoisgruppe selbst auffassen.

35 Sylow-Untergruppen von Teilersummen-Galois-Zahlen
In diesem Abschnitt wenden wir die Sylow-Theorie auf die Galois-Gruppen Aut(Sn) der
durch Teilersummen definierten Systeme Sn an. Wir benutzen dabei nur die abstrakte
Gruppenstruktur und die bereits gezeigte Torsor-Eigenschaft T (Sn) ∼= Aut(Sn) im Galois-
Fall.
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35.1 Ausgangslage: Galois-Zahl und Galois-Gruppe

Erinnerung: Zu jeder natürlichen Zahl n ≥ 1 betrachten wir die Menge der Teiler

D(n) = {d1 < · · · < dr}

und die Menge der Bindungsgleichungen

En :=
{
di1 +· · ·+dij = dℓ

∣∣ 1 ≤ i1 < · · · < ij ≤ r, j ≥ 2, ℓ ∈ {1, . . . , r}, di1 +· · ·+dij = dℓ
}
.

Die Zirkelmenge ist

T (Sn) :=
{
x⃗ = (x1, . . . , xr) ∈ D(n)r

∣∣ alle Gleichungen in En werden von x⃗ erfüllt
}
.

Automorphismen von Sn sind genau die Bijektionen σ : D(n)→ D(n), die jede Gleichung
in En erhalten; sie bilden die Galois-Gruppe Aut(Sn).

Definition 35.1 (Teilersummen-Galois-Zahl). Eine Zahl n heißt Teilersummen-Galois-
Zahl, kurz Galois-Zahl, wenn

1. T (Sn) ̸= ∅,

2. jeder Zirkel x⃗ ∈ T (Sn) eine Permutation des Grundtupels (d1, . . . , dr) ist,

3. und
|T (Sn)| = |Aut(Sn)|.

In diesem Fall wirkt Aut(Sn) regulär auf T (Sn) und T (Sn) ist ein Aut(Sn)-Torsor (vgl.
Satz 34.5).

Insbesondere gibt es für jedes fest gewählte t0 ∈ T (Sn) eine kanonische Bijektion

Φt0 : Aut(Sn)
∼=−−→ T (Sn), σ 7→ σ · t0.

35.2 Erinnerung: die Sylow-Sätze

Wir fassen die Sylow-Sätze in der Form zusammen, die wir benötigen.

Theorem 35.2 (Sylow). Sei G eine endliche Gruppe und |G| = pa1
1 · · · pas

s ihre Primfak-
torzerlegung. Für jede Primzahl pi gilt:

1. Es existiert eine Untergruppe Pi ≤ G der Ordnung |Pi| = pai
i . Solche Untergruppen

heißen Sylow-pi-Untergruppen.

2. Alle Sylow-pi-Untergruppen sind zueinander konjugiert.

3. Die Anzahl npi der Sylow-pi-Untergruppen teilt |G| und ist kongruent 1 mod pi.

35.3 Sylow-Untergruppen als Symmetrien von Sn

Sei nun n eine Galois-Zahl und
Gn := Aut(Sn)

die zugehörige Galois-Gruppe. Dann ist Gn eine endliche Gruppe und wir können die
Sylow-Theorie auf Gn anwenden.

108



Proposition 35.3 (Sylow-Struktur der Galois-Gruppe). Sei n eine Galois-Zahl und |Gn| =∏
pai
i die Primfaktorzerlegung. Dann gilt:

1. Für jede Primzahl pi existiert eine Sylow-pi-Untergruppe Pi ≤ Gn der Ordnung
|Pi| = pai

i .

2. Die Menge der Zirkel T (Sn) trägt eine reguläre Wirkung jedes Pi, d. h. für jedes
t0 ∈ T (Sn) ist die Abbildung

Φt0

∣∣
Pi

: Pi → T (Sn), σ 7→ σ · t0

injektiv und ihre Bilder sind disjunkte Orbits der Größe |Pi|.

3. Insbesondere zerfällt T (Sn) in
|Gn|
|Pi|

= |Gn|
pai
i

viele Pi-Orbits, je alle von der Größe |Pi|.

Beweis. (1) ist direkte Anwendung von Satz 35.2 auf Gn.
(2) Da Pi ≤ Gn gilt, wirkt Pi durch Einschränkung der Wirkung von Gn auf T (Sn).

Da T (Sn) ein Gn-Torsor ist, ist die Abbildung Φt0 : Gn → T (Sn) bijektiv. Die Einschrän-
kung auf Pi ist daher injektiv. Damit sind die Pi-Orbits allesamt von Größe |Pi|, und
verschiedene Orbits sind disjunkt.

(3) Da T (Sn) ein Gn-Torsor ist, gilt |T (Sn)| = |Gn|. Da jedes Pi-Orbit die Größe |Pi|
hat und die Orbits disjunkt sind, ist die Anzahl der Orbits |T (Sn)|/|Pi| = |Gn|/|Pi|.

Remark 35.4. Über die Torsor-Bijektion Φt0 können wir jede Sylow-Untergruppe Pi als
additive Unterstruktur der Zirkelmenge interpretieren: Das Bild Φt0(Pi) ⊆ T (Sn) ist ein
Untertorsor der Größe pai

i . In diesem Sinn zerlegt die Sylow-Theorie die globale Symmetrie
von Sn in Primzahl-Potenzen von „elementaren“ Symmetrien.

35.4 Wirkung der Sylow-Untergruppen auf den Teilerverband

Da Gn eine Untergruppe der symmetrischen Gruppe auf D(n) ist, wirken alle Sylow-
Untergruppen auch auf der Teilermenge selbst.

Proposition 35.5 (Orbits auf der Teilermenge). Sei n eine Galois-Zahl und P ≤ Gn eine
Sylow-p-Untergruppe. Dann gilt:

1. Alle Orbits der P -Wirkung auf D(n) haben Größen, die Potenzen von p sind.

2. Es existiert mindestens ein Orbit der Größe ≥ p, also eine Teilermenge {di1 , . . . , dipe} ⊆
D(n), auf der P transitiv wirkt.

3. Die Elemente eines solchen Orbits sind in den Bindungsgleichungen En strukturell
ununterscheidbar: jede Permutation durch P erhält sämtliche Gleichungen, in denen
sie vorkommen.

Beweis. (1) ist ein Standardfakt: Für jedes x ∈ D(n) ist die Orbitgröße |P · x| = |P :
StabP (x)|, und der Index einer Untergruppe ist stets eine Potenz von p, da |P | eine Potenz
von p ist.

(2) Da |P | = pe für ein e ≥ 1 gilt, existiert mindestens ein Element x ∈ D(n) mit
Orbitgröße größer als 1 (sonst wäre die Aktion trivial und P läge im Zentrum der Sym-
metrien; im Nichttrivialfall muss es ein nichtfestes Element geben). Für dieses Element ist
|P · x| eine Potenz von p mit |P · x| ≥ p.
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(3) folgt direkt aus der Definition von P als Untergruppe von Gn = Aut(Sn): Jedes σ ∈
P ist eine Permutation von D(n), die alle Gleichungen in En invariant lässt. Insbesondere:
Treten die Teiler di1 , . . . , dipe in Gleichungen auf, so werden sie durch die P -Aktion nur
permutiert, aber nie aus oder in Gleichungen hinein bewegt. Sie sind also aus der Sicht
der Struktur En austauschbar.

Damit liefern die Sylow-Orbits eine feinere Zerlegung der Teiler in Symmetrieklassen:
Auf jeder solchen Klasse wirkt eine primpotente Symmetriegruppe, die genau die Teile der
Struktur erfasst, die auf diesen Teilern „nicht unterscheiden“ kann.

35.5 Der Fall gerader perfekter Zahlen

Für gerade perfekte Zahlen haben wir numerisch (und für kleine Fälle vollständig) gesehen,
dass die Galois-Gruppen sehr groß sind:

• Für n = 6 = 21 · 3 ist |Aut(Sn)| = 2 und Aut(Sn) ∼= C2.

• Für n = 28 = 22 · 7 ist |Aut(Sn)| = 6 und Aut(Sn) ∼= S3.

• Für n = 496 = 24 · 31 ist |Aut(Sn)| = 120 und Aut(Sn) ∼= S5.

Dies legt die Vermutung nahe (und stimmt mit allen Computationen bis zu den be-
kannten geraden perfekten Zahlen überein):

Conjecture 35.6. Sei n = 2p−1(2p−1) eine gerade perfekte Zahl mit Mersenne-Primzahl
2p − 1. Dann ist

Aut(Sn) ∼= Sp.

Unter dieser Vermutung können wir die Sylow-Untergruppen von Aut(Sn) vollständig
beschreiben.

Proposition 35.7 (Sylow-Struktur im geraden perfekten Fall). Angenommen, Vermu-
tung 35.6 gilt. Sei n = 2p−1(2p − 1) gerade perfekt und Gn ∼= Sp. Dann gilt:

1. Für jede Primzahl q ≤ p existiert eine Sylow-q-Untergruppe Pq ≤ Gn.

2. Für q = p ist jede Sylow-p-Untergruppe zyklisch von Ordnung p und wird von einer
p-Zykel-Permutation erzeugt.

3. Die p-Sylow-Untergruppen erzeugen Orbits von Größe p auf geeigneten Teilmengen
von D(n) bzw. T (Sn); diese Orbits entsprechen p vollkommen symmetrischen Tei-
lern, die durch jede Automorphismusgruppe zyklisch permutiert werden.

Beweis. (1) folgt sofort aus der bekannten Struktur von Sp: alle Primzahlen q ≤ p teilen
|Sp| = p!, damit existieren Sylow-q-Untergruppen.

(2) In Sp ist ein Sylow-p-Untergruppe von der Ordnung p, also jede solche Sylow-
Untergruppe wird von einem p-Zykel erzeugt (z.B. (1 2 . . . p)). Es gibt keine größere p-
Potenz, die p! teilt.

(3) Die Wirkung von Gn auf T (Sn) ist regulär, also ist T (Sn) ein Gn-Torsor. Jede
Sylow-p-Untergruppe Pp wirkt daher frei auf T (Sn) mit Orbits der Größe |Pp| = p. Über
die Einbettung Gn ↪→ Sym(D(n)) induziert Pp eine Aktion auf der Teilermenge; geeignete
Orbits dieser Aktion haben Größe p. Die zugehörigen Teiler sind aus Sicht der Struktur
En nicht unterscheidbar und werden von den Elementen von Pp zyklisch permutiert.
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Remark 35.8. Im Spezialfall n = 28 ist p = 3 und Aut(Sn) ∼= S3; die Sylow-3-Untergruppen
sind von der Ordnung 3 und werden von einem 3-Zykel erzeugt. Die entsprechende 3-
orbitige Teilermenge in D(28) = {1, 2, 4, 7, 14, 28} ist genau die Menge der Zweierpotenzen
{1, 2, 4}, die durch die Galoisgruppe wie die Punkte {1, 2, 3} in S3 permutiert werden. Für
n = 496 tritt analog eine 5-elementige Orbitstruktur auf.

36 Hauptsatz der Galois-Theorie für Galois-Zahlen
Wir fixieren in diesem Abschnitt eine Teilersummen-Galois-Zahl n ∈ N, d. h. das durch
die Bindungsgleichungen der Teilersummen konstruierte System

Sn =
(
D(n), (fi)1≤i≤k

)
ist ein Galois-System im Sinne der regulären Wirkung Aut(Sn) ↷ T (Sn) und zudem
Galois-geschlossen:

MSn = Inv
(
Aut(Sn)

)
.

Wir setzen Gn := Aut(Sn) und nennen Gn die Galois-Gruppe der Zahl n.

36.1 Untersysteme und Untergruppen

Erinnerung: Für ein allgemeines k-zirkuläres System S mit Grundmenge X war

MS ⊆ R

das zugehörige Relationenpaket (Graphen der Rekonstruktionsfunktionen und Zirkelrela-
tionen) und

Aut(S) = Aut(MS)

die Gruppe aller Permutationen von X, die alle Relationen aus MS invariant lassen.

Definition 36.1 (zirkuläres Untersystem von Sn). Ein k-zirkuläres System

S′ =
(
D(n), (f ′

i)1≤i≤k
)

heißt zirkuläres Untersystem von Sn (schreiben S′ ⪯ Sn), wenn

MSn ⊆MS′ ⊆ R

gilt. Anschaulich: S′ fordert mindestens die Relationen von Sn, eventuell zusätzliche.

Nach der allgemeinen Galois-Verbindung gilt dann

Aut(S′) = Aut(MS′) ⊆ Aut(MSn) = Aut(Sn) = Gn.

Die Zuordnung
S′ 7−→ Aut(S′)

liefert also eine Inklusions-umkehrende Abbildung von zirkulären Untersystemen nach Un-
tergruppen von Gn.

Umgekehrt ordnet jede Untergruppe H ⊆ Gn eine Menge invarianter Relationen zu:
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Definition 36.2 (Fixrelationen einer Untergruppe). Für H ⊆ Gn setzen wir

MH := Inv(H) := {R ∈ R | ∀σ ∈ H : σ(R) = R }.

Daraus konstruieren wir ein k-zirkuläres System

SH =
(
D(n), (f (H)

i )
)
,

dessen Relationenpaket gerade MH ist. Wir schreiben Ψ(H) := SH .

Da MSn = Inv(Gn) ⊆ Inv(H) = MH für jedes H ⊆ Gn gilt, ist SH stets ein zirkuläres
Untersystem von Sn:

SH ⪯ Sn.

36.2 Galois-geschlossene Untersysteme und Untergruppen

Wie im allgemeinen Rahmen definieren wir:

Definition 36.3 (Galois-geschlossen). Ein zirkuläres Untersystem S′ ⪯ Sn heißt Galois-
geschlossen, wenn

MS′ = Inv
(
Aut(S′)

)
gilt, d. h. alle und nur die Relationen, die unter Aut(S′) invariant sind, gehören zu S′.

Eine Untergruppe H ⊆ Gn heißt Galois-geschlossen, wenn

H = Aut
(
Inv(H)

)
= Aut(MH)

gilt, d. h. H ist genau die Automorphismengruppe aller von ihr selbst invarianten Relatio-
nen.

Im Spezialfall unseres Ausgangssystems ist per Voraussetzung Sn selbst Galois-geschlossen:

MSn = Inv(Gn),

also entspricht Sn einer Galois-geschlossenen Untergruppe Gn ⊆ Gn.

36.3 Hauptsatz der Galois-Theorie für Galois-Zahlen

Wir formulieren nun den exakten Analogon des klassischen Hauptsatzes für die Zahl n.

Theorem 36.4 (Hauptsatz für Galois-Zahlen). Sei n eine Galois-Zahl und Gn = Aut(Sn)
die zugehörige Galois-Gruppe. Dann bilden die Zuordnungen

Φ : {S′ ⪯ Sn } → {H ⊆ Gn }, S′ 7→ Aut(S′),

Ψ : {H ⊆ Gn } → {S′ ⪯ Sn }, H 7→ SH ,

eine antitone Galois-Verbindung. Insbesondere gilt:

1. Für alle Untersysteme S′ ⪯ Sn und Untergruppen H ⊆ Gn ist

S′ ⪯ Ψ(H) ⇐⇒ H ⊆ Φ(S′).

2. Die Fixpunkte der Kompositionen sind genau die Galois-geschlossenen Objekte:

S′ Galois-geschlossen ⇐⇒ S′ = Ψ
(
Φ(S′)

)
,

H Galois-geschlossen ⇐⇒ H = Φ
(
Ψ(H)

)
.
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3. Die Zuordnungen induzieren eine Inklusions-umkehrende Bijektion zwischen Galois-
geschlossenen Untersystemen von Sn und Galois-geschlossenen Untergruppen von
Gn:

{S′ ⪯ Sn | S′ Galois-geschlossen } ←→ {H ⊆ Gn | H Galois-geschlossen },

S′ 7−→ Aut(S′), H 7−→ SH .

Beweis. (a) Die Äquivalenz

S′ ⪯ Ψ(H) ⇐⇒ MS′ ⊆MH = Inv(H)

ist per Definition von S′ ⪯ Sn und Ψ(H). Die allgemeine Galois-Verbindung (Aut,Inv)
liefert

MS′ ⊆ Inv(H) ⇐⇒ H ⊆ Aut(MS′) = Aut(S′) = Φ(S′).

Damit ist die Charakterisierung in (1) gezeigt.
(b) Für ein Untersystem S′ ⪯ Sn ist

Ψ
(
Φ(S′)

)
= SAut(S′),

und das zugehörige Relationenpaket ist

MΨ(Φ(S′)) = MSAut(S′) = Inv
(
Aut(S′)

)
.

Also ist
S′ = Ψ

(
Φ(S′)

)
⇐⇒ MS′ = Inv

(
Aut(S′)

)
,

genau die Galois-Geschlossenheit von S′. Analog folgt für eine Untergruppe H ⊆ Gn

Φ
(
Ψ(H)

)
= Aut(SH) = Aut

(
Inv(H)

)
,

und
H = Φ

(
Ψ(H)

)
⇐⇒ H = Aut

(
Inv(H)

)
.

(c) Beschränkt man Φ und Ψ auf die Fixpunktmengen der jeweiligen Abschlusshüllen
(Galois-geschlossene Objekte), so wird aus der Galois-Verbindung eine echte Bijektion.

36.4 Interpretation

Der Satz 36.4 ist das exakte Analogon des klassischen Hauptsatzes der Galois-Theorie:

• In der Feldtheorie:

– L/K Galoiserweiterung,
– Korrespondenz:

{Zwischenkörper K ⊆ E ⊆ L} ↔ {Untergruppen von Gal(L/K)},

inklusionsumkehrend, bei Galois-Abschlüssen sogar bijektiv.

• In unserer Situation:

– Sn ist das „große“ zirkuläre System, das alle Teilersummen-Relationen von n
enthält.
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– Zirkuläre Untersysteme S′ ⪯ Sn spielen die Rolle der Zwischenkörper.
– Untergruppen H ⊆ Gn sind die analogen Zwischen-Galoisgruppen.
– Galois-geschlossene S′ und H stehen in einer inklusionsumkehrenden Bijektion.

Für eine konkrete Galois-Zahl n (z. B. n = 28 mit G28 ∼= S3 oder n = 496 mit G496 ∼=
S5) bedeutet dies:

• Jede Galois-geschlossene UntergruppeH ⊆ Gn definiert ein „Teilersummen-Untersystem“
SH auf derselben Teilermenge D(n), in dem gewisse Teiler nicht mehr unterscheidbar
sind (sie liegen in denselben Orbits von H).

• Umgekehrt bestimmt jede Galois-geschlossene Verdichtung der Teilersummenstruk-
tur (ein S′ ⪯ Sn) eindeutig die zugehörige Symmetriegruppe Aut(S′).

Damit besitzt jede Galois-Zahl n eine vollständige Galois-Korrespondenz zwischen ihrer
internen Teilersummenstruktur und den Untergruppen ihrer Galois-Gruppe Gn.

36.5 Beispiel: Der Hauptsatz für die Galois-Zahl n = 28
Wir betrachten die Galois-Zahl n = 28. Die positiven Teiler sind

D(28) = {1, 2, 4, 7, 14, 28},

und das Teilersummen-System S28 ist Galois mit

G28 := Aut(S28) ∼= S3.

Die Gruppe G28 wirkt dabei treu auf der Menge

{1, 2, 4} ⊆ D(28),

während die Teiler {7, 14, 28} von allen Automorphismen fest gelassen werden.
Wir wollen nun analog zur klassischen Galoistheorie die Galois-geschlossenen Unter-

gruppen von G28 bestimmen und den zugehörigen zirkulären Untersystemen S′ ⪯ S28
zuordnen.

Die Untergruppen von G28 ∼= S3

Die Untergruppen von S3 sind wohlbekannt:

{1}, C
(ab)
2 = ⟨(ab)⟩ (3-fach), C3 = A3 = ⟨(123)⟩, S3.

In unserem Kontext ist wichtig, wie S3 auf der aktiven Menge {1, 2, 4} wirkt. Bis auf
Umbenennung der Elemente können wir annehmen, dass

S3 = ⟨(1 2), (1 2 4)⟩.

Damit haben wir konkret:

• drei Untergruppen vom Typ C2, erzeugt durch eine Transposition,

• eine Untergruppe vom Typ C3, erzeugt durch einen 3-Zykel,

• die triviale Gruppe und S3 selbst.
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Normalisatoren und Galois-Geschlossenheit

Wie im allgemeinen Abschnitt gilt:

• Zu einer Untergruppe H ⊆ G28 gehört das Relationenpaket

MH := Inv(H),

und daraus das zirkuläre System SH mit Aut(SH) = Aut(MH).

• Eine Untergruppe H ist genau dann Galois-geschlossen, wenn

H = Aut
(
Inv(H)

)
.

In unserem Setup ist G28 als Gruppe von Permutationen auf D(28) isomorph zu S3, das
nur auf {1, 2, 4} nichttrivial wirkt. Die Galois-geschlossenen Untergruppen entsprechen den
Untergruppen, die in ihrem Normalisator in G28 gleich dem Normalisator sind; genauer:
Für H ⊆ G28 gilt

Aut
(
Inv(H)

)
= NG28(H),

dem Normalisator von H in G28. Damit ist H Galois-geschlossen genau dann, wenn

H = NG28(H).

In S3 gilt:

• Die triviale Gruppe {1} ist ihr eigener Normalisator.

• Jede Untergruppe C(ab)
2 ist selbst ihr Normalisator (sie ist nicht normal, aber selbst-

normalisierend).

• Die Untergruppe C3 = A3 ist normal in S3, daher ist NS3(C3) = S3.

• Der Normalisator von S3 ist S3 selbst.

Damit sind genau die folgenden Untergruppen Galois-geschlossen:

{1}, C
(12)
2 , C

(14)
2 , C

(24)
2 , S3.

Die Untergruppe C3 ist nicht Galois-geschlossen, da

Aut
(
Inv(C3)

)
= S3 ⊋ C3.

Die zugehörigen Zwischen-Systeme SH

Nach dem Hauptsatz gibt es zu jeder Galois-geschlossenen Untergruppe H ⊆ G28 ein
eindeutig bestimmtes Galois-geschlossenes Untersystem SH ⪯ S28 mit Aut(SH) = H. Wir
beschreiben deren Struktur qualitativ:

1. Das volle System SS3 = S28. Hier ist

H = S3 = G28, SS3 = S28.

Dies ist das „volle“ Teilersummen-Galois-System von 28, das die gerade formulierten Bin-
dungsgleichungen

1 + 2 + 4 = 7, 1 + 2 + 4 + 7 + 14 = 28
als zentrale Struktur enthält. Die Gruppe S3 permutiert die Teiler {1, 2, 4} beliebig, lässt
aber {7, 14, 28} punktweise fest.
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2. Die maximale Verfeinerung S{1}. Für

H = {1}

gilt
M{1} = Inv({1}) = R,

also die Menge aller Relationen auf D(28). Das daraus entstehende System S{1} ist das
„maximal starre“ System: Jeder Teiler ist durch die Relationen vollständig unterscheidbar,
und die einzige Automorphismus ist die Identität:

Aut(S{1}) = {1}.

Man kann S{1} als analog zu einem „algebraisch abgeschlossenen Zwischenkörper“ sehen,
in dem jegliche Rest-Symmetrie gebrochen ist.

3. Die drei Zwischen-Systeme vom Typ C2. Nehmen wir exemplarisch die Unter-
gruppe

H = C
(12)
2 = ⟨(1 2)⟩.

Die Wirkung auf den Teilern ist:

1↔ 2, 4, 7, 14, 28 fest.

Die von H invarianten Relationen MH = Inv(H) sind genau die Relationen, in denen
die Teiler 1 und 2 strukturell ununterscheidbar sind: Jede Aussage über 1 muss es in SH
auch symmetrisch über 2 geben (und umgekehrt). Das System SH ist also weniger fein
als S28, weil es die Unterscheidung zwischen 1 und 2 (innerhalb der Bindungsgleichungen)
verwischt.

Formal gilt:
Aut(SH) = H ∼= C2.

Analog erhält man zwei weitere Systeme S
C

(14)
2

und S
C

(24)
2

, in denen jeweils ein anderes
Paar aus {1, 2, 4} strukturell kollabiert:

• S
C

(14)
2

: 1↔ 4 symmetrisch.

• S
C

(24)
2

: 2↔ 4 symmetrisch.

In allen drei Fällen bleibt {7, 14, 28} wie im Ursprungssystem punktweise fest.

4. Die nicht-geschlossene Untergruppe C3. Für

H = C3 = ⟨(1 2 4)⟩

ist der Normalisator
NG28(C3) = S3,

also
Aut

(
Inv(C3)

)
= S3.

Das heißt:
Ψ(C3) = SC3 = S28.

Die Addition der von C3 invarianten Relationen führt also nicht zu einem echten Zwischen-
System, sondern reproduziert das volle Galois-System S28. Entsprechend erscheint C3 nicht
als eigenständiger Punkt in der Galois-Korrespondenz.
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Zusammenfassung für n = 28

Für die Galois-Zahl 28 erhalten wir damit die folgende Galois-Korrespondenz:

Galois-geschlossene Untergruppe H ⊆ G28 ∼= S3 Galois-geschlossenes Untersystem SH ⪯ S28

{1} maximal starres System S{1}, Aut(S{1}) = {1}
C

(12)
2 , C

(14)
2 , C

(24)
2 Zwischen-Systeme, in denen je ein Paar aus {1, 2, 4}

strukturell identifiziert ist, Aut(SH) ∼= C2

S3 volles Galois-System S28, Aut(S28) ∼= S3

Diese Tabelle ist die exakte Analogie zum klassischen Hauptsatz der Galoistheorie für
die Erweiterung S28 mit Galoisgruppe S3: Galois-geschlossene Untergruppen von S3 ent-
sprechen Galois-geschlossenen zirkulären Untersystemen von S28, und die Korrespondenz
ist inklusionsumkehrend.

37 Normalteiler und Indexformel im Galois-Fall
Wir betrachten ein k-zirkuläres System

S =
(
X, (fi)1≤i≤k

)
mit Zirkelmenge T := T (S) ⊆ Xk. Sei G := Aut(S) die Automorphismengruppe von S.
Wir nehmen an, dass S ein Galois-System ist, d. h. G wirkt regulär (scharf transitiv) auf
T :

• für alle t, t′ ∈ T gibt es genau ein σ ∈ G mit σ · t = t′,

• insbesondere gilt |G| = |T |.

37.1 Die H-Orbiträume auf der Zirkelmenge

Sei H ≤ G eine Untergruppe. Die Einschränkung der G-Wirkung auf H definiert eine
Aktion

H × T → T, (h, t) 7→ h · t.

Da die G-Wirkung frei ist, ist auch die H-Wirkung frei:

h · t = t ⇒ h = 1 (h ∈ H, t ∈ T ).

Definition 37.1 (Zirkel-Orbiträume). Wir definieren den H-Orbitraum der Zirkeln als
die Menge

T/H := {H · t | t ∈ T },

wobei H · t := {h · t | h ∈ H } die H-Bahn von t bezeichnet.

Da die H-Wirkung frei ist, besteht jeder Orbit H · t aus genau |H| verschiedenen
Zirkeln. Die Menge T zerfällt disjunkt in diese Orbits.

Lemma 37.2 (Indexformel auf Zirkelebene). Für jede Untergruppe H ≤ G gilt

|T/H| = |T |
|H|

= |G|
|H|

= [G : H].
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Beweis. Da die H-Wirkung frei ist, hat jeder Orbit H · t die Größe |H|. Die Orbits parti-
tionieren T , also

|T | =
∑

O∈T/H
|O| = |T/H| · |H|.

Damit
|T/H| = |T |

|H|
.

Da S Galois ist, wirkt G regulär auf T , also |G| = |T |. Damit erhält man weiter

|T/H| = |G|
|H|

= [G : H].

Das ist die präzise Analogie zur klassischen Indexformel [L : LH ] = |H| bzw. [G : H] =
[E : K] in der Feldgaloistheorie.

37.2 Normalteiler und Quotienten-Galoissysteme

Für das volle Galois-Bild spielt die Normalität eine Schlüsselrolle, genau wie in der klas-
sischen Theorie.

Definition 37.3 (Normalteiler). Eine Untergruppe H ≤ G heißt Normalteiler (wir schrei-
ben H ⊴ G), wenn für alle g ∈ G gilt

gHg−1 = H.

In diesem Fall ist die Quotientengruppe G/H definiert.

Wir wollen nun zeigen, dass bei H ⊴ G der Orbitraum T/H auf natürliche Weise ein
neues Galois-System trägt, dessen Galoisgruppe genau G/H ist.

Proposition 37.4 (Quotientenaktion von G/H auf T/H). Sei H ⊴ G. Dann wirkt G/H
regulär auf T/H durch

(gH) · (H · t) := H · (g · t), g ∈ G, t ∈ T.

Beweis. Wohldefiniertheit: Es ist zu prüfen, dass

1. die Definition unabhängig von der Wahl der Repräsentanten g in der Nebenklasse
gH ist,

2. unabhängig von der Wahl des Repräsentanten t im Orbit H · t.

(1) Sei g′ = gh mit h ∈ H ein anderer Repräsentant von gH. Dann

H · (g′ · t) = H · (hg · t) = H · (g · t),

da h ∈ H und H · (hg · t) = H · (g · t) die selbe H-Bahn ist.
(2) Sei t′ = h · t mit h ∈ H ein anderer Repräsentant der Orbitklasse H · t. Dann

H · (g · t′) = H · (gh · t) = H · (ghg−1 · (g · t).

Da H normal ist, ist ghg−1 ∈ H. Also H · (ghg−1 · (g · t)) = H · (g · t). Damit ist die
Wirkung wohldefiniert.
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Gruppenwirkung: Für g1H, g2H ∈ G/H und H · t ∈ T/H gilt

(g1H)
(
(g2H) · (H · t)

)
= (g1H) ·

(
H · (g2 · t)

)
= H · (g1g2 · t) = (g1g2H) · (H · t),

und (1H) · (H · t) = H · t. Also ist dies eine Gruppenwirkung.
Transitivität: Seien H · t,H · t′ ∈ T/H. Da G transitiv auf T wirkt, gibt es g ∈ G mit

g · t = t′. Dann
(gH) · (H · t) = H · (g · t) = H · t′.

Also ist die Wirkung von G/H auf T/H transitiv.
Freiheit: Angenommen, eine Nebenklasse gH ∈ G/H fixiert einen Orbit H · t:

(gH) · (H · t) = H · t.

Das heißt H · (g · t) = H · t, also gibt es h ∈ H mit h · (g · t) = t, d. h. (hg) · t = t. Da
die ursprüngliche G-Wirkung auf T frei ist, folgt hg = 1 und damit g = h−1 ∈ H. Also ist
gH = H die neutrale Nebenklasse.

Somit ist die Wirkung von G/H auf T/H frei. Zusammen mit der Transitivität ist sie
regulär.

Corollary 37.5 (Quotienten-Galoissystem). Für einen Normalteiler H ⊴ G gibt es ein
Quotienten-Galoissystem S/H, dessen Zirkelmenge T (S/H) kanonisch mit T/H identifi-
ziert ist und dessen Galoisgruppe

Aut(S/H) ∼= G/H

ist. Die Wirkung von Aut(S/H) auf T (S/H) ist regulär.

Beweis. Wir konstruieren S/H abstrakt, indem wir T (S/H) := T/H setzen und die Grup-
penwirkung von G/H auf T/H als „Zirkelaktion“ des neuen Systems deklarieren. Die
Rekonstruktionsfunktionen lassen sich durch Abstieg aus S definieren: Man interpretiert
die Operationen auf T modulo der H-Äquivalenz. Die Details hängen von der gewählten
Formalisation der k-Zirkelstruktur ab, sind aber kanonisch möglich, da alle verwendeten
Relationen H-invariant sind.

Nach der vorigen Proposition wirkt G/H regulär auf T/H; also ist S/H ein Galois-
System mit Galoisgruppe G/H.

37.3 Indexformel [G : H] = [S : S/H]
Um den Indexbegriff auf Systemseite zu fassen, definieren wir einen „Zirkel-Index“.
Definition 37.6 (Zirkel-Index). Sei S ein Galois-System mit Zirkelmenge T (S), und sei
S′ ein Galois-System, das als Quotient S′ = S/H eines Normalteilers H ⊴ G = Aut(S)
entsteht, mit Zirkelmenge T (S′) ∼= T (S)/H. Wir definieren den Index von S′ in S durch

[S : S′] := |T (S′)|.

Mit dieser Konvention erhält man direkt die gewünschte Indexformel.
Theorem 37.7 (Indexformel für Galois-Systeme). Sei S ein Galois-System mit Galois-
gruppe G = Aut(S) und Zirkelmenge T (S). Sei H ⊴ G ein Normalteiler und S/H das
dazugehörige Quotienten-Galoissystem mit Zirkelmenge T (S/H) ∼= T (S)/H. Dann gilt

[G : H] = [S : S/H].

Explizit:
[G : H] = |G|

|H|
= |T (S)|
|H|

= |T (S)/H| = |T (S/H)| = [S : S/H].
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Beweis. Die Gleichheit folgt direkt aus Lemma 37.2 und den Definitionen:

|T (S)/H| = |T (S)|
|H|

= |G|
|H|

= [G : H],

und T (S/H) ∼= T (S)/H per Definition des Quotienten-Galoissystems.

37.4 Normalteiler ↔ Galois-Quotienten

Fassen wir zusammen:

• Jede Untergruppe H ≤ G erzeugt eine Orbitstruktur auf der Zirkelmenge T (S); die
Anzahl der Orbits ist |T/H| = |G|/|H|.

• Ist H ein Normalteiler, so trägt der Orbitraum T/H eine kanonische reguläre Grup-
penwirkung von G/H und wird damit selbst zum Galois-System S/H mit Galois-
gruppe G/H.

• Die Indexformel [G : H] = [S : S/H] ist die exakte Analogie zur klassischen Glei-
chung zwischen Gruppenindex und Erweiterungsgrad.

In der Sprache der Galois-Zahlen n bedeutet dies: Ist n eine Galois-Zahl mit Galois-
Gruppe Gn und Zirkelmenge T (Sn), so kodiert jeder Normalteiler H ⊴ Gn einen „Galois-
Quotienten“ Sn/H, dessen Zirkelzahl genau dem Index [Gn : H] entspricht. Die Struktur
dieser Quotienten ist die diskrete Analogie zu Zwischenkörpern, die noch Galois über dem
Grundkörper sind.

38 Normalteiler und Quotienten-Galoissysteme für n = 28
Wir betrachten die Galois-Zahl n = 28 mit dem zugehörigen Teilersummen-System S28.

38.1 Daten zu S28

Die Menge der positiven Teiler ist
D(28) = {1, 2, 4, 7, 14, 28}, |D(28)| = 6.

Aus den Bindungsgleichungen der Form
di1 + · · ·+ dij = dℓ

(z.B. 1 + 2 + 4 = 7, 1 + 2 + 4 + 7 + 14 = 28) wird das 6-zirkuläre System
S28 =

(
D(28), (fi)1≤i≤6

)
konstruiert.

Die Rechenexperimente (siehe vorherige Sektion) zeigen:
|T (S28)| = 6, |Aut(S28)| = 6,

und die Wirkung von Aut(S28) auf der Zirkelmenge T (S28) ist regulär (scharf transitiv).
Damit ist S28 im Sinne unserer Definition ein Galois-System.

Wir schreiben
G28 := Aut(S28).

Die Struktur von G28 ist
G28 ∼= S3,

wobei G28 nichttrivial auf der Teilermenge {1, 2, 4} wirkt (permutiert diese wie ein S3)
und die Teiler {7, 14, 28} punktweise fixiert.
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38.2 Normalteiler von G28 ∼= S3

Die Untergruppenstruktur von S3 ist wohlbekannt. Die Normalteiler (Normaluntergrup-
pen) sind genau

{1}, A3, S3,

wobei
A3 ∼= C3

die (einzige) nichttriviale echte Normaluntergruppe ist.
Wir wollen für diese drei NormalteilerN ⊴ G28 die assoziierten Quotienten-Galoissysteme

S28/N und die Indexformel
[G28 : N ] = [S28 : S28/N ]

konkret interpretieren.

38.3 Abstrakte Beschreibung der Zirkelmenge als S3-Torsor

Da S28 Galois ist und |G28| = |T (S28)| = 6 gilt, ist die Wirkung

G28 ↷ T (S28)

regulär. Das bedeutet: Für ein festes Zirkel t0 ∈ T (S28) induziert die Abbildung

Φt0 : G28 −→ T (S28), σ 7−→ σ · t0
einen Bijektion. Über diese Identifikation können wir T (S28) als linke Nebenklassengeome-
trie von S3 auffassen:

T (S28) ∼= S3

als S3-Torsor.
In dieser Sichtweise ist es besonders einfach, die Wirkung eines Normalteilers N ⊴ S3

auf T (S28) zu verstehen: Die N -Orbits entsprechen exakt den Linksnebenklassen S3/N .

38.4 Quotient S28/S3 (voller Normalteiler)

Sei zunächst N = S3 = G28. Dann ist die N -Wirkung auf T (S28) die volle Galoisgruppe
selbst. Da die Wirkung regulär ist, besteht die einzige S3-Bahn aus

|S3| = 6

Elementen. Das heißt:

T (S28)/S3 besteht aus genau einem Orbit.

Nach der allgemeinen Theorie:

• Das Quotienten-Galoissystem S28/S3 hat Zirkelmenge

T (S28/S3) ∼= T (S28)/S3,

also genau einen Zirkel.

• Die Galoisgruppe ist
Aut(S28/S3) ∼= G28/S3 ∼= {1};

es ist also das trivial symmetrische System.

Die Indexformel lautet hier konkret:

[G28 : S3] = |S3|
|S3|

= 1 = |T (S28/S3)| = [S28 : S28/S3].
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38.5 Quotient S28/{1} (trivialer Normalteiler)

Für N = {1} ist die N -Wirkung trivial, jeder Zirkel bildet einen Orbit für sich. Also

T (S28)/{1} ∼= T (S28),

und das Quotienten-System S28/{1} ist schlicht das ursprüngliche System:

S28/{1} = S28, Aut(S28/{1}) = G28.

Die Indexformel:

[G28 : {1}] = |G28| = 6 = |T (S28)| = [S28 : S28].

38.6 Quotient S28/A3 (nichttrivialer Normalteiler)

Interessant ist der echte Normalteiler

N = A3 ∼= C3.

Orbits auf der Zirkelmenge

Über die Identifikation T (S28) ∼= S3 werden die A3-Orbits genau zu den Linksnebenklassen
von A3 in S3:

T (S28)/A3 ∼= S3/A3.

Da
[S3 : A3] = 2,

gibt es genau zwei Orbits, jeder Orbit hat Größe |A3| = 3. Also

|T (S28)/A3| = 2.

Galoisgruppe des Quotienten

Nach der allgemeinen Proposition erhält G28/A3 eine kanonische Wirkung auf T (S28)/A3,
gegeben durch

(gA3) · (A3 · t) := A3 · (g · t).
Diese Wirkung ist regulär (frei und transitiv), und

G28/A3 ∼= S3/A3 ∼= C2.

Damit ist das Quotienten-Galoissystem

S28/A3

ein Galois-System mit

Aut(S28/A3) ∼= C2, |T (S28/A3)| = 2.

Indexformel für A3

Konkret:

[G28 : A3] = |S3|
|A3|

= 6
3 = 2 = |T (S28)/A3| = |T (S28/A3)| = [S28 : S28/A3].

Damit ist die allgemeine Indexformel

[G : N ] = [S : S/N ]

hier explizit nachvollzogen.
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38.7 Vergleich mit anderen Galois-Zahlen

Wir haben also für n = 28 drei Galois-Systeme über der gleichen Grundmenge D(28):

N ⊴ G28 Aut(S28/N) |T (S28/N)|
{1} S3 6
A3 C2 2
S3 {1} 1

Wichtig ist die Unterscheidung:

• Die Quotienten-Systeme S28/N entstehen intern aus S28 durch Identifikation von
Zirkeln modulo N .

• Sie haben alle dieselbe Grundmenge D(28), aber unterschiedliche Zirkelmengen und
Galoisgruppen.

• Es ist nicht automatisch garantiert, dass ein solches Quotienten-System S28/N als
Teilersummen-System einer anderen Zahl n auftritt.

Zum Beispiel gibt es aus deinen Daten mehrere Zahlen mit Gal(n) ∼= C2 und |T (Sn)| =
2, etwa n = 6, 18, 54, 162, . . .. Das Quotienten-System S28/A3 hat ebenfalls Aut(S28/A3) ∼=
C2 und zwei Zirkel. Ob eines dieser Systeme Sn tatsächlich isomorph zum Quotienten
S28/A3 ist, ist eine zusätzliche arithmetische Frage, die nicht allein aus der Gruppenstruk-
tur folgt. Hier müsste man die jeweiligen Bindungsgleichungen konkret vergleichen.

Zusammengefasst zeigt das Beispiel n = 28 sehr schön:

• Normalteiler von G28 ∼= S3 korrespondieren zu Galois-Quotienten S28/N .

• Die Indexformel [G28 : N ] = [S28 : S28/N ] gilt exakt in der Form

[G28 : N ] = |T (S28/N)|.

• Die „arithmetische“ Frage, ob jede Quotientengruppe G28/N wieder als Galois-
Gruppe einer Zahl n vorkommt (mit Sn ∼= S28/N), ist eine zusätzliche, offene Struk-
turfrage über die Klasse der Galois-Zahlen.

39 Klassische Unmöglichkeitsbeweise via Galois-Theorie und
ihre Analogie zu Galois-Zahlen

In diesem Abschnitt skizzieren wir einige der klassischen Unmöglichkeitsbeweise, die auf
Galois-Theorie basieren, und formulieren für jedes Beispiel eine mögliche Analogie im
Rahmen der Teilersummen-Galois-Zahlen n ∈ N mit Galois-Gruppe Gal(n) = Aut(Sn).

39.1 Abel–Ruffini: Allgemeine Gleichung 5. Grades nicht durch Radi-
kale lösbar

Galois-theoretische Kernidee. Für ein „generisches“ Polynom fünften Grades

f(x) = x5 + a4x
4 + · · ·+ a0 ∈ Q[x]
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ist die Galoisgruppe über Q isomorph zur vollen symmetrischen Gruppe

Gal(f) ∼= S5.

Die Gruppe S5 ist nicht auflösbar : Ihre einzige nichttriviale echte Normaluntergruppe ist
A5, und A5 ist eine einfache nichtabelsche Gruppe.

Ein grundlegender Satz der Galois-Theorie besagt:

f ist durch Radikale lösbar ⇐⇒ Gal(f) ist auflösbar.

Damit folgt: Für ein „allgemeines“ Polynom 5. Grades ist Gal(f) ∼= S5 nicht auflösbar,
also existiert keine Formel, die die Nullstellen von f allein mit endlich geschachtelten
Radikalen in den Koeffizienten ai ausdrückt.

Analogie für Galois-Zahlen. In unserem Setting ist Sn das durch Teilersummen de-
finierte Galois-System einer Zahl n, und

Gal(n) := Aut(Sn)

spielt die Rolle der klassischen Galoisgruppe.
Eine analoge Form von Unmöglichkeitsaussage wäre: Für bestimmte Zahlen n ist die

Gruppe Gal(n) strukturell „zu groß“ (z. B. enthält sie eine Kopie von Sk für großes k
oder eine nichtauflösbare Untergruppe), so dass Sn nicht durch eine endliche Anzahl von
„einfachen“ Bindungsgleichungen erklärbar ist. In Galois-Sprache:

„Teilersummen-lösbar“ ⇐⇒ Gal(n) besitzt eine bestimmte Auflösbarkeits- oder Gruppenstruktur.

Die analoge Unmöglichkeitsaussage wäre: Es gibt keine endliche Kombination von einfa-
chen Teilersummen-Operationen, die eine Zahl mit Galoisgruppe Sk (für großes k) voll-
ständig erfasst.

39.2 Verdoppelung des Würfels: 3
√

2 nicht konstruierbar

Galois-theoretische Kernidee. Das klassische Problem der Verdoppelung des Würfels
verlangt eine Konstruktion einer Strecke α mit

α3 = 2

mit Zirkel und Lineal. Algebraisch ist α eine Nullstelle des Polynoms x3−2, das irreduzibel
über Q ist (Eisenstein-Kriterium mit p = 2). Also

[Q( 3√2) : Q] = 3.

Zirkel-und-Lineal-konstruktible Zahlen gehören jedoch zu Erweiterungen, die durch
einen Turm von Quadraterweiterungen entstehen, d. h. ihr Erweiterungsgrad ist eine Po-
tenz von 2. Da 3 keine Potenz von 2 ist, kann 3√2 nicht konstruiert werden.

Galois-theoretisch betrachtet man den Galoisabschluss, dessen Galoisgruppe eine Grup-
pe der Ordnung 6 ist; der „2-Gruppen-Charakter“ fehlt.
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Analogie für Galois-Zahlen. Eine mögliche Analogie: Man definiert eine Klasse von
„elementaren Operationen“ auf Teilerstrukturen (z. B. nur Summen von zwei Teilern, nur
lokal symmetrische Muster) und betrachtet die Galois-Zahlen n, deren System Sn sich
durch einen Turm solcher „einfacher Erweiterungsschritte“ aufbauen lässt.

Eine Zahl n mit Galoisgruppe Gal(n), die eine Art „Grad-3-Effekt“ oder allgemein
einen Erweiterungsgrad besitzt, der nicht als Produkt von „2-artigen“ Schritten darstellbar
ist, wäre in dieser Analogie nicht aus dem vorgegebenen Operationenkalkül konstruierbar.
Die Galois-Idee ist hier: eine geeignete strukturelle Invariante (ähnlich einem Grad oder
einer Exponentenstruktur der Gruppe) passt nicht zu den zulässigen Operationen.

39.3 Dreiteilung des Winkels

Galois-theoretische Kernidee. Die Dreiteilung eines beliebigen Winkels (z. B. des
Winkels 60◦) ist im Allgemeinen mit Zirkel und Lineal unmöglich. Die Idee: Man betrachtet
den Winkel θ = 20◦ als Drittel von 60◦, setzt in die Identität

cos(3θ) = 4 cos3 θ − 3 cos θ

den Wert cos(60◦) = 1
2 ein und erhält eine Gleichung dritten Grades für x = cos(20◦).

Diese Gleichung ist über Q irreduzibel und damit

[Q(cos 20◦) : Q] = 3,

was wieder keine 2-Potenz ist. Also ist cos(20◦) nicht konstruierbar und ein konkretes
Beispiel für einen nicht dreiteilbaren Winkel.

Galois-theoretisch liegt dem zugrunde, dass der Galoisabschluss der entstehenden Er-
weiterung eine Galoisgruppe mit 3-Faktor besitzt und nicht zu einer reinen 2-Gruppe
degeneriert.

Analogie für Galois-Zahlen. Überträgt man dies auf Teilersummen-Galois-Systeme,
so könnten bestimmte „lokale“ Teilersummen-Operationen (z. B. Summen von zwei oder
drei Teilern) die Rolle der Zirkel-und-Lineal-Konstruktionen spielen.

Eine Zahl n mit Galoisgruppe Gal(n), in der Zykel oder Normalteiler vom Typ C3
eine zentrale Rolle spielen, wäre ein Kandidat für eine Struktur, deren vollständige Teiler-
Summen-Geometrie nicht nur auf „2-artigen“ Mustern (z. B. iterierten Paarbildungen)
beruht. Eine analoge Unmöglichkeitsaussage wäre dann: Es gibt keinen Weg, die komplette
Teilersummenstruktur von Sn allein durch lineare bzw. „quadratische“ Muster aufzubauen,
wenn Gal(n) bestimmte 3-Strukturen besitzt.

39.4 Konstruktibilität regulärer n-Ecke

Galois-theoretische Kernidee. Das Problem der Konstruktion regulärer n-Ecke führt
zu den Zyklotomie-Körpern Q(ζn), wobei ζn = e2πi/n eine primitive n-te Einheitswurzel
ist. Die Galoisgruppe dieser Erweiterung ist

Gal
(
Q(ζn)/Q

) ∼= (Z/nZ)×,

die Einheitengruppe modulo n.
Zirkel-und-Lineal-Konstruktibilität einer regulären n-Ecks verlangt, dass der relevan-

te Teil dieser Galoisgruppe eine 2-Gruppe ist. Das klassische Gauss–Wantzel-Kriterium
lautet:

reguläres n-Eck ist konstruierbar ⇐⇒ n = 2k · p1 · · · pr,
wobei pi verschiedene Fermat-Primzahlen sind.
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Analogie für Galois-Zahlen. Hier passt das Bild direkt: Jede Galois-Zahl n definiert
über ihr Teilersummen-System Sn eine Galoisgruppe Gal(n). Die Frage, ob Sn aus „ele-
mentaren Bindungen“ (bestimmten Grundrelationen) aufgebaut werden kann, wäre analog
zur Frage: Für welche n ist die zugehörige Galoisgruppe „2-artig“ strukturiert?

In dieser Sichtweise spielen die Galois-Zahlen die Rolle der n-Ecke, und ein „Konstruierbarkeits-
Kriterium“ für Galois-Zahlen wäre ein Satz der Form:

Sn ist mit einem gegebenen Grundkalkül erzeugbar ⇐⇒ Gal(n) hat eine bestimmte Gruppenstruktur

(z. B. ist eine 2-Gruppe, nilpotent, auflösbar, etc.).

39.5 Keine allgemeine Formel mit Radikalen für hohe Grade

Galois-theoretische Kernidee. Abgesehen von speziellen Ausnahmen gibt es für Grad
n ≥ 5 reichlich Polynome mit Galoisgruppen Sn oder An. Diese Gruppen sind für n ≥ 5
nicht auflösbar. Nach dem Kriterium „lösbar durch Radikale ⇔ Galoisgruppe auflösbar“
folgt:

• Es gibt keine allgemeine Radikalformel für Gleichungen 5. Grades und höher,

• und für jede konkrete nichtauflösbare Galoisgruppe G lassen sich Polynome mit
Gal(f) ∼= G finden, die nicht durch Radikale lösbar sind.

Analogie für Galois-Zahlen. Übertragen auf Galois-Zahlen: Für jede „große“ Gruppe
G (z. B. Sk mit k groß, oder Ak, oder andere einfache Gruppen) kann man versuchen,
Galois-Zahlen n mit Gal(n) ∼= G zu finden.

Ist G strukturell zu komplex (nicht auflösbar, keine passende Filtration usw.), ist es
naheliegend, dass es keine „einfache Formel“ in deinem Teilersummen-Kalkül gibt, die die
Struktur von Sn beschreibt.

Ein mögliches Programm lautet daher: Unmöglichkeit einer Elementarformel für alle
Galois-Zahlen. Ähnlich wie es keine allgemeine Radikalformel für alle Polynome höheren
Grades gibt, wäre eine global geschlossene Beschreibung aller Galois-Zahlen mit Teiler-
summenmittel schwer oder unmöglich.

39.6 Quadratur des Kreises

(Verwandte) Kernidee. Die Quadratur des Kreises, d. h. die Konstruktion eines Qua-
drats mit gleicher Fläche wie ein gegebener Kreis, erfordert eine Strecke proportional zu√
π. Zirkel-und-Lineal-Zahlen sind algebraisch über Q, während π transzendent ist (Satz

von Lindemann–Weierstraß). Also ist
√
π nicht konstruierbar.

Dies ist streng genommen kein Galois-Beweis (weil π nicht in einer endlichen algebrai-
schen Erweiterung liegt), folgt aber dem gleichen Muster: die benötigte Zahl liegt außerhalb
der gesamten Klasse der „erlaubten“ Erweiterungen.

Analogie für Galois-Zahlen. Auf höherem Niveau könnte man sich vorstellen, dass
es Galois-Zahlen oder allgemeinere zirkuläre Systeme gibt, deren Teilersummen-Struktur
nicht nur „nicht elementar“, sondern überhaupt nicht durch ein endliches algebraisches
Bindungssystem erfasst werden kann. Das wäre analog zu einer „transzendenten“ Galois-
Zahl: Jede endliche Familie von Teilersummenrelationen und jede endliche Gruppe Gal(n)
reicht nicht aus, um die volle Struktur zu beschreiben.
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Dies legt die Tür zu einer möglichen erweiterten Theorie offen, in der man über endliche
Gruppen und endliche Relationen hinausgeht (ähnlich wie die klassische Galois-Theorie
von Zahlkörpern zur Differential-Galois-Theorie und zu Galoisrepräsentationen generali-
siert wurde).

40 Wirkung der Galois-Gruppe auf der kleinsten Primpo-
tenzkette

In diesem Abschnitt sei n eine Galois-Zahl im Sinne des Teilersummen-Systems Sn, d. h.
das zugehörige k-zirkuläre System Sn ist Galois und wir schreiben

G := Gal(n) := Aut(Sn).

Wir betrachten nur die kleinste Primzahl, die n teilt, und die von ihr erzeugte Prim-
potenzkette im Teilerverband.

40.1 Setup: kleinste Primzahl und ihre Potenzen

Sei
n = pe1

1 p
e2
2 · · · p

er
r

die Primfaktorzerlegung von n mit

p1 < p2 < · · · < pr.

Wir setzen
p := p1, a := e1,

also ist p die kleinste Primzahl, die n teilt, und pa | n, pa+1 ∤ n.
Die zugehörige Primpotenzkette definieren wir als

Cp := {1, p, p2, . . . , pa} ⊆ D(n),

wobei 1 = p0 konventionsgemäß dazugehört.
Da jedes Automorphismus σ ∈ G = Aut(Sn) eine Bijektion

σ : D(n) −→ D(n)

ist, wirkt G natürlich auf der Teilmenge Cp. Diese Wirkung kann man als Permutations-
darstellung formulieren.

40.2 Die induzierte Darstellung auf Cp

Definition 40.1 (Induzierte p-Darstellung). Wir definieren den Einschränkungs-Homomorphismus

ρp : G −→ Sym(Cp), ρp(σ) := σ|Cp .

Das Bild
Gp := ρp(G) ⊆ Sym(Cp)

nennen wir die p-Komponente der Galois-Gruppe.
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Offensichtlich ist ρp ein Gruppenhomomorphismus; sein Kern ist die Untergruppe

ker(ρp) = {σ ∈ G | σ(x) = x für alle x ∈ Cp},

also die Automorphismen, die alle p-Potenzen fixieren.
Damit haben wir eine kurze exakte Sequenz

1 −→ ker(ρp) −→ G
ρp−−→ Gp −→ 1,

d. h. die p-Komponente Gp ist ein Quotient von G und beschreibt genau den Teil der
Galois-Symmetrie, der auf der Kette {1, p, . . . , pa} sichtbar ist.

40.3 Mögliche Fälle für die p-Wirkung

Damit ergeben sich für eine Galois-Zahl n drei prinzipielle Fälle:

1. Trivialer p-Anteil: ρp ist trivial, d. h. Gp = {1}. Dann fixiert jedes σ ∈ G alle
Elemente von Cp:

σ(x) = x für alle x ∈ {1, p, . . . , pa}.

Alle nichttrivialen Symmetrien (falls G nichttrivial ist) müssen dann auf anderen
Teilen von D(n) liegen (z. B. auf einer anderen Primkette oder auf „gemischten“
Teilern).

2. Nichttriviale, aber nicht treue p-Wirkung: ρp ist nichttrivial, hat aber einen
nichttrivialen Kern. Dann gibt es zwei Ebenen von Symmetrie:

• Gp wirkt als echte Permutationsgruppe auf Cp,
• zusätzlich gibt es Automorphismen in ker(ρp), die Cp fix lassen, aber andere

Teiler permutieren.

3. Treue p-Wirkung (idealer Galois-Fall): ρp ist injektiv, d. h. ker(ρp) = {1}. Dann
ist G isomorph zu einer Untergruppe von Sym(Cp), konkret:

G ∼= Gp ≤ Sym(Cp) ∼= Sa+1.

Das bedeutet: sobald man weiß, wie G die Kette {1, p, . . . , pa} permutiert, kennt
man bereits die ganze Galois-Gruppe.

40.4 Beobachtung bei bekannten Galois-Zahlen

In allen bisher explizit berechneten nichttrivialen Galois-Zahlen n (bis n ≤ 200) zeigt sich
folgendes Muster:

• p ist die kleinste Primzahl, die n teilt (in allen Beispielen p = 2).

• Die nichttriviale Symmetrie von Sn sitzt ausschließlich auf einem kleinen Block der
p-Potenzkette, typischerweise

B = {1, p, p2, . . . , pk−1}

für ein kleines k (z. B. k = 2 oder 3), während alle anderen Teiler fixiert werden.
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• Die induzierte Darstellung ρp : G→ Sym(Cp) ist in diesen Beispielen treu, und das
Bild Gp ist eine volle symmetrische Gruppe auf dem Block B, z. B.

Gp ∼= C2 (Ordnung 2) oder Gp ∼= S3 (Ordnung 6).

Typisches Beispiel (perfekte Zahl 28 = 22 · 7):

• p = 2, a = 2, C2 = {1, 2, 4}.

• Gal(28) ∼= S3 wirkt als volle symmetrische Gruppe auf {1, 2, 4}, während {7, 14, 28}
punktweise fixiert wird.

• Die Darstellung ρ2 ist treu und identifiziert G mit S3.

Ähnlich für 196 = 22 · 72 findet man wieder Gal(196) ∼= S3, das auf drei geeigneten
Teilerpositionen (morphologisch der 2-Kette) wirkt und den Rest fest lässt.

40.5 Interpretation: die kleinste Primzahl als Symmetrie-Träger

Die kleinste Primzahl p „sitzt am Rand“ des Teilerverbandes: alle anderen Teiler sind
mindestens so groß wie p, und die Kette {1, p, p2, . . . , pa} enthält fast immer die kleinsten
Elemente von D(n). Die meisten Teilersummen-Gleichungen, die in Sn auftreten, betriffen
genau diese kleinen Teiler (z. B. 1 + p = . . . , 1 + p2 = . . . , etc.).

Daraus ergibt sich das heuristische Bild:

Die Galois-Gruppe Gal(n) „riecht“ die Struktur von n hauptsächlich über die
kleinste Primfaktorkette {1, p, . . . , pa}. In vielen Beispielen reicht es, die indu-
zierte Darstellung ρp : Gal(n) → Sym(Cp) zu verstehen, um die volle Galois-
Gruppe zu rekonstruieren.

Formal ausgedrückt:

Conjecture 40.2 (Kleinste Primzahl als Träger der Galois-Symmetrie). Sei n eine Galois-
Zahl und p die kleinste Primzahl, die n teilt. Dann ist die eingeschränkte Darstellung

ρp : Gal(n) −→ Sym(Cp)

in allen nichttrivialen Fällen (d. h. |Gal(n)| > 1) treu, und ihr Bild Gp ist eine transitive
Untergruppe von Sym({1, p, . . . , pa}), oft sogar eine volle symmetrische Gruppe auf einem
geeigneten Teilblock dieser Kette.

In dieser Form kann man jede Galois-Zahl n zunächst über die Primfaktorzerlegung
analysieren, dann die kleinste Primkette Cp = {1, p, . . . , pa} betrachten und die Galois-
Gruppe über die Permutation dieser Kette rekonstruieren.

41 Vom Quotienten-Orbit zu n = 56 und der Gruppe Gal56 ∼=
C2

Wir betrachten das Beispiel n = 28 mit

28 = 22 · 7.
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Die zugehörige Teilersummen-Galois-Gruppe ist (rechnerisch und strukturell)

Gal28 ∼= S3,

wobei S3 genau die drei kleinsten Teiler {1, 2, 4} permutiert und {7, 14, 28} punktweise
fixiert.

Sei nun N ∼= C3 der eindeutige nichttriviale Normalteiler in Gal28, also die Untergruppe
der 3-Zykel auf {1, 2, 4}. Wir betrachten die N -Bahnen auf den Teilern:

B1 = {1, 2, 4}, B2 = {7, 14, 28}.

41.1 Orbit-GCDs und Konstruktion von n = 56
Wir wählen als Repräsentanten der Bahnen die jeweiligen ggT:

a := gcd(B1) = 1, b := gcd(B2) = 7.

Dann definieren wir:
a+ b = 1 + 7 = 8,

und setzen als zugehörige neue Zahl

n′ := lcm(a, b, a+ b) = lcm(1, 7, 8) = 56.

Wir untersuchen nun das zu n′ = 56 gehörige Teilersummen-System S56 und zeigen, dass

Gal56 ∼= C2.

41.2 Das Teilersummen-System von 56
Die positiven Teiler von 56 sind

D(56) = {1, 2, 4, 7, 8, 14, 28, 56}.

Nach deiner Definition sind die Bindungsgleichungen alle Gleichungen der Form

di1 + · · ·+ dij = dℓ,

wobei dit ∈ D(56) paarweise verschieden sind, j ≥ 2, und die Summe wieder ein Teiler
von 56 ist.

Für n = 56 erhält man genau die folgenden acht Gleichungen:

(1) 1 + 7 = 8,
(2) 1 + 2 + 4 = 7,
(3) 2 + 4 + 8 = 14,
(4) 1 + 2 + 4 + 7 = 14,
(5) 2 + 4 + 8 + 14 = 28,
(6) 1 + 2 + 4 + 7 + 14 = 28,
(7) 2 + 4 + 8 + 14 + 28 = 56,
(8) 1 + 2 + 4 + 7 + 14 + 28 = 56.

Das zugehörige System S56 ist das k-zirkuläre System (mit k = |D(56)| = 8), dessen
Zirkelmenge T (S56) genau aus den Tupeln (xd)d∈D(56) besteht, welche diese acht Gleichun-
gen erfüllen.
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Die Galois-Gruppe Gal56 := Aut(S56) besteht per Definition aus allen Bijektionen

σ : D(56)→ D(56),

die jede Bindungsgleichung auf eine wieder gültige Bindungsgleichung abbilden, also

di1 + · · ·+ dij = dℓ =⇒ σ(di1) + · · ·+ σ(dij ) = σ(dℓ).

41.3 Signatur-Argument: Wie oft kommt welcher Teiler vor?

Um Aut(S56) zu bestimmen, zählen wir für jeden Teiler d ∈ D(56),

• wie oft d auf der linken Seite einer Gleichung vorkommt,

• wie oft d auf der rechten Seite vorkommt,

• und nach welcher Länge der linken Seite (Anzahl der Summanden).

Wichtige Beobachtung:

• Alle Teiler haben eine eindeutige Signatur, außer 2 und 4, die genau dieselbe Statistik
besitzen.

• Das bedeutet: Jede Automorphismus σ ∈ Aut(S56) muss aufgrund der Struktur der
Gleichungsmenge {(1), . . . , (8)} zwingend

– 1, 7, 8, 14, 28, 56 jeweils fix lassen, und
– nur 2 und 4 dürfen untereinander vertauscht werden.

Formal: Die Signatur eines Teilers d ist ein rein kombinatorisches Invariant der Glei-
chungsmenge E56. Jede Permutation σ, die E56 auf sich abbildet, muss diese Signatur erhal-
ten. Damit ist die Menge der Fixpunkte der Automorphismengruppe genau {1, 7, 8, 14, 28, 56},
und {2, 4} bildet eine Bahn der Länge 2.

41.4 Explizite Beschreibung von Aut(S56)
Aus der obigen Diskussion folgt:

Aut(S56) ⊆ {id, τ},

wobei τ die Transposition

τ(2) = 4, τ(4) = 2, τ(d) = d für d ∈ {1, 7, 8, 14, 28, 56}

ist.
Zu zeigen bleibt, dass τ tatsächlich ein Automorphismus ist, d. h. alle Bindungsglei-

chungen erhält. Dies ist leicht nachzurechnen:

• Gleichung (1): 1 + 7 = 8.
Unter τ bleiben 1, 7, 8 fix:

τ(1) + τ(7) = 1 + 7 = 8 = τ(8).
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• Gleichung (2): 1 + 2 + 4 = 7.
Unter τ :

τ(1) + τ(2) + τ(4) = 1 + 4 + 2 = 7 = τ(7).

• Gleichung (3): 2 + 4 + 8 = 14.
Unter τ :

τ(2) + τ(4) + τ(8) = 4 + 2 + 8 = 14 = τ(14).

• Gleichung (4): 1 + 2 + 4 + 7 = 14.
Unter τ :

τ(1) + τ(2) + τ(4) + τ(7) = 1 + 4 + 2 + 7 = 14 = τ(14).

• Gleichung (5): 2 + 4 + 8 + 14 = 28.
Unter τ :

τ(2) + τ(4) + τ(8) + τ(14) = 4 + 2 + 8 + 14 = 28 = τ(28).

• Gleichung (6): 1 + 2 + 4 + 7 + 14 = 28.
Unter τ :

τ(1) + τ(2) + τ(4) + τ(7) + τ(14) = 1 + 4 + 2 + 7 + 14 = 28 = τ(28).

• Gleichung (7): 2 + 4 + 8 + 14 + 28 = 56.
Unter τ :

τ(2) + τ(4) + τ(8) + τ(14) + τ(28) = 4 + 2 + 8 + 14 + 28 = 56 = τ(56).

• Gleichung (8): 1 + 2 + 4 + 7 + 14 + 28 = 56.
Unter τ :

τ(1) + τ(2) + τ(4) + τ(7) + τ(14) + τ(28) = 1 + 4 + 2 + 7 + 14 + 28 = 56 = τ(56).

Also ist τ ∈ Aut(S56), und zusammen mit id erhält man

Aut(S56) = {id, τ}.

Proposition 41.1. Die Automorphismengruppe des Teilersummen-Systems S56 ist zy-
klisch von Ordnung 2:

Gal56 := Aut(S56) ∼= C2.

Beweis. Wie oben gezeigt, müssen alle Automorphismen die kombinatorische Signatur der
Teiler bezüglich der Gleichungsmenge {(1), . . . , (8)} erhalten. Dies erzwingt die Fixierung
von 1, 7, 8, 14, 28, 56 und erlaubt nur einen eventuellen Austausch von 2 und 4. Die Trans-
position τ = (2 4) ist tatsächlich ein Automorphismus. Damit ist

Aut(S56) = {id, τ}

eine Gruppe der Ordnung 2, also isomorph zu C2.

Dieses Beispiel illustriert, wie aus dem Normalteiler N ∼= C3 der Galois-Gruppe von
28 über den Orbit-GCD-Bau (Bahnen → Repräsentanten → neue Zahl 56) eine neue
Galois-Zahl mit Galois-Gruppe Gal56 ∼= C2 entsteht.
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42 Die Galois-Analyse der Zahl n = 196
Wir betrachten nun das Teilersummen-System S196 und zeigen, dass

Gal196 := Aut(S196) ∼= S3

mit einer S3-Wirkung auf den drei kleinsten Teilern. Anschließend diskutieren wir den
Quotienten nach dem Normalteiler C3 und den Bezug zu der Zahl 56.

42.1 Teiler und Bindungsgleichungen für 196
Die Primfaktorzerlegung von 196 lautet

196 = 142 = 22 · 72.

Die positiven Teiler von 196 sind

D(196) = {1, 2, 4, 7, 14, 28, 49, 98, 196}.

Wir indexieren wie üblich aufsteigend:

d1 = 1, d2 = 2, d3 = 4, d4 = 7, d5 = 14, d6 = 28, d7 = 49, d8 = 98, d9 = 196.

Die Bindungsgleichungen sind alle Gleichungen der Form

di1 + · · ·+ dij = dℓ, j ≥ 2,

mit paarweise verschiedenen Indizes i1, . . . , ij und rechter Seite wieder ein Teiler von 196.
Eine direkte Durchrechnung ergibt genau die folgenden neun Gleichungen:

(1) d1 + d2 + d3 = d4 ⇐⇒ 1 + 2 + 4 = 7,
(2) d4 + d5 + d6 = d7 ⇐⇒ 7 + 14 + 28 = 49,

(3) d1 + d2 + d3 + d4 = d5 ⇐⇒ 1 + 2 + 4 + 7 = 14,
(4) d4 + d5 + d6 + d7 = d8 ⇐⇒ 7 + 14 + 28 + 49 = 98,

(5) d1 + d2 + d3 + d4 + d5 = d6 ⇐⇒ 1 + 2 + 4 + 7 + 14 = 28,
(6) d1 + d2 + d3 + d5 + d6 = d7 ⇐⇒ 1 + 2 + 4 + 14 + 28 = 49,

(7) d4 + d5 + d6 + d7 + d8 = d9 ⇐⇒ 7 + 14 + 28 + 49 + 98 = 196,
(8) d1 + d2 + d3 + d5 + d6 + d7 = d8 ⇐⇒ 1 + 2 + 4 + 14 + 28 + 49 = 98,
(9) d1 + d2 + d3 + d5 + d6 + d7 + d8 = d9 ⇐⇒ 1 + 2 + 4 + 14 + 28 + 49 + 98 = 196.

Das zugehörige 9-zirkuläre System S196 hat Zirkelmenge T (S196) bestehend aus allen
Tupeln (x1, . . . , x9) ∈ D(196)9, welche die Gleichungen (1)–(9) erfüllen. Die Galois-Gruppe
Gal196 := Aut(S196) besteht aus allen Bijektionen σ : D(196) → D(196), die jede dieser
Gleichungen auf eine wiederum gültige Gleichung abbilden.

42.2 Signatur-Argument und die Form von Aut(S196)
Für jedes di können wir zählen:

• wie oft di als Summand auf der linken Seite einer Gleichung vorkommt,
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• wie oft di als rechte Seite vorkommt,

• und bei welchen Längen der linken Seite (also mit wie vielen Summanden) dies
geschieht.

Man erhält die folgenden „Signaturen“ (wir geben für jedes di an: (#LHS,#RHS, Längen-Liste links, Längen-Liste rechts)):

di Signatur
d1 = 1 (6, 0, (3, 4, 5, 5, 6, 7), ())
d2 = 2 (6, 0, (3, 4, 5, 5, 6, 7), ())
d3 = 4 (6, 0, (3, 4, 5, 5, 6, 7), ())
d4 = 7 (5, 1, (3, 4, 4, 5, 5), (3))
d5 = 14 (7, 1, (3, 4, 5, 5, 5, 6, 7), (4))
d6 = 28 (6, 1, (3, 4, 5, 5, 6, 7), (5))
d7 = 49 (4, 2, (4, 5, 6, 7), (3, 5))
d8 = 98 (2, 2, (5, 7), (4, 6))
d9 = 196 (0, 2, (), (5, 7))

Wesentliche Beobachtungen:

• Die drei kleinsten Teiler 1, 2, 4 haben exakt dieselbe Signatur.

• Jeder der übrigen Teiler 7, 14, 28, 49, 98, 196 hat eine eindeutig unterscheidbare Si-
gnatur.

Da jede σ ∈ Aut(S196) die Menge der Gleichungen (1)–(9) invariant lässt, muss sie
insbesondere die Signatur jedes Teilers erhalten. Damit gilt:

• σ darf {1, 2, 4} = {d1, d2, d3} beliebig unter sich permutieren,

• aber sie muss die Menge {7, 14, 28, 49, 98, 196} punktweise fixieren.

Also ist Aut(S196) eine Untergruppe von Sym(D(196)), welche {1, 2, 4} beliebig per-
mutiert und den Rest fest lässt. Insbesondere

Aut(S196) ⊆ {Permutationen von {1, 2, 4}} ∼= S3.

42.3 Die tatsächliche Galois-Gruppe: Gal196 ∼= S3

Nun zeigen wir, dass jede Permutation von {1, 2, 4} bei Fixierung der anderen Teiler in
der Tat ein Automorphismus von S196 ist.

Sei dazu π ∈ S3 eine Permutation von {d1, d2, d3} = {1, 2, 4}, und definiere

σπ(di) :=
{
π(di), i ∈ {1, 2, 3},
di, i ∈ {4, 5, 6, 7, 8, 9}.

Wir überprüfen, dass jede Gleichung (1)–(9) unter σπ erhalten bleibt. Entscheidend
ist:

• In allen Gleichungen (1)–(9) treten 1, 2, 4 nur in der Summe 1 + 2 + 4 bzw. als Teil
dieser Summe auf. Der Wert

1 + 2 + 4 = 7
bleibt unter jeder Permutation der Summanden invariant, da nur die Reihenfolge
der Summanden vertauscht wird. Formal:

σπ(1) + σπ(2) + σπ(4) = π(1) + π(2) + π(4) = 1 + 2 + 4 = 7.
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• In allen Gleichungen, in denen 7, 14, 28, 49, 98, 196 vorkommen, werden diese durch
σπ fixiert. Damit ändern sich die rechten Seiten und diejenigen Summanden, die
nicht zu {1, 2, 4} gehören, nicht.

Damit ist klar:

• Gleichung (1): 1 + 2 + 4 = 7 bleibt gültig, da die linke Seite nur permutiert wird,
rechte Seite ist fix.

• Gleichung (3): 1 + 2 + 4 + 7 = 14 bleibt gültig, da 1, 2, 4 permutiert werden, 7, 14 fix
bleiben.

• Gleichung (5): 1 + 2 + 4 + 7 + 14 = 28 bleibt gültig, ebenso (6), (8) und (9), aus
demselben Grund.

• Gleichungen (2), (4) und (7) enthalten 1, 2, 4 gar nicht; sie bleiben ohnehin unver-
ändert.

Also ist jede σπ ein Automorphismus von S196, und wir haben

S3 ⊆ Aut(S196) ⊆ S3.

Somit folgt Gleichheit:

Proposition 42.1. Für n = 196 ist die Galois-Gruppe des Teilersummen-Systems

Gal196 := Aut(S196) ∼= S3,

wobei S3 genau auf den drei kleinsten Teilern {1, 2, 4} wirkt und alle anderen Teiler fixiert.

42.4 Normalteiler C3 und Orbits auf den Teilern

In S3 gibt es den eindeutigen nichttrivialen Normalteiler

N ∼= C3,

die Untergruppe der 3-Zykel auf {1, 2, 4}, also

N = {id, (1 2 4), (1 4 2)}.

Wir betrachten die N -Bahnen auf der Teilermenge D(196). Es ergibt sich:

• Eine Bahn der Länge 3:
B1 = {1, 2, 4}.

• Sechs Bahnen der Länge 1 (Fixpunkte von N):

B2 = {7}, B3 = {14}, B4 = {28}, B5 = {49}, B6 = {98}, B7 = {196}.

Analog zu unserem Vorgehen bei n = 28 können wir die Orbit-gcds gcd(Bi) betrachten:

gcd(B1) = 1, gcd(B2) = 7, gcd(B3) = 14, gcd(B4) = 28, gcd(B5) = 49, gcd(B6) = 98, gcd(B7) = 196.

Insbesondere ist der ggT der gesamten „Restwolke“

Brest := B2 ∪ · · · ∪B7 = {7, 14, 28, 49, 98, 196}
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gleich
gcd(Brest) = 7.

Damit ergibt sich wieder auf natürliche Weise das Paar

a := gcd(B1) = 1, b := gcd(Brest) = 7,

und wir können – ganz wie im Fall n = 28 – den „reduzierten“ Parameter

a+ b = 1 + 7 = 8

und die daraus gebaute Zahl

n′ := lcm(a, b, a+ b) = lcm(1, 7, 8) = 56

betrachten.

Remark 42.2. In einer früheren Analyse wurde bereits gezeigt, dass Gal56 ∼= C2 gilt.
Zusammen mit Gal196 ∼= S3 und N ∼= C3 erhält man also ein Bild

Gal196 /N ∼= S3/C3 ∼= C2 ∼= Gal56,

so dass 56 als sehr natürlicher „Quotienten-Kandidat“ zur Galois-Zahl 196 erscheint, im
Sinne einer Faktor-Galoisgruppe.

43 Ein σ-basiertes Galois-System zu einer Zahl n

In diesem Abschnitt fixieren wir eine natürliche Zahl n ≥ 2 und konstruieren aus der
arithmetischen Struktur von n ein endliches Galois-System, dessen Galois-Gruppe als Au-
tomorphismengruppe eines gerichteten Graphen auf den Primteilern von n beschrieben
wird.

43.1 Die σ-Relation auf Primteilern

Sei σ die übliche Summe-der-Teiler-Funktion und vp(n) die p-adische Bewertung von n.
Dann gilt für jedes pe ∥ n:

σ(pe) = 1 + p+ · · ·+ pe = pe+1 − 1
p− 1 .

Sei n mit Primfaktorzerlegung

n =
∏
p|n
pep , ep := vp(n) ≥ 1.

Wir definieren auf der endlichen Menge der Primteiler

P (n) := { p ∈ P | p | n }

eine gerichtete Relation:

Definition 43.1 (σ-Relation p→ q). Für Primzahlen p, q | n setzen wir

p→ q :⇐⇒ qeq | σ
(
pep
)
.

Äquivalent:
p→ q ⇐⇒ vq

(
σ(pep)

)
≥ eq.
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Intuitiv bedeutet p→ q: Der einzelne „Primblock“ pep trägt in seinem σ-Wert bereits
mindestens die volle q-Potenz von n; er „erzeugt“ also qeq im Sinne der σ-Arithmetik.

Example 43.2 (Gerade perfekte Zahl vom Euklid–Euler-Typ). Ist n = 2p−1 (2p− 1) eine
gerade perfekte Zahl, so schreiben wir q := 2p − 1 (Mersenne-Primzahl) und e2 = p − 1,
eq = 1. Dann gilt

σ(2p−1) = 2p − 1 = q, σ(q1) = q + 1 = 2p.

Damit
2→ q, q → 2,

d. h. die beiden Primteiler 2 und q bilden einen stark gekoppelten Zwei-Zyklus bezüglich
der Relation →.

43.2 Der σ-Graph Γ(n)
Definition 43.3 (σ-Graph Γ(n)). Wir definieren den gerichteten Graphen

Γ(n) :=
(
P (n), Rn

)
,

wobei
Rn := { (p, q) ∈ P (n)× P (n) | p→ q }

die Menge aller gerichteten Kanten ist.

Die (gerichtete) Automorphismengruppe dieses Graphen sei

Gn := Aut(Γ(n)),

d. h. die Gruppe aller Bijektionen σ : P (n)→ P (n), die die Relation Rn erhalten:

(p, q) ∈ Rn ⇐⇒
(
σ(p), σ(q)

)
∈ Rn für alle p, q ∈ P (n).

43.3 Das zirkuläre System Sσ
n

Wir fixieren eine beliebige, aber feste Ordnung der Primteiler von n, z. B.

P (n) = {p1, . . . , pk} mit p1 < · · · < pk.

Diese Ordnung fassen wir als Basistupel

α := (p1, . . . , pk) ∈ P (n)k

auf.

Definition 43.4 (Zirkelmenge T (Sσn)). Ein Tupel (x1, . . . , xk) ∈ P (n)k heißt Zirkel, wenn

1. die Einträge paarweise verschieden sind, d. h. {x1, . . . , xk} = P (n) (Permutation der
Primteiler), und

2. die →-Struktur durch Umbenennung erhalten bleibt: Für alle 1 ≤ i, j ≤ k gilt

pi → pj ⇐⇒ xi → xj .

Die Menge aller solchen k-Tupel nennen wir die Zirkelmenge

T (Sσn) :=
{

(x1, . . . , xk) ∈ P (n)k | (x1, . . . , xk) ist Zirkel
}
.
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Offensichtlich ist jedes (x1, . . . , xk) ∈ T (Sσn) von der Form

(x1, . . . , xk) = σ · α :=
(
σ(p1), . . . , σ(pk)

)
für ein eindeutiges σ ∈ Gn = Aut(Γ(n)). Es gilt also

T (Sσn) = {σ · α | σ ∈ Gn }.

Definition 43.5 (Das σ-Galois-System Sσn). Das σ-zirkuläre System zu n ist das Tupel

Sσn :=
(
P (n), (fi)1≤i≤k

)
,

wobei die Rekonstruktionsfunktionen fi partiell so definiert werden:

fi(x1, . . . , x̂i, . . . , xk) := xi

für alle (x1, . . . , xk) ∈ T (Sσn), und auf Tupeln außerhalb von T (Sσn) undefiniert bleiben.
Damit ist Sσn ein k-zirkuläres System mit Zirkelmenge T (Sσn).

43.4 Galois-Gruppe und Torsorstruktur

Sei Aut(Sσn) die Automorphismengruppe des zirkulären Systems im üblichen Sinn: Bijek-
tionen τ : P (n)→ P (n), die alle Rekonstruktionsfunktionen fi und damit die Zirkelmenge
T (Sσn) invariant lassen.

Lemma 43.6. Für das System Sσn gilt

Aut(Sσn) = Aut(Γ(n)) = Gn.

Beweis. Eine Bijektion τ : P (n) → P (n) ist genau dann ein Automorphismus von Sσn ,
wenn sie Zirkel auf Zirkel abbildet, d. h.

∀(x1, . . . , xk) ∈ T (Sσn) :
(
τ(x1), . . . , τ(xk)

)
∈ T (Sσn).

Dies ist äquivalent dazu, dass τ die →-Relation erhält, also ein Automorphismus des
Graphen Γ(n) ist.

Damit wirkt die Gruppe Gn kanonisch auf T (Sσn) durch

Gn × T (Sσn)→ T (Sσn), (τ, (x1, . . . , xk)) 7→
(
τ(x1), . . . , τ(xk)

)
.

Proposition 43.7 (Torsor-Eigenschaft). Die Wirkung von Gn auf T (Sσn) ist regulär (frei
und transitiv). Insbesondere ist T (Sσn) ein Gn-Torsor, und es gilt

|T (Sσn)| = |Gn|.

Beweis. Wie oben bemerkt, ist

T (Sσn) = {σ · α | σ ∈ Gn }

mit festem Basiszirkel α = (p1, . . . , pk).

• Transitivität: Für zwei Zirkel σ1 ·α und σ2 ·α wählt man τ = σ2σ
−1
1 ∈ Gn und erhält

τ · (σ1 · α) = σ2 · α.
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• Freiheit: Fixiere σ ∈ Gn mit σ · (τ · α) = τ · α für irgendein τ ∈ Gn. Dann gilt

(τ−1στ) · α = α.

Da nur die Identität den Basiszirkel α fixiert, folgt τ−1στ = id, also σ = id.

Somit ist die Wirkung frei und transitiv, also regulär. Die Torsor-Eigenschaft impliziert
|T (Sσn)| = |Gn|.

In diesem Sinne ist Sσn immer ein Galois-System: die Zirkelmenge T (Sσn) ist (nicht
kanonisch) mit der Galois-Gruppe Gn = Aut(Γ(n)) isomorph und trägt eine natürliche
Torsorstruktur unter dieser Gruppe.

44 Hauptsatz der Galois-zirkulären Systeme im Primgraph-
Fall

Wir betrachten eine feste natürliche Zahl n und ihre Primteiler

P (n) := {p1, . . . , pk}.

Für jeden Primteiler p | n sei ep := vp(n) der Exponent in der Primfaktorzerlegung von n.

44.1 Der Primgraph Γ(n) und das Galois-System Sn

Wir definieren eine Relation auf P (n) durch

p→ q :⇐⇒ q eq | σ
(
pep
)
,

wobei σ(pep) = 1 + p+ · · ·+ pep die klassische Teilersummen-Funktion auf dem Primblock
ist.

Definition 44.1 (Primgraph Γ(n)). Der zu n gehörige Primgraph ist der gerichtete Graph

Γ(n) :=
(
P (n), Rn

)
,

wobei
Rn := {(p, q) ∈ P (n)× P (n) | p→ q}.

Definition 44.2 (Galois-zirkuläres System Sn). Wir definieren das k-zirkuläre System Sn
wie folgt:

• Grundmenge: X := P (n).

• Fixiere eine Referenzanordnung α := (p1, . . . , pk) ∈ Xk.

• Zirkelmenge: Ein Tupel x = (x1, . . . , xk) ∈ Xk ist Zirkel, wenn

1. die xi paarweise verschieden sind (also eine Permutation von P (n)), und
2. die Relation → strukturerhaltend ist, d. h.

pi → pj ⇐⇒ xi → xj für alle 1 ≤ i, j ≤ k.

Äquivalent: Es gibt eine Permutation σ ∈ Sym(P (n)) mit x = σ · α und σ ist ein
Graphautomorphismus von Γ(n). Wir schreiben

T (Sn) = {σ · α | σ ∈ Aut(Γ(n)) }.
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• Die Rekonstruktionsfunktionen fi werden wie üblich so definiert, daß sie auf jedem
Zirkel den fehlenden Eintrag rekonstruieren (außerhalb von T (Sn) bleiben sie unde-
finiert).

Die Automorphismengruppe von Sn ist dann

Gal(n) := Aut(Sn) = Aut(Γ(n)).

Proposition 44.3 (Torsor-Eigenschaft). Die natürliche Wirkung von Gal(n) auf der Zir-
kelmenge T (Sn), gegeben durch

Gal(n)× T (Sn)→ T (Sn), (τ, (x1, . . . , xk)) 7→ (τ(x1), . . . , τ(xk)),

ist frei und transitiv. Insbesondere ist

|T (Sn)| = |Gal(n)|

und T (Sn) ist ein Gal(n)-Torsor.

Beweis. Jeder Zirkel ist per Definition von der Form σ · α mit σ ∈ Aut(Γ(n)) = Gal(n),
also ist die Wirkung transitiv: Zu σ1α, σ2α ∈ T (Sn) verbindet τ := σ2σ

−1
1 beide durch

τ · (σ1α) = σ2α.
Freiheit: Fixiere einen Zirkel σα. Wenn τ ∈ Gal(n) diesen Zirkel fixiert, d. h. τσα = σα,

so folgt σ−1τσα = α. Da eine Permutation, die α unverändert lässt, die Identität ist, folgt
σ−1τσ = id und damit τ = id.

Damit ist (Sn, T (Sn),Gal(n)) im Sinn unserer allgemeinen Theorie ein Galois-System.

44.2 Hauptsatz im Primgraph-Fall

Nach dem allgemeinen Hauptsatz der Galois-zirkulären Systeme gibt es eine antitone
Galois-Verbindung zwischen

• Galois-geschlossenen zirkulären Untersystemen S′ ⪯ Sn (auf derselben Grundmenge
P (n)), und

• Galois-geschlossenen Untergruppen H ⊆ Gal(n).

Im speziellen Primgraph-Fall kann man das konkret so formulieren:
Theorem 44.4 (Hauptsatz für den Primgraph Γ(n)). Sei n ∈ N und G := Gal(n) =
Aut(Γ(n)). Dann gilt:

1. Zu jeder Untergruppe H ⊆ G gehört eine kanonische Partition der Primteiler

P (n) =
⊔
i∈I

Bi,

wobei Bi die Bahnen (Orbits) der H-Wirkung auf P (n) sind.
Aus dieser Partition erhält man einen Quotienten-Primgraphen

Γ(n)/H :=
(
P (n)/H, Rn/H

)
,

dessen Knoten die Blöcke Bi sind und in dem ein Pfeil [Bi] → [Bj ] existiert, wenn
es (äquivalenterweise) für ein (damit für alle) p ∈ Bi und q ∈ Bj einen Pfeil p→ q
in Γ(n) gibt.
Der Quotient-Graph Γ(n)/H definiert wiederum ein k′-zirkuläres System Sn,H mit
Grundmenge XH := P (n)/H und Zirkelmenge T (Sn,H). Wir nennen Sn,H das zu
H gehörige Galois-Untersystem.
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2. Ist H ein Normalteiler von G, also H ⊴ G, dann wirkt die Faktorgruppe

G/H

natürlich als Automorphismengruppe auf Γ(n)/H, und man erhält einen kanonischen
Isomorphismus

Aut
(
Γ(n)/H

) ∼= G/H.

Damit ist Sn,H ein Galois-System mit Galois-Gruppe G/H und Zirkelmenge T (Sn,H),
so dass |T (Sn,H)| = |G/H| gilt.

3. Umgekehrt: Jedes Galois-geschlossene zirkuläre Untersystem S′ ⪯ Sn entsteht auf
diese Weise aus einer eindeutig bestimmten Galois-geschlossenen Untergruppe H =
Aut(S′) ⊆ G.

4. Für Galois-geschlossene Untergruppen H gilt die Indexgleichung

[G : H] = |T (Sn)|
|T (Sn,H)| ,

d. h. der Index von H in G misst genau, wie viele Zirkel man „verliert“, wenn man
vom vollen System Sn zum Quotientensystem Sn,H hinuntergeht.

Remark 44.5. Anschaulich bedeutet der Hauptsatz in diesem Spezialfall:

• Untergruppen H ⊆ Gal(n) entsprechen genau den Möglichkeiten, Primteiler von n
zu Blöcken zusammen zu fassen, die unter H nicht mehr unterscheidbar sind.

• Normale Untergruppen H ⊴ Gal(n) entsprechen echten Galois-Quotienten: man
„moddet“ interne Symmetrien innerhalb der Blöcke aus und erhält eine neue Galois-
Gruppe Gal(n)/H, die auf einem gröberen Primgraphen operiert.

• Die Indexformel [G : H] = |T (Sn)|/|T (Sn,H)| ist die exakte Analogie zur klassischen
Gradformel [L : K] = |Gal(L/K)| und ihren Zwischenkörpern in der Feldgaloistheo-
rie.

45 Das arithmetisch angereicherte σ-System Sarith
n

In diesem Abschnitt verfeinern wir das zuvor definierte σ-System zu einer Zahl n ≥ 2,
indem wir nicht nur die Relation p → q, sondern die vollständigen p-lokalen σ-Daten
arithmetisch kodieren. Wir erhalten damit ein neues zirkuläres System Sarith

n , das wieder
ein Galois-zirkuläres System (Torsor) ist, und in dem die Perfektheit von n durch eine
Galois-invariante Bedingung beschrieben werden kann.

45.1 Lokale σ-Daten als relationale Struktur

Sei n ∈ N, n ≥ 2, mit Primfaktorzerlegung

n =
∏
p|n
pep , ep := vp(n) ≥ 1.

Wir betrachten wie zuvor die Menge der Primteiler

P (n) := { p ∈ P | p | n },
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und die auf P (n) definierte Relation

p→ q :⇐⇒ qeq | σ
(
pep
)
,

wobei σ(pep) = 1 + p+ · · ·+ pep die klassische Teilersummenfunktion auf dem Primblock
ist.

Um mehr als nur diese Teilbarkeitsinformation zu erfassen, fixieren wir zunächst die
Menge aller Primteiler von 2n:

R := P (2n) = P (n) ∪ {2}.

Für jeden Primteiler p | n und jedes r ∈ R definieren wir den σ-Typ von p in Richtung r
durch

ap,r := vr
(
σ(pep)

)
∈ N.

Äquivalent können wir den gesamten σ-Typ von p als

F (p) :=
(
ap,r

)
r∈R =

(
vr(σ(pep))

)
r∈R ∈ NR

auffassen.
Diese Daten kodieren wir als endliche relationale Struktur, indem wir für jedes r ∈ R

und jede tatsächlich vorkommende Zahl m ∈ N ein einstellige Relation (Unar-Predicate)
definieren:

Ur,m :=
{
p ∈ P (n) | vr(σ(pep)) = m

}
.

Definition 45.1 (Arithmetisch angereicherte Struktur Mσ
n). Die arithmetisch angerei-

cherte σ-Struktur zu n ist

Mσ
n :=

(
P (n), →, (Ur,m)r∈R, m∈N

)
.

Die zugehörige Automorphismengruppe sei

Garith
n := Aut(Mσ

n).

Das sind genau die Bijektionen σ : P (n)→ P (n), die sowohl die Relation → als auch alle
Unar-Predicate Ur,m erhalten.

Intuitiv trägt jede Primzahl p | n jetzt eine endliche „Farb-Signatur“

p 7→ F (p) =
(
vr(σ(pep))

)
r∈R,

und Garith
n ist die Gruppe aller Permutationen der Primteiler, welche Pfeilstruktur und

σ-Typen respektieren.

45.2 Definition des zirkulären Systems Sarith
n

Wir konstruieren nun aus Mσ
n ein zirkuläres System genau in der Weise, wie zuvor aus

dem Primgraphen Γ(n).

Definition 45.2 (Zirkuläres System Sarith
n ). Wir setzen

X := P (n), k := |P (n)|.

Fixiere eine Referenzanordnung der Primteiler

α := (p1, . . . , pk) ∈ Xk.

Ein Tupel x = (x1, . . . , xk) ∈ Xk heißt arithmetischer Zirkel, wenn
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1. die Einträge eine Permutation der Primteiler bilden:

{x1, . . . , xk} = P (n),

2. die komplette Struktur Mσ
n durch Umbenennung erhalten bleibt, d. h. für alle 1 ≤

i, j ≤ k, alle r ∈ R und alle m ∈ N gilt

pi → pj ⇐⇒ xi → xj ,

sowie
pi ∈ Ur,m ⇐⇒ xi ∈ Ur,m.

Die Menge aller solcher Tupel sei

T (Sarith
n ) :=

{
x ∈ Xk | x ist arithmetischer Zirkel

}
.

Äquivalent ist jedes x ∈ T (Sarith
n ) von der Form

x = σ · α :=
(
σ(p1), . . . , σ(pk)

)
für ein eindeutiges σ ∈ Garith

n = Aut(Mσ
n), und es gilt

T (Sarith
n ) =

{
σ · α | σ ∈ Garith

n

}
.

Die Rekonstruktionsfunktionen fi : Xk−1 ⇀ X definieren wir partiell durch

fi(x1, . . . , x̂i, . . . , xk) := xi

für alle (x1, . . . , xk) ∈ T (Sarith
n ) und lassen sie außerhalb von T (Sarith

n ) undefiniert. Damit
ist

Sarith
n :=

(
X, (fi)1≤i≤k

)
ein k-zirkuläres System mit Zirkelmenge T (Sarith

n ).

45.3 Galois-Gruppe und Torsorstruktur von Sarith
n

Wir betrachten die Automorphismengruppe des zirkulären Systems im üblichen Sinn:

Aut(Sarith
n ) :=

{
τ : X → X | τ bijektiv und erhält alle fi

}
.

Lemma 45.3. Für das arithmetische System Sarith
n gilt

Aut(Sarith
n ) = Aut(Mσ

n) = Garith
n .

Beweis. (i) Jede Struktur-Automorphismus ist System-Automorphismus. Sei τ ∈ Garith
n =

Aut(Mσ
n). Dann erhält τ per Definition alle Relationen der StrukturMσ

n, also insbesondere
Pfeile und Farben. Damit gilt: Ist x = (x1, . . . , xk) ein arithmetischer Zirkel, so ist auch

τ(x) :=
(
τ(x1), . . . , τ(xk)

)
wieder ein arithmetischer Zirkel. Folglich wird die Zirkelmenge T (Sarith

n ) unter τ permu-
tiert.

Da die Rekonstruktionsfunktionen fi auf Zirkeln nur „den fehlenden Eintrag“ zurück-
geben, und τ Zirkeln auf Zirkel abbildet, gilt

τ ◦ fi = fi ◦ τ

143



auf ihrem Definitionsbereich. Also ist τ ∈ Aut(Sarith
n ) und somit Garith

n ⊆ Aut(Sarith
n ).

(ii) Jeder System-Automorphismus ist Struktur-Automorphismus. Sei umgekehrt τ ∈
Aut(Sarith

n ). Dann gilt: Für jeden Zirkel x ∈ T (Sarith
n ) ist auch τ(x) wieder Zirkel. Insbe-

sondere ist die Menge
T (Sarith

n ) = {σ · α | σ ∈ Garith
n }

unter τ invariant.
Die Definition der Zirkelmenge T (Sarith

n ) stellt genau die Eigenschaft „ist Bild des Ba-
siszirkels α unter einem Struktur-Automorphismus vonMσ

n“ dar. Wenn τ Zirkel auf Zirkel
abbildet, erhält sie damit alle Relationen, die zur Definition von T (Sarith

n ) verwendet wer-
den, also die Relation→ und alle Unar-Predicate Ur,m. Folglich ist τ ein Automorphismus
von Mσ

n, d.h. τ ∈ Garith
n .

Damit ist Aut(Sarith
n ) ⊆ Garith

n gezeigt, und insgesamt folgt

Aut(Sarith
n ) = Garith

n .

Die Gruppe Garith
n wirkt kanonisch auf der Zirkelmenge T (Sarith

n ) durch

Garith
n × T (Sarith

n )→ T (Sarith
n ), (τ, (x1, . . . , xk)) 7→ (τ(x1), . . . , τ(xk)).

Proposition 45.4 (Torsor-Eigenschaft von Sarith
n ). Die Wirkung von Garith

n auf T (Sarith
n )

ist frei und transitiv. Insbesondere ist T (Sarith
n ) ein Garith

n -Torsor, und es gilt

|T (Sarith
n )| = |Garith

n |.

Beweis. Wie oben bemerkt, ist

T (Sarith
n ) = {σ · α | σ ∈ Garith

n },

wobei α = (p1, . . . , pk) der fixe Basiszirkel ist.
Transitivität: Seien σ1 · α und σ2 · α zwei Elemente aus T (Sarith

n ). Mit

τ := σ2σ
−1
1 ∈ Garith

n

gilt
τ · (σ1 · α) = (τσ1) · α = σ2 · α,

also ist die Wirkung transitiv.
Freiheit: Sei σ ∈ Garith

n und τ ∈ Garith
n mit

σ · (τ · α) = τ · α.

Dann folgt
(τ−1στ) · α = α.

Die einzige Permutation von P (n), die den Basiszirkel α fixiert, ist die Identität, also
τ−1στ = id und damit σ = id. Somit hat nur die Identität einen Fixpunkt in T (Sarith

n );
die Wirkung ist frei.

Damit ist die Wirkung frei und transitiv, also regulär. Dies impliziert die Torsor-
Eigenschaft und die Gleichung |T (Sarith

n )| = |Garith
n |.

In diesem Sinn ist Sarith
n ein Galois-zirkuläres System: Die Zirkelmenge T (Sarith

n ) ist
(nicht kanonisch) mit der Galois-Gruppe Garith

n isomorph und trägt eine natürliche Tor-
sorstruktur unter dieser Gruppe.
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45.4 Perfekte Zahlen und die Galois-Gruppe Garith
n

Die globale Perfektheitsbedingung für n lautet

σ(n) = 2n.

Auf der Ebene von Primfaktorbewertungen bedeutet dies: Für jede Primzahl r ∈ R =
P (2n) gilt

vr
(
σ(n)

)
= vr(2n) = er + δr,2,

wobei er := vr(n) für r | n und er := 0 sonst, sowie δr,2 das Kronecker-Delta ist.
Andererseits ist

σ(n) =
∏
p|n
σ(pep),

also
vr
(
σ(n)

)
=
∑
p|n

vr
(
σ(pep)

)
=

∑
p∈P (n)

ap,r.

Damit ist n genau dann perfekt, wenn für alle r ∈ R gilt:∑
p∈P (n)

ap,r = er + δr,2. (∗)

Die Zahlen ap,r sind vollständig in der Struktur Mσ
n kodiert, denn

ap,r = m ⇐⇒ p ∈ Ur,m.

Damit ist die gesamte Matrix (ap,r)p∈P (n), r∈R ein isomorphieinvariantes Objekt von Mσ
n,

also invariant unter der Galois-Gruppe Garith
n .

Die Wirkung von Garith
n auf P (n) liefert eine Zerlegung in Bahnen

P (n) =
⊔
i∈I

Bi,

wobei die Bi die Orbits der Garith
n -Wirkung sind. Da ap,r durch die Prädikate Ur,m definiert

ist und diese unter Garith
n invariant sind, ist für festes r ∈ R die Abbildung

P (n)→ N, p 7→ ap,r

Garith
n -invariant, also auf jeder Bahn Bi konstant. Wir können daher für jedes i ∈ I und

jedes r ∈ R eine Zahl Ai,r ∈ N so definieren, dass

ap,r = Ai,r für alle p ∈ Bi.

Damit lässt sich die Perfektheitsgleichung (∗) gruppentheoretisch umschreiben als∑
p∈P (n)

ap,r =
∑
i∈I

∑
p∈Bi

Ai,r =
∑
i∈I
|Bi| ·Ai,r = er + δr,2 für alle r ∈ R.

Theorem 45.5 (Perfektheit als Galois-invariante Bedingung). Sei n ∈ N, n ≥ 2, und
Garith
n die Galois-Gruppe des arithmetischen Systems Sarith

n , mit Bahnen P (n) = ⊔
i∈I Bi.

Für jedes i ∈ I und r ∈ R = P (2n) sei Ai,r ∈ N durch

Ai,r := ap,r = vr
(
σ(pep)

)
für ein (damit jedes) p ∈ Bi

definiert. Dann sind äquivalent:
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1. n ist eine perfekte Zahl, d. h. σ(n) = 2n.

2. Für alle r ∈ R gilt die Galois-invariante Gleichung∑
i∈I
|Bi| ·Ai,r = er + δr,2.

In diesem Sinn wird Perfektheit durch die Größen der Garith
n -Bahnen und die zugehörigen

Galois-invarianten σ-Typen beschrieben.

Remark 45.6. Die abstrakte Gruppenisomorphieklasse von Garith
n allein reicht im allge-

meinen nicht aus, um perfekte Zahlen zu charakterisieren; notwendig ist die Information,
wie die Gruppe auf P (n) wirkt und welche σ-Typen F (p) auf den Bahnen realisiert wer-
den. Im arithmetisch angereicherten System Sarith

n ist Perfektheit jedoch eine rein Galois-
invariante Eigenschaft: sie lässt sich vollständig durch die Garith

n -Orbitstruktur von P (n)
und die Galois-invarianten Label Ai,r formulieren.

46 Ein van-der-Pol-zirkuläres System zu einer Zahl n

In diesem Abschnitt vergessen wir die Primgraph-Struktur und bauen stattdessen für jede
natürliche Zahl n > 1 ein zirkuläres System auf Basis der Touchard/van-der-Pol-Gleichung
für die Teilersummenfunktion σ. Dabei stellt sich heraus, dass dieses System wieder ein
Galois-zirkuläres System (Torsor) ist und dass Perfektheit von n als Galois-invariante
arithmetische Bedingung an diesem System formuliert werden kann.

46.1 Die van-der-Pol-Gleichung

Für n > 1 gilt nach Touchard/van der Pol die Identität

n2(n− 1) = 6
σ(n)

n−1∑
k=1

(3n2 − 10k2)σ(k)σ(n− k),

siehe etwa die Darstellung in [1]. Äquivalent:

n2(n− 1)σ(n) = 6
n−1∑
k=1

(3n2 − 10k2)σ(k)σ(n− k).

Wir fassen die einzelnen Summanden als „lokale Beiträge“ zusammen.

Definition 46.1 (van-der-Pol-Gewichte). Für festes n > 1 definieren wir für k = 1, . . . , n−
1 das van-der-Pol-Gewicht

wn(k) := (3n2 − 10k2)σ(k)σ(n− k) ∈ Z.

Die Gesamtsumme

An :=
n−1∑
k=1

wn(k)

heißt die van-der-Pol-Summe von n.

Mit dieser Notation lautet die Touchard/van-der-Pol-Gleichung kurz

n2(n− 1)σ(n) = 6An. (3)
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46.2 Die van-der-Pol-Struktur Mvdp
n

Wir wollen die Struktur der Summanden wn(k) als endliche relationale Struktur erfassen.
Dazu betrachten wir die endliche Menge

Xn := {1, 2, . . . , n− 1}.

Da jedes k ∈ Xn einen ganzzahligen Wert wn(k) trägt, können wir diese Information
durch unäre Prädikate kodieren:

Definition 46.2 (van-der-Pol-Struktur). Für jedes m ∈ Z setzen wir

Wm := { k ∈ Xn | wn(k) = m }.

Die van-der-Pol-Struktur zu n ist die endliche relationale Struktur

Mvdp
n :=

(
Xn, (Wm)m∈Z

)
.

Die zugehörige Automorphismengruppe sei

Gvdp
n := Aut(Mvdp

n ),

also die Gruppe aller Bijektionen σ : Xn → Xn, die jedes Prädikat Wm erhalten, d. h.

k ∈Wm ⇐⇒ σ(k) ∈Wm für alle k ∈ Xn, m ∈ Z.

Intuitiv: Gvdp
n ist die Gruppe aller Permutationen der Indizes 1, . . . , n−1, die die Liste

der Gewichte wn(k) nur umordnet, aber nicht verändert. Die exakten Zahlenwerte wn(k)
sind damit bis auf Permutation vollständig durch die (Wm) festgelegt.

46.3 Das van-der-Pol-zirkuläre System Svdp
n

Wir übertragen nun die allgemeine Konstruktion zirkulärer Systeme auf die Struktur
Mvdp

n .

Definition 46.3 (van-der-Pol-zirkuläres System Svdp
n ). Wir setzen

X := Xn = {1, . . . , n− 1}, k := |X| = n− 1.

Fixiere die Referenzanordnung

α := (1, 2, . . . , n− 1) ∈ Xk.

Ein Tupel x = (x1, . . . , xk) ∈ Xk heißt van-der-Pol-Zirkel, wenn

1. die Einträge xi eine Permutation von X bilden:

{x1, . . . , xk} = X,

2. die Struktur Mvdp
n durch Umbenennung erhalten bleibt, d. h. für alle m ∈ Z und

alle 1 ≤ i ≤ k gilt
i ∈Wm ⇐⇒ xi ∈Wm.
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Die Menge aller van-der-Pol-Zirkel sei

T (Svdp
n ) :=

{
x ∈ Xk | x ist van-der-Pol-Zirkel

}
.

Äquivalent ist jedes x ∈ T (Svdp
n ) von der Form

x = σ · α :=
(
σ(1), . . . , σ(n− 1)

)
für ein eindeutiges σ ∈ Gvdp

n , und es gilt

T (Svdp
n ) =

{
σ · α | σ ∈ Gvdp

n

}
.

Die Rekonstruktionsfunktionen fi : Xk−1 ⇀ X definieren wir partiell durch

fi(x1, . . . , x̂i, . . . , xk) := xi

für alle (x1, . . . , xk) ∈ T (Svdp
n ); außerhalb von T (Svdp

n ) bleiben sie undefiniert. Damit ist

Svdp
n :=

(
X, (fi)1≤i≤k

)
ein (n− 1)-zirkuläres System mit Zirkelmenge T (Svdp

n ).

46.4 Galois-Eigenschaft und Torsorstruktur

Wie in der allgemeinen Theorie wollen wir zeigen, dass Svdp
n ein Galois-zirkuläres System

ist, d. h. dass seine Automorphismengruppe mit Gvdp
n zusammenfällt und die Zirkelmenge

ein Torsor darstellt.
Wir setzen

Aut(Svdp
n ) :=

{
τ : X → X | τ bijektiv und erhält alle fi

}
.

Lemma 46.4. Für das van-der-Pol-System Svdp
n gilt

Aut(Svdp
n ) = Aut(Mvdp

n ) = Gvdp
n .

Beweis. (i) Jede Struktur-Automorphismus ist System-Automorphismus. Sei τ ∈ Gvdp
n =

Aut(Mvdp
n ). Dann erhält τ alle Prädikate Wm, d. h.

k ∈Wm ⇐⇒ τ(k) ∈Wm.

Ist x = (x1, . . . , xk) ein van-der-Pol-Zirkel, so ist

τ(x) :=
(
τ(x1), . . . , τ(xk)

)
wieder ein van-der-Pol-Zirkel, denn die Definition von T (Svdp

n ) verwendet ausschließlich
die Prädikate Wm. Also wird T (Svdp

n ) unter τ permutiert.
Da die fi auf Zirkeln nur „den fehlenden Eintrag“ rekonstruieren, und τ Zirkeln auf

Zirkel abbildet, bleibt die Wirkung der fi unter τ erhalten. Somit ist τ ∈ Aut(Svdp
n ) und

damit Gvdp
n ⊆ Aut(Svdp

n ).
(ii) Jeder System-Automorphismus ist Struktur-Automorphismus. Sei umgekehrt τ ∈

Aut(Svdp
n ). Dann gilt: Für jeden Zirkel x ∈ T (Svdp

n ) ist auch τ(x) wieder Zirkel. Insbeson-
dere ist T (Svdp

n ) als Menge unter τ invariant.
Per Definition ist T (Svdp

n ) aber genau die Menge der Tupel, die aus dem Basiszirkel
α durch Struktur-Automorphismen von Mvdp

n entstehen. Wenn τ die Zirkelmenge erhält,
so erhält sie damit alle Relationen, welche die Zirkelstruktur definieren, also insbesondere
die Prädikate Wm. Folglich ist τ ein Automorphismus von Mvdp

n , d. h. τ ∈ Gvdp
n .

Somit ist Aut(Svdp
n ) = Gvdp

n gezeigt.
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Proposition 46.5 (Torsor-Eigenschaft von Svdp
n ). Die natürliche Wirkung von Gvdp

n auf
T (Svdp

n ), gegeben durch

Gvdp
n × T (Svdp

n )→ T (Svdp
n ), (τ, (x1, . . . , xk)) 7→ (τ(x1), . . . , τ(xk)),

ist frei und transitiv. Insbesondere ist T (Svdp
n ) ein Gvdp

n -Torsor, und es gilt

|T (Svdp
n )| = |Gvdp

n |.

Beweis. Aus der obigen Beschreibung folgt

T (Svdp
n ) = {σ · α | σ ∈ Gvdp

n },

mit festem Basiszirkel α = (1, . . . , n− 1).
Transitivität: Seien σ1 · α und σ2 · α zwei Zirkel. Wähle

τ := σ2σ
−1
1 ∈ Gvdp

n .

Dann
τ · (σ1 · α) = (τσ1) · α = σ2 · α,

also ist die Wirkung transitiv.
Freiheit: Sei σ ∈ Gvdp

n mit
σ · (τ · α) = τ · α

für ein τ ∈ Gvdp
n . Dann

(τ−1στ) · α = α.

Die einzige Permutation von X, die α = (1, . . . , n − 1) fixiert, ist die Identität. Also
τ−1στ = id und damit σ = id. Die Wirkung ist frei.

Damit ist die Wirkung frei und transitiv, also regulär; die Torsor-Eigenschaft folgt.

In diesem Sinn ist Svdp
n immer ein Galois-zirkuläres System: Die Zirkelmenge T (Svdp

n )
ist (nicht kanonisch) mit der Galois-Gruppe Gvdp

n isomorph und trägt eine natürliche
Torsorstruktur.

46.5 Perfekte Zahlen im van-der-Pol-System

Die Touchard/van-der-Pol-Gleichung (3) verknüpft die globale Größe σ(n) mit der van-
der-Pol-Summe An, die ihrerseits vollständig aus den lokalen Gewichten wn(k) und damit
aus der Struktur Mvdp

n rekonstruiert werden kann:

An =
n−1∑
k=1

wn(k) =
∑
m∈Z

m · |Wm|.

Insbesondere ist An eine Gvdp
n -invariante Größe: sie hängt nur von den Kardinalitäten

|Wm| ab, und diese sind invariant unter der Wirkung von Gvdp
n .

Definition 46.6. Eine Zahl n heißt perfekt, wenn σ(n) = 2n gilt.

Setzt man σ(n) = 2n in (3) ein, so erhält man

n2(n− 1) · 2n = 6An,

also
An = n3(n− 1)

3 . (4)

Damit erhält man eine Galois-invariante Charakterisierung:
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Proposition 46.7 (Perfekte Zahlen im van-der-Pol-System). Für n > 1 sind äquivalent:

1. n ist eine perfekte Zahl, d. h. σ(n) = 2n.

2. Die Gvdp
n -invariante van-der-Pol-Summe An erfüllt die Gleichung

An = n3(n− 1)
3 .

Insbesondere ist Perfektheit von n im System Svdp
n eine rein Galois-invariante arithme-

tische Bedingung an das Paar (n,An): Sie fordert, dass die aus den Orbitgrößen |Wm|
gebildete Summe An mit dem Polynom n3(n−1)

3 übereinstimmt.

Remark 46.8. Die Gruppenstruktur der Galois-Gruppe Gvdp
n allein genügt im allgemei-

nen nicht, um perfekte Zahlen zu charakterisieren: typischerweise ist Gvdp
n sehr klein (oft

trivial), und wesentliche Information steckt in den Galois-invarianten Zahlen |Wm| und in
der daraus gebildeten Summe An. Perfektheit ist daher am besten zu verstehen als eine
zusätzliche arithmetische Bindungsgleichung (4) zwischen n und einem Galois-invarianten
Ausdruck aus den lokalen Gewichten wn(k).

47 Das Swap-Galois-System der Teilerstruktur
In diesem Abschnitt fixieren wir eine natürliche Zahl n ≥ 2 und konstruieren aus der ad-
ditiven Struktur ihrer Teiler ein spezielles zirkuläres System Sswap

n , dessen Galois-Gruppe
durch „lokale“ Vertauschungen von Teilern beschrieben wird. Für gerade perfekte Zah-
len n = 2p−1(2p − 1) (Euklid–Euler-Typ) stellt sich heraus, dass diese Gruppe eine volle
symmetrische Gruppe auf den inneren Teilern ist.

47.1 Additive Bindungsgleichungen und erlaubte Swaps

Sei
D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n.

Definition 47.1 (Additive Bindungsgleichungen). Wir betrachten alle Gleichungen der
Form

di1 + · · ·+ dik = dℓ

mit k ≥ 2 und paarweise verschiedenen Indizes 1 ≤ i1 < · · · < ik ≤ r, 1 ≤ ℓ ≤ r. Die
Menge aller solcher Gleichungen bezeichnen wir mit En.

Im nächsten Schritt selektieren wir aus diesen Gleichungen genau die Paare von Teilern,
die als „Swap-Kanten“ dienen.

Definition 47.2 (Erlaubte Swaps). Ein Paar von Indizes 1 ≤ i < j ≤ r heißt erlaubter
Swap für n, wenn es eine Gleichung

di1 + · · ·+ dik = dℓ ∈ En

gibt mit
i, j ∈ {i1, . . . , ik} und di · dj = dℓ.

Die Menge aller erlaubten Swap-Paare bezeichnen wir mit

Swap(n) :=
{

(i, j) ∈ {1, . . . , r}2 | i < j, (i, j) erlaubt
}
.
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Remark 47.3. Aus der Bedingung di ·dj = dℓ folgt sofort, dass weder d1 = 1 noch dr = n
Teil eines erlaubten Swaps sein können:

• Für d1 = 1 würde 1 · dj = dℓ implizieren dj = dℓ, also die rechte Seite doppelt auf
der linken Seite vorkommen.

• dr = n kann nicht als linker Summand in einer Gleichung gelten, da n+ di > n für
jeden di > 0.

Damit sind 1 und n immer isolierte Punkte in der Swap-Struktur.

Definition 47.4 (Swap-Graph Γswap(n)). Der Swap-Graph zu n ist der ungerichtete
Graph

Γswap(n) :=
(
D(n), E(n)

)
,

wobei E(n) die Menge aller Kanten {di, dj} ist, für die (i, j) ∈ Swap(n) gilt.

47.2 Die Swap-Gruppe Hn und das System Sswap
n

Aus den erlaubten Swaps konstruieren wir eine Untergruppe der symmetrischen Gruppe
auf D(n).

Definition 47.5 (Swap-Gruppe Hn). Sei Hn die von den Transpositionen

(di dj) ∈ Sym
(
D(n)

)
für (i, j) ∈ Swap(n)

erzeugte Untergruppe:

Hn :=
〈

(di dj) | (i, j) ∈ Swap(n)
〉
⊆ Sym

(
D(n)

)
.

Wir definieren nun ein zirkuläres System, dessen Zirkelmenge genau die Hn-Bahn eines
Basistupels ist.

Definition 47.6 (Swap-Galois-System Sswap
n ). Wir setzen

X := D(n), r := |D(n)|.

Als Referenztupel wählen wir

α := (d1, . . . , dr) ∈ Xr.

Die Zirkelmenge definieren wir als Hn-Orbit von α:

T
(
Sswap
n

)
:= {σ · α | σ ∈ Hn} ⊆ Xr,

wobei
σ · α :=

(
σ(d1), . . . , σ(dr)

)
.

Die Rekonstruktionsfunktionen fi : Xr−1 ⇀ X werden partiell so definiert, dass sie
auf jedem Zirkel den fehlenden Eintrag eindeutig rekonstruieren:

fi(x1, . . . , x̂i, . . . , xr) := xi

für alle (x1, . . . , xr) ∈ T (Sswap
n ); außerhalb der Zirkelmenge bleiben sie undefiniert.

Das r-zirkuläre System
Sswap
n :=

(
X, (fi)1≤i≤r

)
heiße das Swap-Galois-System zu n.
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Lemma 47.7. Für das System Sswap
n gilt

Aut
(
Sswap
n

)
= Hn.

Beweis. (i) Hn ⊆ Aut(Sswap
n ). Jedes σ ∈ Hn permutiert per Definition die Grundmenge

X und damit die Zirkelmenge T (Sswap
n ):

σ ·
(
τ · α

)
= (στ) · α ∈ T (Sswap

n ).

Da die fi auf Zirkeln lediglich die fehlende Koordinate reproduzieren, bleibt ihre Wirkung
unter σ erhalten. Also ist σ ein Automorphismus von Sswap

n .
(ii) Aut(Sswap

n ) ⊆ Hn. Sei umgekehrt ϕ ∈ Aut(Sswap
n ). Dann muss ϕ die Zirkelmenge

T (Sswap
n ) invariant lassen. Insbesondere ist ϕ(α) wieder ein Zirkel, also von der Form

ϕ(α) = σ · α

für ein eindeutiges σ ∈ Hn. Da ϕ und σ auf den Einträgen von α übereinstimmen und
beide Bijektionen auf X sind, folgt ϕ = σ. Somit ist jeder System-Automorphismus bereits
Element von Hn, also Aut(Sswap

n ) = Hn.

Proposition 47.8 (Galois-Eigenschaft von Sswap
n ). Für jedes n ≥ 2 ist Sswap

n ein Galois-
zirkuläres System: die Wirkung von Hn = Aut(Sswap

n ) auf T (Sswap
n ) ist regulär (frei und

transitiv), und es gilt ∣∣T (Sswap
n )

∣∣ = |Hn|.

Beweis. Da nach Konstruktion

T (Sswap
n ) = {σ · α | σ ∈ Hn},

ist die Wirkung von Hn auf T (Sswap
n ) zunächst offensichtlich transitiv.

Freiheit: Sei σ ∈ Hn mit
σ · (τ · α) = τ · α

für ein τ ∈ Hn. Dann folgt
(τ−1στ) · α = α.

Die einzige Permutation von X = D(n), die alle Komponenten von α = (d1, . . . , dr) fixiert,
ist die Identität. Also τ−1στ = id, d. h. σ = id. Die Wirkung ist also frei.

Transitivität und Freiheit zusammen bedeuten, dass die Wirkung regulär ist und somit∣∣T (Sswap
n )

∣∣ = |Hn|.

Damit ist Sswap
n für jedes n ein Galois-System im engen Sinn; die Gruppe Hn kann

jedoch trivial sein (keine erlaubten Swaps) oder sehr groß (z. B. für gerade perfekte Zahlen).

47.3 Allgemeine Struktur von Hn über dem Swap-Graphen

Die Struktur von Hn lässt sich elegant in Graphsprache beschreiben.
Proposition 47.9 (Zerfall von Hn in symmetrische Blöcke). Sei Γswap(n) der Swap-Graph
mit Knotenmenge D(n) und Kantenmenge E(n). Sei

D(n) = C1 ∪̇ . . . ∪̇Ct

die Zerlegung in Zusammenhangskomponenten. Dann ist

Hn
∼=

t∏
j=1

SCj
∼=

t∏
j=1

S|Cj |,

wobei SCj die volle symmetrische Gruppe auf der Menge Cj bezeichnet.
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Beweisskizze. Für jede Komponente Cj betrachten wir die Untergruppe H
(j)
n , die von

allen Transpositionen (dr ds) mit dr, ds ∈ Cj erzeugt wird. Da der zugehörige Teilgraph
auf Cj zusammenhängend ist, enthält H(j)

n einen Spannbaum; Transpositionen entlang
der Baumkanten reichen aus, um jede beliebige Transposition innerhalb von Cj durch
Konjugation zu erzeugen. Damit ist H(j)

n = SCj .
Verschiedene Komponenten haben disjunkte Trägermengen und ihre Permutationsteile

kommutieren; also ist das von allen Transpositionen erzeugteHn das direkte Produkt dieser
SCj :

Hn =
〈
H(1)
n , . . . ,H(t)

n

〉 ∼= t∏
j=1

SCj .

Remark 47.10. Wie oben bemerkt, sind {1} und {n} stets isolierte Komponenten des
Swap-Graphen (keine erlaubten Swaps), so dass immer Faktoren S{1} ∼= S{n} ∼= C1 auf-
treten. Die interessanten Symmetrien von Hn liegen in den nichttrivialen Komponenten,
die echte Symmetrische Gruppen Sm mit m ≥ 2 beitragen.

47.4 Gerade perfekte Zahlen und volle Symmetrie auf inneren Teilern

Wir betrachten nun den Spezialfall einer geraden perfekten Zahl vom Euklid–Euler-Typ:

n = 2p−1(2p − 1), p ≥ 2 Primzahl, q := 2p − 1.

Die Teiler von n sind genau

D(n) = {2aqb | 0 ≤ a ≤ p− 1, b ∈ {0, 1}} = {1, 2, . . . , 2p−1, q, 2q, . . . , 2p−1q},

insgesamt 2p viele. Wir schreiben

D∗(n) := D(n) \ {1, n},

die Menge der 2p− 2 „inneren“ Teiler.

Lemma 47.11 (Explizite Bindungsgleichungen im Euklid–Euler-Fall). Für n = 2p−1q
gelten folgende Gleichungen zwischen Teilern:

1. Die Summe der Zweierpotenzen:

1 + 2 + · · ·+ 2p−1 = q.

2. Für jedes j = 1, . . . , p− 1:

1 + 2 + · · ·+ 2p−1 + q + 2q + · · ·+ 2j−1q = 2jq.

Alle beteiligten Zahlen sind Teiler von n.

Beweis. (1) ist die bekannte Formel für die geometrische Reihe ∑p−1
a=0 2a = 2p−1 = q. Für

(2) verwenden wir
p−1∑
a=0

2a = q,
j−1∑
i=0

2iq = (2j − 1)q,

so dass
p−1∑
a=0

2a +
j−1∑
i=0

2iq = q + (2j − 1)q = 2jq.
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Aus diesen Gleichungen gewinnen wir eine große Familie erlaubter Swaps.

Lemma 47.12 (Erlaubte Swaps bei geraden perfekten Zahlen). Sei n = 2p−1q wie oben.
Dann sind für alle 1 ≤ i ≤ p− 1 und 0 ≤ j ≤ p− 2 die Paare(

2i, q
)
,

(
2, 2jq

)
erlaubte Swaps. Insbesondere ist der Swap-Graph auf D∗(n) zusammenhängend.

Beweis. Aus der Gleichung
1 + 2 + · · ·+ 2p−1 = q

erhalten wir, dass alle 2i und 1 „im Kontext von q“ auftreten. Für 1 ≤ j ≤ p − 1 liefert
die Gleichung

1 + 2 + · · ·+ 2p−1 + q + 2q + · · ·+ 2j−1q = 2jq

für jedes i = 1, . . . , j ein Paar (
2i, 2j−iq

)
auf der linken Seite mit Produkt

2i · 2j−iq = 2jq

auf der rechten Seite. Damit sind diese Paare erlaubte Swaps.
Setzt man j = i, so ist 2j−iq = q, also

(2i, q)

für alle 1 ≤ i ≤ p− 1 ein erlaubter Swap.
Setzt man i = 1, so ist 2j−iq = 2j−1q und man erhält

(2, 2j−1q)

für jedes j = 1, . . . , p−1, also für alle 2jq mit 0 ≤ j ≤ p−2. Damit sind alle inneren Teiler
durch eine Kette von Swaps miteinander verbindbar, der Swap-Graph auf D∗(n) ist also
zusammenhängend.

Theorem 47.13 (Swap-Galois-Gruppe gerader perfekter Zahlen). Sei

n = 2p−1(2p − 1)

eine gerade perfekte Zahl mit p ≥ 2 Primzahl. Dann gilt:

1. 1 und n sind isolierte Knoten im Swap-Graphen, d. h. es gibt keine erlaubten Swaps
mit 1 oder n.

2. Die Menge der inneren Teiler D∗(n) = D(n) \ {1, n} bildet eine einzige Zusammen-
hangskomponente des Swap-Graphen.

3. Die Swap-Gruppe ist
Hn
∼= SD∗(n) ∼= S2p−2,

d. h. die volle symmetrische Gruppe auf den 2p− 2 inneren Teilern.

4. Das Swap-System Sswap
n ist Galois-zirkulär mit Galois-Gruppe S2p−2 und∣∣T (Sswap

n )
∣∣ = (2p− 2)!.
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Beweis. (1) war bereits in der obigen Bemerkung begründet: 1 und n können aufgrund
der Produktbedingung niemals Teil eines erlaubten Swaps sein.

(2) folgt aus dem vorigen Lemma: alle inneren Teiler 2i (1 ≤ i ≤ p − 1) und 2jq
(0 ≤ j ≤ p− 2) sind über die erlaubten Swaps

(2i, q) und (2, 2jq)

miteinander verbunden; der induzierte Graph auf D∗(n) ist also zusammenhängend.
(3) Da der Swap-Graph auf D∗(n) zusammenhängend ist, erzeugen die Transpositionen

entlang der Kanten die volle symmetrische Gruppe auf D∗(n). Nach der allgemeinen Block-
Zerfalls-Proposition ist damit

Hn
∼= SD∗(n) × S{1} × S{n} ∼= S2p−2 × C1 × C1 ∼= S2p−2.

(4) Da Sswap
n immer ein Galois-System mit Aut(Sswap

n ) = Hn ist, ergibt sich hier

Aut(Sswap
n ) ∼= S2p−2

und die Torsor-Eigenschaft liefert∣∣T (Sswap
n )

∣∣ =
∣∣Aut(Sswap

n )
∣∣ = |S2p−2| = (2p− 2)!.

Remark 47.14. Für „typische“ Zahlen n ist En entweder leer oder enthält zwar additive
Gleichungen, aber keine Paare (di, dj) mit didj = dℓ; in diesen Fällen ist Swap(n) = ∅, der
Swap-Graph besteht nur aus isolierten Knoten und Hn ist trivial: Hn

∼= C1. Das System
Sswap
n ist dennoch Galois, hat aber nur einen Zirkel (das Basistupel α) und eine triviale

Automorphismusgruppe.
Gerade perfekte Zahlen vom Euklid–Euler-Typ bilden in diesem Rahmen einen extrem

symmetrischen Spezialfall: Ihre Swap-Galois-Gruppe ist die volle symmetrische Gruppe
S2p−2 auf allen inneren Teilern, und die Zirkelmenge von Sswap

n ist ein großer S2p−2-Torsor
der Größe (2p− 2)!.

47.5 Normalteiler und Galois-Quotienten im Swap-System

Wir arbeiten jetzt im Rahmen des Swap-Galois-Systems Sswap
n aus dem vorigen Abschnitt.

Erinnern wir:

• Grundmenge: X = D(n), die Teiler von n.

• Galois-Gruppe:Gn := Aut(Sswap
n ) = Hn, erzeugt von den erlaubten Swap-Transpositionen.

• Zirkelmenge:
T
(
Sswap
n

)
= {σ · α | σ ∈ Hn}, α = (d1, . . . , dr).

• Sswap
n ist immer ein Galois-System (Torsor): die Wirkung von Hn auf T (Sswap

n ) ist
frei und transitiv, und ∣∣T (Sswap

n )
∣∣ = |Hn|.

Damit sind die Voraussetzungen des allgemeinen Hauptsatzes der Galois-zirkulären
Systeme erfüllt: Galois-geschlossene k-zirkuläre Untersysteme von Sswap

n stehen in Galois-
Korrespondenz zu Galois-geschlossenen Untergruppen H ⊆ Hn. Insbesondere liefern Nor-
malteiler H ⊴ Hn echte Galois-Quotienten.
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47.5.1 Fall n = 28: Normalteiler von H28 ∼= S4

Für n = 28 haben wir
D(28) = {1, 2, 4, 7, 14, 28},

und der Swap-Graph Γswap(28) hat Zusammenhangs- komponenten

C1 = {1}, C2 = {2, 4, 7, 14}, C3 = {28}.

Wie im vorigen Abschnitt gezeigt, ist

H28 ∼= SC2 × SC1 × SC3
∼= S4.

Die Galois-Gruppe des Systems Sswap
28 ist also G := H28 ∼= S4.

Die Normalteiler von S4 sind bekanntlich

{1}, V4, A4, S4,

wobei V4 die Kleinsche Vierergruppe ist. Nach dem allgemeinen Hauptsatz korrespondiert
jeder Normalteiler H ⊴ G einem Galois-Quotienten des Systems:

Sswap
28 7→ Sswap

28,H ,

mit Galois-Gruppe G/H und Zirkelmenge

T
(
Sswap

28,H
)

Torsor unter G/H,
∣∣T (Sswap

28,H )
∣∣ = |G/H|.

Konkreter:

• H = {1}.
Hier ist G/H ∼= S4, die Orbitpartition von H ist trivial (alle Punkte einzeln), und
Sswap

28,H ist identisch mit dem ursprünglichen System:

Sswap
28,{1} = Sswap

28 ,
∣∣T (Sswap

28,{1})
∣∣ = |S4| = 24.

• H = V4 (Kleinsche Vierergruppe).
V4 ist normal in S4 und wirkt auf C2 = {2, 4, 7, 14} transitiv (regulär); auf 1 und 28
wirkt V4 trivial. Die Orbits von H sind also

B1 = {1}, B2 = {2, 4, 7, 14}, B3 = {28}.

Die Grundmenge von Sswap
28,V4

ist

XV4 = D(28)/V4 = {B1, B2, B3},

und die Galois-Gruppe des Quotientensystems ist

Aut
(
Sswap

28,V4

) ∼= G/H ∼= S4/V4 ∼= S3,

mit Torsorgröße ∣∣T (Sswap
28,V4

)
∣∣ = |S3| = 6.
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• H = A4.
A4 wirkt ebenfalls transitiv auf C2, trivial auf {1} und {28}. Die Orbitpartition ist
dieselbe wie für V4:

D(28)/A4 = {B1, B2, B3}.

Die Galois-Gruppe des Quotienten ist jedoch

Aut
(
Sswap

28,A4

) ∼= G/A4 ∼= C2,

und die Zirkelmenge ist ein C2-Torsor der Größe 2:∣∣T (Sswap
28,A4

)
∣∣ = 2.

• H = S4.
Hier identifizieren wir die volle Gruppe. Die Orbits von H sind wieder

D(28)/S4 = {B1, B2, B3},

aber die Galois-Gruppe des Quotienten ist trivial:

Aut
(
Sswap

28,S4

) ∼= S4/S4 ∼= {1},

und die Zirkelmenge besteht aus genau einem Zirkel:∣∣T (Sswap
28,S4

)
∣∣ = 1.

Anschaulich entsteht unter den Normalteilern eine „Turmstruktur“ von Galois-Quotienten:

Sswap
28 ↠ Sswap

28,V4
↠ Sswap

28,A4
↠ Sswap

28,S4
,

wobei sich auf der Gruppenseite die Kette

{1} ⊴ V4 ⊴ A4 ⊴ S4

widerspiegelt und auf der Torsorseite die Zirkelmengen der Größen 24, 6, 2, 1 auftauchen.

47.5.2 Allgemeine Normalteiler von Hn und Galois-Untersysteme

Allgemein haben wir für das Swap-System Sswap
n :

• Der Swap-Graph Γswap(n) auf den Teilern D(n) zerfällt in Zusammenhangskompo-
nenten

D(n) = C1 ∪̇ . . . ∪̇Ct.

• Die Swap-Gruppe zerfällt als direktes Produkt von Symmetrischen Gruppen:

Hn
∼=

t∏
j=1

SCj
∼=

t∏
j=1

S|Cj |.

Die Normalteiler von Hn sind genau die Produkte

N =
t∏

j=1
Nj mit Nj ⊴ SCj .

Für jede Komponente Cj kennen wir die Normalteiler von SCj :

157



• Für |Cj | ≥ 5:
Nj ∈ {{1}, ACj , SCj}.

• Für |Cj | = 3:
Nj ∈ {{1}, A3, S3}.

• Für |Cj | = 2:
Nj ∈ {{1}, S2}.

• Für |Cj | = 4:
Nj ∈ {{1}, V4, A4, S4}.

• Für |Cj | = 1: Nj = S1 ∼= {1} trivial.

Jedes Nj wirkt auf Cj , die Orbitpartition von N auf D(n) ist die disjunkte Vereinigung
der Orbitpartitionen von Nj auf Cj .

Proposition 47.15 (Galois-Quotienten durch Normalteiler von Hn). Sei N ⊴ Hn ein
Normalteiler. Dann gilt:

1. Die Orbits von N auf D(n)

D(n)/N = {B1, . . . , Bs}

bilden die Grundmenge eines Quotienten-Swap-Systems Sswap
n,N .

2. Das Quotientensystem Sswap
n,N ist wieder ein Galois-zirkuläres System mit Galois-

Gruppe
Aut

(
Sswap
n,N

) ∼= Hn/N.

3. Die Zirkelmenge T (Sswap
n,N ) ist ein Hn/N -Torsor und erfüllt

∣∣T (Sswap
n,N )

∣∣ = |Hn/N | =
|Hn|
|N |

.

Beweisskizze. Die Aussage ist eine direkte Anwendung des allgemeinen Hauptsatzes der
Galois-zirkulären Systeme auf Sswap

n :

• Sswap
n ist Galois, d. h. Galois-geschlossen und die Wirkung von Hn auf T (Sswap

n ) ist
regulär.

• Jeder Normalteiler N ⊴ Hn definiert eine Blockpartition D(n) = ⊔
Bi, die zum

Quotienten-System Sswap
n,N führt.

• Der Hauptsatz garantiert
Aut

(
Sswap
n,N

) ∼= Hn/N

und die Torsor-Formel

[Hn : N ] = |T (Sswap
n )|

|T (Sswap
n,N )| ⇐⇒ |T (Sswap

n,N )| = |Hn|
|N |

.
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Remark 47.16. Im Swap-Modell hat man damit eine sehr konkrete Beschreibung der
Galois-Quotienten:

• Die Galois-Zahlen (hier: alle n, da Sswap
n immer Galois) liefern für jede Zahl n ein

Galois-System mit Galois-Gruppe Hn.

• Die Normalteiler N ⊴ Hn entsprechen exakt den Möglichkeiten, in jeder Swap-
Komponente Cj entweder alles zu unterscheiden (normaler Teil {1}), alles zusam-
menzufassen (Teil SCj oder ACj ) oder in Sonderfällen (|Cj | = 4) eine mittlere Stufe
(V4) zu wählen.

• Gerade perfekte Zahlen n = 2p−1(2p − 1) sind in diesem Bild extrem symmetrisch:
es gibt genau eine nichttriviale Swap-Komponente D∗(n) mit 2p − 2 Elementen,
und die Galois-Gruppe ist Hn

∼= S2p−2. Die Normalteiler von S2p−2 liefern eine
ganze Hierarchie von Galois-Quotienten, in denen die inneren Teiler immer gröber
zu Blöcken zusammengefasst werden, während die äußeren Teiler 1 und n isoliert
bleiben.

47.6 Perfekte Zahlen und komplementäre Swap-Symmetrien

Wir bleiben im Rahmen des Swap-Galois-Systems Sswap
n aus dem vorigen Abschnitt. Sei

D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n.

47.6.1 Komplementäre Teilerpaare bei perfekten Zahlen

Für jedes n zerfallen die Teiler in komplementäre Paare

di · dr−i+1 = n, 1 ≤ i ≤ r,

da {di} genau die Teiler von n sind und d 7→ n/d eine Involution auf D(n) ist.

Definition 47.17 (Perfekte Zahl). Eine natürliche Zahl n ≥ 2 heißt perfekt, wenn

σ(n) =
∑
d|n

d = 2n.

Schreibt man die Teiler als D(n) = {d1, . . . , dr} wie oben, so ist dies äquivalent zu

d1 + · · ·+ dr−1 = dr = n.

Diese eine Gleichung liefert bereits eine ganze Familie erlaubter Swaps im Sinn unserer
Swap-Regel.

Lemma 47.18 (Komplementäre Swaps bei perfekten Zahlen). Sei n perfekt und D(n) =
{d1, . . . , dr} wie oben. Dann sind für alle i mit

2 ≤ i ≤ r − 1

die Paare (di, dr−i+1) erlaubte Swaps. Genauer: Es gilt

di + dr−i+1 +
∑

j ̸=i,r−i+1
dj = dr und di · dr−i+1 = dr,

also sind (i, r − i+ 1) nach Definition Swap-Indizes.
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Beweis. Da n perfekt ist,
d1 + · · ·+ dr−1 = dr.

Diese Gleichung enthält alle Teiler außer n auf der linken Seite, insbesondere di und dr−i+1
für jedes 2 ≤ i ≤ r − 1. Außerdem gilt

di · dr−i+1 = n = dr.

Also ist für jedes i die globale Perfektheitsgleichung eine Bindungsgleichung der Form

di1 + · · ·+ dik = dℓ

mit di, dr−i+1 auf der linken Seite und di ·dr−i+1 = dℓ. Damit ist (i, r− i+ 1) ein erlaubter
Swap.

Definition 47.19 (Kanonische 2-Untergruppe Kn bei perfekten Zahlen). Ist n perfekt,
so bezeichnen wir mit Kn die von den komplementären Swaps erzeugte Untergruppe

Kn :=
〈

(di dr−i+1) | 2 ≤ i ≤ r − 1, di ̸= dr−i+1
〉
⊆ Hn.

Da die Paare {di, dr−i+1} paarweise disjunkt sind, ist die Struktur von Kn sehr einfach.

Proposition 47.20 (Struktur von Kn). Sei n perfekt und |D(n)| = r. Dann ist Kn ein
direktes Produkt von Kopien von C2:

Kn
∼= C t

2 ,

wobei

t =


r

2 − 1, falls n kein Quadrat ist (also r gerade),
r − 3

2 , falls n ein Quadrat ist (also r ungerade).

Insbesondere ist |Kn| = 2t und Kn ⊆ Hn.

Beweis. Die Teilerpaare {di, dr−i+1} mit 1 ≤ i ≤ r sind genau die Paare {d, n/d}. Davon
ist stets das Paar {d1, dr} = {1, n} vorhanden; es liefert keinen Swap in Kn, weil wir i = 1
ausschließen.

• Ist n kein Quadrat, so gibt es r/2 Paare {di, dr−i+1} und davon genau r/2 − 1
mit i ≥ 2; diese entsprechen disjunkten Transpositionen. Sie erzeugen eine Gruppe
C
r/2−1
2 .

• Ist n ein Quadrat, so ist eine dieser Paarungen von der Form {di, di} (für di =
√
n)

und liefert keine Transposition. Es gibt insgesamt (r−1)/2 Paare, wovon eines {1, n}
ist; es bleiben (r−1)/2−1 = (r−3)/2 nichttriviale Paare übrig. Diese liefern C (r−3)/2

2 .

Da die Transpositionen auf disjunkten Mengen wirken, ist die Gruppe das direkte Produkt
der einzelnen C2-Faktoren.

Remark 47.21. Für bekannte gerade perfekte Zahlen

6, 28, 496, 8128, . . .

erhält man z. B.:
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n |D(n)| t |Kn| = 2t
6 4 1 2
28 6 2 4
496 10 4 16
8128 14 6 64

In allen Fällen liegt Kn als elementar-abelscher 2-Untergruppe in Hn; für n = 6 ist sogar
K6 = H6 ∼= C2, während für n = 28, 496, 8128 die volle Swap-Gruppe deutlich größer
(S4, S8, S12) ist.

47.6.2 Einordnung von Kn in die Swap-Galois-Struktur

Aus der allgemeinen Strukturtheorie wissen wir:

• Der Swap-Graph Γswap(n) zerfällt in Zusammenhangskomponenten C1, . . . , Ct.

• Die Swap-Gruppe zerfällt als

Hn
∼=

t∏
j=1

SCj .

Für beliebiges n bestimmen zulässige Bindungsgleichungen zusätzliche Swap-Kanten,
die verschiedene Paare {di, dr−i+1} miteinander verbinden können. Die komplementären
Swaps aus Kn garantieren jedoch für perfekte n ein minimales symmetrisches Gerüst:

• Jede Nichttrivial-Komponente, die nur aus einem Paar {di, dr−i+1} besteht, trägt
wenigstens einen S2-Faktor; dies ist genau der Beitrag von Kn.

• Zusätzliche Bindungsgleichungen (wie im Fall gerader perfekter Zahlen vom Euklid–
Euler-Typ) erzeugen weitere Swaps, die verschiedene Paare verbinden; die Kompo-
nenten Cj können dann größer werden, und die entsprechenden Faktoren SCj in Hn

wachsen bis hin zu vollen symmetrischen Gruppen.

Insbesondere gilt:

Proposition 47.22 (Untergruppeneinschluss bei perfekten Zahlen). Ist n perfekt, so gilt
stets

Kn ≤ Hn = Aut
(
Sswap
n

)
,

und
|Hn| ist durch 2t teilbar,

wobei t wie oben angegeben ist.

Remark 47.23. Im Fall der geraden perfekten Zahlen n = 2p−1(2p − 1) wissen wir aus
der expliziten Analyse:

• Die inneren Teiler D(n) \ {1, n} bilden eine einzige große Swap-Komponente.

• Die Gesamtgruppe ist
Hn
∼= S2p−2.

• Die kanonische 2-UntergruppeKn
∼= C 2p−3

2 sitzt als elementar-abelscher 2-Untergruppe
in S2p−2. Ihre normale Hülle in S2p−2 ist die volle Gruppe S2p−2: Da S2p−2 von Trans-
positionen erzeugt wird, die über Bindungsgleichungen zwischen verschiedenen Paa-
ren entstehen, enthält die normale Hülle von Kn sowohl gerade als auch ungerade
Permutationen und damit S2p−2.

161



Galois-theoretisch bedeutet das: Für jedes perfekte n erhält man in Sswap
n mindestens

eine reiche, kanonische 2-Symmetrie, gegeben durch das Flippen aller komplementären
Teilerpaare. Die volle Swap-Galois-Gruppe Hn entsteht dann als Erweiterung dieser ele-
mentaren Symmetrie durch zusätzliche Swaps, die von feineren Bindungsgleichungen her-
rühren. Für gerade perfekte Zahlen vom Euklid–Euler-Typ ist diese Erweiterung maximal
und liefert die volle symmetrische Gruppe auf allen inneren Teilern.

47.7 Hypothetische ungerade perfekte Zahlen im Swap-Galois-System

Wir fassen hier einige bekannte (notwendige) Eigenschaften ungerader perfekter Zahlen
N zusammen und interpretieren sie im Rahmen des Swap-Galois-Systems Sswap

N .

47.7.1 Klassische Struktur von ungeraden perfekten Zahlen

Es ist bis heute unbekannt, ob es überhaupt ungerade perfekte Zahlen gibt. Falls eine
solche Zahl N existiert, muss sie eine sehr rigide arithmetische Struktur besitzen. Nach
einem Satz von Euler gilt

N = qα p2e1
1 · · · p2ek

k ,

wobei

• q, p1, . . . , pk ungerade Primzahlen sind,

• q der Euler-Primteiler von N ist,

• q ≡ 1 (mod 4) und α ≡ 1 (mod 4),

• die ei ∈ N beliebig (aber ≥ 1) sein dürfen.

Zudem weiß man heute, dass für jede ungerade perfekte Zahl N gilt

• N > 101500,

• N hat mindestens 10 verschiedene Primteiler, und insgesamt mindestens 101 Prim-
teiler (mit Vielfachheit gezählt),

• N ist nicht durch 105 teilbar,

• N erfüllt bestimmte Kongruenzbedingungen, z. B. N ≡ 1 (mod 12) oder N ≡ 117
(mod 468) oder N ≡ 81 (mod 324),

• die größte Primzahl Pmax, die N teilt, erfüllt Pmax > 108 und Pmax <
3√3N ,

• der größte Primblock pa | N erfüllt pa > 1062.

Für unsere Zwecke ist vor allem die Information über die Anzahl und Form der Prim-
teiler wichtig.

47.7.2 Divisorenstruktur und komplementäre Paare

Wie immer schreiben wir

D(N) = {d1, . . . , dr}, 1 = d1 < · · · < dr = N

für die Menge der positiven Teiler von N .
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Für ein perfektes N (gerade oder ungerade) gilt∑
d|N

d = 2N ⇐⇒ d1 + · · ·+ dr−1 = dr = N.

Zudem ist bekannt, dass eine perfekte Zahl kein Quadrat sein kann, also istN kein Quadrat
und damit τ(N) = |D(N)| = r gerade.

Die Teiler zerfallen daher in komplementäre Paare

{di, dr−i+1}, di · dr−i+1 = N, 1 ≤ i ≤ r

2 ,

und der Perfektheitsgleichung
d1 + · · ·+ dr−1 = dr

entnehmen wir (wie im vorigen Abschnitt), dass für alle 2 ≤ i ≤ r − 1 die Transposition

(di dr−i+1)

ein erlaubter Swap im Sinne von Sswap
N ist. Für jedes perfekte N definieren wir daher die

kanonische 2-Untergruppe

KN :=
〈

(di dr−i+1) | 2 ≤ i ≤ r − 1, di ̸= dr−i+1
〉
⊆ HN := Aut

(
Sswap
N

)
.

Da die Paare {di, dr−i+1} paarweise disjunkt sind, ist

KN
∼= C t

2 , t = r

2 − 1,

weil N kein Quadrat ist und somit keine Diagonalpaarung {di, di} auftritt (außer im
trivialen Fall N = 1).

47.7.3 Unterer Schranken für |D(N)| und |KN | bei ungeraden perfekten Zah-
len

Für eine ungerade perfekte Zahl in Eulers Form

N = qα p2e1
1 · · · p2ek

k

ist die Anzahl der Teiler

τ(N) = |D(N)| = (α+ 1)
k∏
i=1

(2ei + 1).

Da alle ei ≥ 1 sind, gilt 2ei + 1 ≥ 3. In Kombination mit der Wikipedia-Aussage „N
hat mindestens 10 verschiedene Primteiler“ (k + 1 ≥ 10, also k ≥ 9 oder nach schärferen
Resultaten sogar k ≥ 10) erhalten wir die grobe Schranke

τ(N) ≥ (α+ 1) 3k ≥ 2 · 310 = 118,098

(im Minimalfall α = 1, k = 10, alle ei = 1).
Damit ist für jede ungerade perfekte Zahl N :

r = |D(N)| ≥ 118,098.

Somit hat N mindestens
t = r

2 − 1 ≥ 59,048

nichttriviale komplementäre Teilerpaare {di, dr−i+1} mit 2 ≤ i ≤ r − 1, und damit

KN
∼= C t

2 mit |KN | = 2t ≥ 259,048.
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Proposition 47.24 (Große 2-Untergruppe für ungerade perfekte Zahlen). Sei N eine
ungerade perfekte Zahl. Dann gilt:

1. Das Swap-Galois-System Sswap
N ist Galois (wie für jedes N) mit Galois-Gruppe HN

und Zirkelmenge T (Sswap
N ), und

|T (Sswap
N )| = |HN |.

2. Die kanonische komplementäre Swap-Untergruppe KN ist ein elementar-abelscher
2-Untergruppe von HN mit

KN
∼= C t

2 , t ≥ 59,048, |KN | ≥ 259,048.

3. Insbesondere ist |HN | durch 259,048 teilbar, und HN besitzt eine enorm große 2-Sylow-
Untergruppe.

Beweis. (1) wurde für alle n bereits gezeigt: Sswap
n ist immer ein Galois-zirkuläres System

mit Galois-Gruppe Hn und Torsor-Zirkelmenge.
(2) und (3) folgen aus der obigen Abschätzung von |D(N)| und der Beschreibung von

KN als Produkt von t unabhängigen Transpositionen auf disjunkten Paaren.

47.7.4 Interpretation der bekannten Bedingungen im Swap-Bild

Die klassischen arithmetischen Schranken an ungerade perfekte Zahlen werden in unserem
Swap-Bild zu Aussagen über die Größe und Struktur der Divisorenmenge D(N) und der
Swap-Galois-Gruppe HN :

• Die Darstellung N = qαp2e1
1 · · · p2ek

k mit q ≡ α ≡ 1 (mod 4) bedeutet, dass die
Hasse-Struktur von D(N) (in der Teilerordnung) mindestens einen „ungeraden“
Turm 1, q, q2, . . . , qα enthält, und alle anderen Primfaktoren in quadratischen Blö-
cken vorkommen. Das legt nahe, dass D(N) in „Schichten“ modulo q zerfällt, was
wiederum die möglichen Swap-Komponenten der Swap-Gruppe HN beeinflusst.

• Die unteren Schranken an die Anzahl der (verschiedenen) Primteiler erzwingen, dass
D(N) extrem groß und hochverzweigt ist. Im Swap-System drückt sich das darin
aus, dass bereits die minimal vorhandene komplementäre Symmetrie KN eine astro-
nomisch große 2-Gruppe ist.

• Die Kongruenzbedingungen N ≡ 1 (mod 12), . . . und die Verbote von Teilbarkeit
durch 105 usw. schränken die Existenz kleiner Teiler wie 3, 5, 7 ein. Auf der Ebene
von D(N) heißt das: bestimmte „naheliegende“ additive Bindungsgleichungen (z. B.
3 + 5 + 7 = . . . ) sind nicht verfügbar, wodurch sich die Form der Swap-Kanten und
damit die Komponentenstruktur von Γswap(N) ändert.

• Die sehr große größte Primzahl Pmax | N und die Form N > 101500 schlagen sich in
D(N) als extrem große „äußere“ Teiler nieder. In Sswap

N bleiben die extremen Teiler
1 und N immer fix; viele der inneren Teiler gehören jedoch zu riesigen, durch KN

und weitere Swaps verbundenen Symmetriekomponenten.

Remark 47.25. Für gerade perfekte Zahlen n = 2p−1(2p− 1) haben wir explizit gesehen,
dass

Hn
∼= S2p−2,
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die „inneren“ Teiler also eine einzige große Swap-Komponente bilden. Für hypothetische
ungerade perfekte Zahlen kennen wir eine solche exakte Beschreibung der Swap-Galois-
Gruppe HN derzeit nicht.

Die bekannten analytischen Schranken aus der Literatur sagen uns aber immerhin:

• Falls ein ungerader perfekter N existiert, ist die Galois-Struktur des Swap-Systems
Sswap
N extrem komplex: D(N) hat mindestens ∼ 105 Elemente, KN hat Ordnung
≥ 259,048, und HN ist entsprechend gewaltig.

• Jede zukünftige Strukturtheorie ungerader perfekter Zahlen lässt sich in dieses Bild
übersetzen: Neue Aussagen über Exponenten oder Primfaktoren liefern automatisch
neue Aussagen über die Komponentenstruktur von D(N) und über mögliche Nor-
malteiler und Galois-Quotienten von HN .

In diesem Sinn ist das Swap-Galois-System Sswap
N ein geeigneter Rahmen, um die arith-

metischen Bedingungen an ungerade perfekte Zahlen als Aussagen über Symmetrie, Tor-
sorstruktur und große 2-Untergruppen einer kanonisch zu N gehörigen Galois-Gruppe zu
reformulieren.

48 Das kombinierte additive–multiplikative Swap-System Sam
n

48.0.1 Additive Bindungsgleichungen und neue Swap-Regel

Sei n ∈ N≥2 und

D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n.

Definition 48.1 (Additive Bindungsgleichungen). Wir betrachten wie zuvor alle Glei-
chungen

di1 + · · ·+ dij = dℓ

mit j ≥ 2, 1 ≤ i1 < · · · < ij ≤ r und 1 ≤ ℓ ≤ r. Die Menge aller solcher Gleichungen heiße
En.

Definition 48.2 (Neue Swap-Bedingung). Für zwei verschiedene Teiler dk, dℓ ∈ D(n)
sagen wir:

(dk, dℓ) ist erlaubter Swap

wenn beide Bedingungen erfüllt sind:

(A) Es gibt eine Gleichung
di1 + · · ·+ dij = dm ∈ En,

in deren linker Seite beide Teiler dk, dℓ vorkommen, d. h. {k, ℓ} ⊆ {i1, . . . , ij}.

(M) Das Produkt dkdℓ ist irgendein Teiler von n, also

dkdℓ ∈ D(n).

(Es muss nicht mit dm identisch sein.)

Die von allen erlaubten Transpositionen erzeugte Gruppe sei

Hn :=
〈

(dk dℓ)
∣∣ dk ̸= dℓ, (A) & (M)

〉
⊆ Sym

(
D(n)

)
.
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48.0.2 Swap-Graph und Struktur von Hn

Es ist praktisch, die erlaubten Swaps als Kanten eines Graphen zu kodieren.

Definition 48.3 (Swap-Graph Γam(n)). Wir definieren einen ungerichteten Graphen

Γam(n) :=
(
D(n), En

)
,

wobei
{dk, dℓ} ∈ En :⇐⇒ (dk, dℓ) ist erlaubter Swap.

Die Zusammenhangskomponenten des Graphen seien

D(n) = C1 ∪̇ . . . ∪̇ Ct.

Standardfakt aus der Gruppentheorie:
> Die von den Kanten-Transpositionen eines zusammenhängenden > Graphen auf

einer endlichen Menge C erzeugte Gruppe ist stets die > volle symmetrische Gruppe SC
auf C.

Auf unsere Situation angewendet:

Proposition 48.4 (Struktur von Hn). Sei Γam(n) wie oben und D(n) = C1∪̇ . . . ∪̇Ct seine
Zusammenhangskomponenten. Dann gilt

Hn
∼=

t∏
j=1

SCj
∼=

t∏
j=1

S|Cj |.

Insbesondere ist jede Komponente Cj ein Block, auf dem Hn die volle symmetrische Gruppe
S|Cj | induziert.

Beweis. Auf jeder Komponente Cj ist der induzierte Graph zusammenhängend, und die
Gruppe, die von den Transpositionen entlang der Kanten in Cj erzeugt wird, ist SCj . Da
die Kanten nur innerhalb der Komponenten liegen, wirkt Hn als direktes Produkt dieser
symmetrischen Gruppen.

48.0.3 Das zirkuläre System Sam
n und Galois-Eigenschaft

Wie zuvor bauen wir aus Hn ein zirkuläres System durch die Bahn des Basistupels.

Definition 48.5 (Das System Sam
n ). Wir setzen

X := D(n), r := |D(n)|, α := (d1, . . . , dr) ∈ Xr.

Die Zirkelmenge sei

T
(
Sam
n

)
:=
{
σ · α := (σ(d1), . . . , σ(dr))

∣∣ σ ∈ Hn
}
.

Die Rekonstruktionsfunktionen fi : Xr−1 99K X definieren wir wie üblich partiell durch

fi(x1, . . . , x̂i, . . . , xr) := xi

für (x1, . . . , xr) ∈ T (Sam
n ) (außerhalb undefiniert). Wir schreiben

Sam
n :=

(
X, (fi)1≤i≤r

)
.
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Lemma 48.6. Für das System Sam
n gilt

Aut
(
Sam
n

)
= Hn.

Beweis. Wie in allen bisherigen Beispielen:

• Jede σ ∈ Hn permutiert die Zirkelmenge: σ(τ · α) = (στ) · α. Da die fi auf Zirkeln
nur die jeweils fehlende Koordinate rekonstruieren, werden sie von σ erhalten. Also
Hn ⊆ Aut(Sam

n ).

• Sei umgekehrt φ ∈ Aut(Sam
n ). Dann liegt φ(α) wieder in T (Sam

n ), also φ(α) = σ · α
für ein eindeutiges σ ∈ Hn. Da die di alle verschieden sind, folgt φ(di) = σ(di) für
alle i, also φ = σ ∈ Hn.

Damit Gleichheit.

Proposition 48.7 (Torsor-Eigenschaft). Die natürliche Wirkung von Hn auf T (Sam
n ),

Hn × T (Sam
n )→ T (Sam

n ), (σ, (x1, . . . , xr)) 7→ (σ(x1), . . . , σ(xr)),

ist frei und transitiv. Insbesondere ist∣∣T (Sam
n )

∣∣ = |Hn|.

Damit ist Sam
n für jedes n ein Galois-zirkuläres System.

Beweis. Aus der Definition folgt

T (Sam
n ) = {σ · α | σ ∈ Hn }.

Transitivität: Zu σ1α, σ2α verbindet τ := σ2σ
−1
1 diese beiden Zirkel.

Freiheit: Fixiert σ ∈ Hn einen Zirkel τα, so gilt

(τ−1στ)α = α.

Die einzige Permutation, die das Basistupel α fixiert, ist die Identität; damit σ = id. Also
ist die Wirkung regulär und |T (Sam

n )| = |Hn|.

48.0.4 Perfekte Zahlen im kombinierten System

Sei nun n eine perfekte Zahl. Dann gilt

σ(n) =
∑
d|n

d = 2n ⇐⇒ d1 + · · ·+ dr−1 = dr = n.

Folge für die Swap-Kanten. Die Perfektheitsgleichung

d1 + · · ·+ dr−1 = dr

liegt in En und enthält alle echten Teiler von n auf der linken Seite, nämlich d1, . . . , dr−1.
Damit gilt für jede Paarung di, dj mit 1 ≤ i < j ≤ r − 1:

(A) di und dj kommen in derselben Gleichung in En vor (in der Perfektheitsgleichung).
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(M) didj ist zumindest für d1 = 1 trivialerweise Teiler von n:

d1dj = dj ∈ D(n) ∀j ≤ r − 1.

Für andere Paare (di, dj) hängt es von der konkreten Arithmetik von n ab, ob didj | n
gilt.

Insbesondere erhalten wir:
Lemma 48.8 (Sternstruktur um 1 bei perfekten Zahlen). Ist n perfekt, so sind für alle
2 ≤ j ≤ r−1 die Paare (d1, dj) erlaubte Swaps. Die induzierte Graphstruktur auf D(n)\{n}
enthält daher einen Stern mit Zentrum d1 = 1.
Beweis. Die Perfektheitsgleichung enthält d1 und dj auf der linken Seite, also ist (A)
erfüllt. Ferner ist d1dj = dj ∈ D(n), also (M). Damit ist (d1, dj) erlaubter Swap und
Kante in Γam(n). Der Knoten 1 ist damit mit allen dj für 2 ≤ j ≤ r − 1 verbunden.

Daraus folgt sofort:
Proposition 48.9 (Zusammenhang der echten Teiler bei perfekten Zahlen). Ist n perfekt
und r = |D(n)|, so ist der induzierte Graph auf

D(n) \ {n} = {d1, . . . , dr−1}

zusammenhängend. Der Teiler n = dr ist in Γam(n) immer isoliert.
Beweis. Der Stern um d1 zeigt, dass D(n) \ {n} zusammenhängend ist: zwischen zwei
beliebigen echten Teilern di, dj gibt es den Pfad di ∼ d1 ∼ dj .

Für n = dr gilt: n kann nicht auf der linken Seite einer additiven Gleichung in En
stehen, denn jede Summe von mindestens zwei positiven Teilern ist strikt größer als jeder
der Summanden und kann höchstens n sein. Die einzige Gleichung mit n als rechter Seite
ist die Perfektheitsgleichung, in der n nur auf der rechten, nicht aber auf der linken Seite
vorkommt. Also ist Bedingung (A) für Paare (n, dk) nie erfüllt; n hat keine Kante und ist
isoliert.

Damit kennen wir die Komponenten:

C1 = D(n) \ {n}, C2 = {n},
mit

|C1| = r − 1, |C2| = 1.
Corollary 48.10 (Galois-Gruppe für perfekte Zahlen). Ist n perfekt und r = |D(n)|, so
gilt

Hn
∼= SC1 × SC2

∼= Sr−1 × S1 ∼= Sr−1.

Die Galois-Gruppe des Systems Sam
n ist also die volle symmetrische Gruppe auf der Menge

der echten Teiler {d | n, d < n}. Insbesondere ist∣∣T (Sam
n )

∣∣ = |Hn| = (r − 1)!.

Remark 48.11. • Für gerade perfekte Zahlen n = 2p−1(2p − 1) hat n r = 2p Teiler
(je p Teiler von 2p−1 und 2 von 2p − 1), also

Hn
∼= S2p−1.

Im früheren, strengeren Swap-Modell (Produkt musste die rechte Seite der Gleichung
sein) ergab sich die Galois-Gruppe S2p−2 auf den inneren Teilern; durch die neue,
abgeschwächte Produktbedingung wird jetzt auch 1 mitgekoppelt, so dass alle echten
Teiler in einer Komponente liegen.
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• Für eine hypothetische ungerade perfekte Zahl N mit enorm vielen Teilern gilt die-
selbe Aussage:

HN
∼= Sτ(N)−1,

und Sam
N ist ein Galois-System mit einem Torsor

T (Sam
N ) ∼= Sτ(N)−1

von astronomischer Größe.

• Für allgemeine n ohne Perfektheitsgleichung kann die Komponentenstruktur von
Γam(n) wesentlich feiner sein; Hn ist dann ein echtes Teilprodukt von symmetrischen
Gruppen auf kleineren Blöcken. Perfektheit ist also in diesem Modell genau die
Bedingung, dass alle echten Teiler in einem großen Swap-Block landen und dort die
volle Symmetrie Sr−1 entsteht (während n selbst isoliert bleibt).

48.1 Hauptsatz der Galois-zirkulären Systeme im Fall perfekter Zahlen

Wir fassen die Situation für das kombinierte additive–multiplikative Swap-System Sam
n

zusammen und wenden den allgemeinen Hauptsatz der Galois-zirkulären Systeme auf per-
fekte Zahlen an.

48.1.1 Ausgangslage: Perfekte Zahlen und volle Symmetrie

Sei n eine perfekte Zahl,
σ(n) =

∑
d|n

d = 2n,

und
D(n) = {d1, . . . , dr}, 1 = d1 < · · · < dr = n

die Menge der positiven Teiler von n. Wir betrachten das System Sam
n mit

• Grundmenge X = D(n),

• Zirkelmenge
T (Sam

n ) = {σ · α | σ ∈ Hn }, α = (d1, . . . , dr),

• Swap-Gruppe Hn, erzeugt von allen Transpositionen (dk dℓ), die

1. in mindestens einer additiven Bindungsgleichung

di1 + · · ·+ dij = dm ∈ En

gemeinsam auf der linken Seite vorkommen und
2. deren Produkt dkdℓ ein Teiler von n ist.

Für perfekte n gilt:
d1 + · · ·+ dr−1 = dr = n,

d. h. alle echten Teiler d1, . . . , dr−1 erscheinen gemeinsam in einer Bindungsgleichung. Zu-
sammen mit d1 = 1 und d1dj = dj ∈ D(n) liefert dies einen Stern im Swap-Graphen auf
den echten Teilern; daher ist die Komponente

C1 := D(n) \ {n}

zusammenhängend, und n = dr liegt isoliert.
Nach der allgemeinen Graph-Analyse ergibt sich:
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Proposition 48.12 (Galois-Gruppe im perfekten Fall). Ist n perfekt und r = |D(n)|, so
gilt

Hn
∼= SC1 × S{n} ∼= Sr−1 × S1 ∼= Sr−1.

Die Automorphismengruppe des zirkulären Systems Sam
n ist somit

Aut(Sam
n ) = Hn

∼= Sr−1,

und Sam
n ist ein Galois-System mit

|T (Sam
n )| = |Hn| = (r − 1)!.

Im Folgenden setzen wir

G := Aut(Sam
n ) ∼= Sr−1, m := r − 1 = τ(n)− 1,

also G ∼= Sm.

48.1.2 Hauptsatz: Normalteiler vs. Galois-Untersysteme

Der allgemeine Hauptsatz der Galois-zirkulären Systeme (in der Version aus dem Primgraph-
Abschnitt) liefert eine antitone Galois-Verbindung zwischen

• Galois-geschlossenen zirkulären Untersystemen S′ ⪯ Sam
n auf derselben Grundmenge

D(n),

• Galois-geschlossenen Untergruppen H ⊆ G.

• Zu jedem H ⊆ G gehört ein zirkuläres Untersystem Sn,H auf einer quotientenartigen
Struktur (Blocksystem/Orbitenpartition),

• ist H ⊴ G normal, so besitzt Sn,H als Galois-Gruppe die Faktorgruppe

Aut(Sn,H) ∼= G/H,

und die Zirkelmenge T (Sn,H) ist ein Torsor unter G/H mit

|T (Sn,H)| = |G/H|.

Wir analysieren nun die Normalteilerstruktur von G ∼= Sm und übersetzen sie in dieser
Sprache.

48.1.3 Normalteilerstruktur von Sm für große m

Für m ≥ 5 ist die Normalteilerstruktur der symmetrischen Gruppe klassisch:

Lemma 48.13 (Normalteiler von Sm für m ≥ 5). Für m ≥ 5 besitzt Sm genau drei
Normalteiler:

{1}, Am, Sm.

Insbesondere ist Am einfach und der einzige nichttriviale echte Normalteiler.

Da für perfekte Zahlen n > 6 (insbesondere für alle bekannten geraden perfekten
Zahlen n = 2p−1(2p − 1) mit p ≥ 5 sowie für jede hypothetische ungerade perfekte Zahl)
die Teileranzahl τ(n) groß ist, gilt für alle „großen“ perfekten n:

m = τ(n)− 1 ≥ 5,

und damit
G ∼= Sm, Normalt.(G) = {{1}, Am, G}.
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48.1.4 Galois-quotienten und Blocksysteme

Nach dem Hauptsatz ergeben sich daraus (bis auf Isomorphie) genau drei Galois-geschlossene
Untersysteme Sn,H ⪯ Sam

n :

1. H = {1} (minimaler Normalteiler):

• Galois-Gruppe des Quotienten:

Aut(Sn,{1}) ∼= G/{1} ∼= Sm.

• Zirkelmenge:
T (Sn,{1}) ∼= T (Sam

n )
(keine Quotientierung).

• Blocksystem auf der Grundmenge D(n): trivial feine Partition in Einzelelemen-
te; auf der Ebene der Bindungsgleichungen entspricht das dem vollen Relatio-
nenpaket von Sam

n .

Dies ist einfach das ursprüngliche System Sam
n .

2. H = G = Sm (maximaler Normalteiler):

• Galois-Gruppe:
Aut(Sn,G) ∼= G/G ∼= 1.

• Zirkelmenge:
|T (Sn,G)| = |G/G| = 1,

d. h. alle Zirkel werden in genau einen „Superzirkel“ projiziert.
• Blocksystem: grobste Partition, die alle Elemente von D(n) in einem Block zu-

sammenfasst; im Sinne der Bindungsgleichungen geht jede feinere Information
verloren, es bleibt nur trivialste Summenstruktur.

Dies ist das „maximal kollabierte“ System.

3. H = Am (einziger echte Normalteiler):

• Galois-Gruppe:
Aut(Sn,Am) ∼= G/Am ∼= C2.

• Zirkelmenge:
|T (Sn,Am)| = |G/Am| = 2.

Die Zirkelmenge zerfällt also in genau zwei Galois-Orbits, die man anschaulich
als „gerade vs. ungerade“ Permutationen des Basiszirkels α interpretieren kann.

• Blocksystem auf D(n): Da G ∼= Sm auf den echten Teilern D(n) \ {n} transitiv
wirkt, und Am ebenfalls transitiv ist, hat die Orbitenpartition von Am auf den
echten Teilern genau einen Block:

C1 = D(n) \ {n}.

Der Teiler n selbst ist Fixpunkt von G und daher auch von Am, so dass die
Orbiten von Am auf D(n) genau

{C1, {n}}
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sind.
Der Quotient Sn,Am operiert also auf einer Grundmenge mit genau zwei „Su-
perpunkten“:

– einem Block, der alle echten Teiler zusammenfasst,
– dem separaten Block {n}.

Die Galois-Gruppe C2 wirkt auf dieser Zweipunktmenge trivial: da bereits G
(und damit Am) n punktweise fixiert und die ganzen echten Teiler nur unterein-
ander permutiert, ist die Wirkung von G auf der Blockmenge {C1, {n}} bereits
trivial, und damit auch die induzierte Wirkung von G/Am.

Zusammengefasst: Für perfekte n mit τ(n) − 1 ≥ 5 ist das Galois-Gitter der Galois-
quotientierten zirkulären Systeme

Sn,{1} ⪰ Sn,Am ⪰ Sn,G

eine Kette der Länge 3:

• ganz oben das volle System Sam
n mit Galois-Gruppe Sm,

• ganz unten das völlig kollabierte System mit trivialer Symmetrie,

• dazwischen ein einziges nichttriviales Galois-Quotientensystem mit Galois-Gruppe
C2 und stark zusammengedrückter Blockstruktur (alle echten Teiler in einem Block).

48.1.5 Folgerungen für Blocksysteme und Bindungsgleichungen

Aus der Einfachheit von Am für m ≥ 5 und der Transitivität der Wirkung von Sm auf den
echten Teilern folgen zwei strukturelle Aussagen:

Proposition 48.14 (Keine nichttrivialen Galois-Blöcke unter echten Teilern). Sei n per-
fekt mit τ(n)− 1 ≥ 5. Dann gibt es keine echte Galois-invariante Partition der Menge der
echten Teiler D(n) \ {n} in mehr als einen Block:

Jede G-invariante Blockpartition auf D(n) \ {n} ist entweder
{

trivial fein (Einzelpunkte),
oder trivial grob (einBlock).

Insbesondere lassen sich die echten Teiler nicht in kleinere, strukturell „sichtbare“ Symmetrie-
Blöcke zerlegen.

Beweis. G ∼= Sm wirkt transitiv auf D(n) \ {n} und ist für m ≥ 5 zweifach transitiv und
sogar primitv. In einer primitiven Permutationdarstellung existieren keine nichttrivialen
G-invarianten Blocksysteme; es bleiben nur die trivialen Partitionen (alles oder nichts).

Proposition 48.15 (Galois-geschlossene Bindungsgleichungen). Sei M ⊆ R das Relatio-
nenpaket, das aus den Bindungsgleichungen von Sam

n besteht, und sei

G = Aut(M) ∼= Sm.

Dann gilt für jedes Galois-geschlossene Relationenpaket M ′ ⊇M :

• entweder Aut(M ′) = G (keine neue Struktur, vollsymmetrisch),

• oder Aut(M ′) = Am (maximaler „even-only“-Bruch der Symmetrie),
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• oder Aut(M ′) = {1} (vollständiger Verlust aller Symmetrien).

Insgesamt gibt es also nur drei Galois-Typen von Relationenpaketen über D(n), die M
enthalten.

Beweis. Nach der Galois-Connection gilt

M ′ Galois-geschlossen ⇐⇒ M ′ = Inv(Aut(M ′)).

Da Aut(M ′) ein Galois-geschlossener Untergruppe von G ist, ist Aut(M ′) einer der drei
Normalteiler {1}, Am, G. Umgekehrt ist für jeden dieser Normalteiler H̃ das Paket MH̃ :=
Inv(H̃) Galois-geschlossen und entspricht dem zirkulären Untersystem Sn,H̃ .

Remark 48.16. Anschaulich heißt das:

• Im vollen System Sam
n sind die Bindungsgleichungen maximal symmetrisch: jede

Relation, die in der Struktur vorkommt, muss unter allen Permutationen der echten
Teiler invariant sein, sonst würde die Galois-Gruppe kleiner als Sm.

• Der einzige nichttriviale Galois-Quotient auf Gruppenebene ist das „Parity“-Quotient
G/Am ∼= C2. Auf der Ebene der Zirkelmenge trennt dies die Zirkeln in zwei Klassen
(gerade vs. ungerade Permutationen des Basiszirkels), während auf der Ebene der
Divisoren alle echten Teiler zu einem Block verschmelzen. Bindungsgleichungen, die
nur die Information „even vs. odd“ respektieren und keine feineren Muster unter-
scheiden, würden genau zu so einem M ′ mit Aut(M ′) = Am führen.

• Alles, was darüber hinausgeht (z. B. einzelne Teiler oder Teilerpaare bevorzugt), zer-
stört die globale Symmetrie völlig und führt zu Aut(M ′) = {1}. Das entspricht einem
System, in dem die Bindungsgleichungen die echten Teiler vollständig „adressieren“
und kein nichttriviales Permutationssymmetrie mehr zulassen.

Für große perfekte Zahlen n (insbesondere für alle geraden perfekten Zahlen mit p ≥ 5
und jede hypothetische ungerade perfekte Zahl) ist die Galois-Seite damit extrem rigide:

• Die volle Swap-Galois-Gruppe Sτ(n)−1 ist maximal groß, die Wirkung auf den echten
Teilern ist primitiv.

• Es gibt genau einen nichttrivialen „Galois-Zwischenzustand“: den Paritätsquotienten
mit Galois-Gruppe C2.

• Jede feinere Galois-invariante Struktur in den Bindungsgleichungen (z. B. Aufteilung
der echten Teiler in „interessante“ Blöcke) wäre automatisch nicht Galois-geschlossen
und würde die Galois-Eigenschaft im engen Sinn zerstören.

In der Sprache der Perfektheit kann man das so lesen: Perfekte Zahlen erzeugen Swap-
Galois-Systeme, in denen die echten Teiler aus Sicht der Galois-Theorie „als ein ein-
ziges homogenes Objekt“ erscheinen; jegliche feinere Struktur liegt jenseits der Galois-
invarianten Information.

48.2 Normalteiler, Quotienten und eine arithmetische Inverse-Galois-
Idee

Wir fassen die Situation in der Sprache der Galois-zirkulären Systeme zusammen und
formulieren eine arithmetische Analogie zur klassischen Galoistheorie und Inversen Ga-
loistheorie.
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48.2.1 Das Grundbild: G = Gal(n) ∼= T (Sn)

Zu jeder natürlichen Zahl n ≥ 2 haben wir ein Galois-zirkuläres System

Sn =
(
Xn, (fi)

)
konstruiert (im konkreten Fall das kombinierte additive–multiplikative Swap-System Sam

n

auf der Teilermenge Xn = D(n)), mit

• Galois-Gruppe
Gn := Aut(Sn),

• Zirkelmenge T (Sn) ⊆ Xk
n, auf der Gn regulär wirkt.

Ist Sn ein Galois-System im engen Sinn, so gilt

|T (Sn)| = |Gn| und T (Sn) ist ein Gn-Torsor.

In diesem Fall gibt es (nicht kanonische) Bijektionen

Gn ∼= T (Sn).

In Kurzform:
Gn = Gal(n) = Aut(Sn) ≃ T (Sn).

Für perfekte Zahlen n und unser System Sam
n ist dies konkret:

Aut(Sam
n ) ∼= Sτ(n)−1,

und
|T (Sam

n )| = (τ(n)− 1)!.

48.2.2 Hauptsatz: Normalteiler ↔ Galois-Quotienten

Der allgemeine Hauptsatz der Galois-zirkulären Systeme liefert für ein festes Galois-System
S mit Galois-Gruppe G = Aut(S) eine antitone Galois-Verbindung zwischen

• Galois-geschlossenen Untersystemen S′ ⪯ S auf derselben Grundmenge X, und

• Galois-geschlossenen Untergruppen H ⊆ G.

Im Spezialfall von Normalteilern N ⊴ G erhält man:

• Zu jedem Normalteiler N ⊴ G gibt es ein kanonisches Galois-Untersystem SN ⪯ S
mit

Aut(SN ) ∼= G/N.

• Die Zirkelmenge T (SN ) ist ein Torsor unter G/N , also

|T (SN )| = |G/N |.

Im arithmetischen Fall (S = Sn) schreiben wir dies suggestiv als

G := Gal(n) = Aut(Sn),

und zu jedem N ⊴ G gibt es ein Quotientensystem

Sn,N

mit
Gal(Sn,N ) := Aut(Sn,N ) ∼= G/N.
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48.2.3 Traumformel: G/N wieder als Gal(mN )

Deine Idee lässt sich nun so formulieren:

Wunschbild. Zu jeder Zahl n mit Galois-System Sn und Galois-Gruppe G =
Gal(n) sowie zu jedem Normalteiler N ⊴ G existiert eine natürliche Zahl
mN , so dass das Quotientensystem Sn,N isomorph zu einem „arithmetischen“
System SmN ist, also

Aut(SmN ) ∼= Aut(Sn,N ) ∼= G/N,

und damit
G/N = Gal(mN ) = Aut(SmN ) ≃ T (SmN ).

Dies wäre die exakte Analogie zur inversen Galoistheorie auf Körpern: Dort fragt man,
ob jede endliche Gruppe als Galoisgruppe eines Zerfällungskörpers über Q realisiert werden
kann. Hier fragt man innerhalb des „arithmetischen Universums“ der zirkulären Systeme
Sn, ob jede Quotientengruppe G/N wieder als Galois-Gruppe G(mN ) eines anderen Zah-
lensystems SmN auftreten kann.

48.2.4 Was ist bereits wahr? (abstrakte Ebene)

• Für jedes N ⊴ G = Gal(n) existiert das Quotientensystem Sn,N mit

Gal(Sn,N ) ∼= G/N, |T (Sn,N )| = |G/N |.

Das ist eine direkte Anwendung des Hauptsatzes der Galois-zirkulären Systeme.

• Die zusätzliche Forderung, dass Sn,N isomorph zu einem konkreten SmN für eine
natürliche Zahl mN ist (d. h. „aus einer Zahl stammt“), ist eine echte arithmetische
Inverse-Galois-Frage.

Es gibt keinerlei a priori Grund, dass jedes endliche Galois-System in unserer arithme-
tischen Familie (Sm)m∈N repräsentiert ist. Unsere Beispiele zeigen eher, dass wir eine sehr
spezielle Klasse von Gruppen erhalten.

48.2.5 Was wissen wir konkret im Swap-Modell?

Für das kombinierte Swap-System Sam
n haben wir strukturell:

• Die Swap-Gruppe Hn ist immer ein direktes Produkt von symmetrischen Gruppen:

Hn
∼=

t∏
j=1

Skj
,

wobei die kj die Größen der Zusammenhangskomponenten des Swap-Graphen sind.

• Für perfekte n ist dies besonders einfach:

Hn
∼= Sτ(n)−1,

d. h. ein einziger symmetrischer Faktor.
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Damit ist die Klasse der Gruppen, die als Gal(n) auftreten, stark eingeschränkt: Nur
direkte Produkte von Sk (wobei S2 ∼= C2, S1 ∼= 1) kommen vor. Entsprechend sind die
Quotienten G/N stets wieder Produkte von symmetrischen Gruppen und C2-Faktoren.

• Für perfekte n mit G ∼= Sm (m = τ(n) − 1 ≥ 5) ist die Menge der Normalteiler
extrem klein:

Norm(G) = {{1}, Am, Sm},

und die möglichen Quotienten sind

G/{1} ∼= Sm, G/Am ∼= C2, G/Sm ∼= 1.

In diesem Fall reduziert sich die Inverse-Galois-Frage auf:

– Existiert ein m1 mit Gal(m1) ∼= Sm (das wäre einfach m1 = n selbst)?
– Existiert ein m2 mit Gal(m2) ∼= C2?
– Existiert ein m3 mit trivialer Galois-Gruppe?

Numerisch (in deinen Sage-Experimenten) sieht man, dass es viele n mit trivialer
Gruppe und mit C2-Gruppe gibt, so dass irgendeine Realisierung von C2 und 1
existiert. Eine kanonische Zuordnung N 7→ mN haben wir jedoch nicht.

• Für allgemeine n mit G ∼=
∏
j Skj

sind die Normalteilerprodukte der Form

N =
∏
j

Nj , Nj ∈ {{1}, Akj
, Skj
},

und die Quotienten sind Produkte von Skj
und C2. Auch hier ist es plausibel, dass

viele dieser Gruppen als Aut(Sm) für geeignete m auftreten, aber ein vollständiger
Beweis wäre eine tiefe kombinatorisch-arithmetische Aufgabe.

48.2.6 Arithmetische Perspektive

In der hier entwickelten Sprache kann man deine Idee so formulieren:

Definition 48.17 (Arithmetische Realisierbarkeit eines Quotienten). Sei n gegeben und
G = Gal(n). Ein Normalteiler N ⊴ G heißt arithmetisch realisiert, wenn es eine natürliche
Zahl mN gibt mit

Aut(SmN ) ∼= G/N.

Remark 48.18. • Für jedesN ⊴ G ist der abstrakte QuotientG/N immer als Galois-
Gruppe eines zirkulären Quotientensystems Sn,N realisiert.

• Die zusätzliche Forderung, dass Sn,N zu einem „Zahlensystem“ SmN isomorph ist,
ist eine arithmetische Inverse-Galois-Vermutung innerhalb der Klasse {Sn}n∈N.

• Im perfekten Fall G ∼= Sτ(n)−1 ist die Struktur von G so starr (einfaches Am), dass
es nur drei Quotiententypen gibt. Deine numerischen Daten legen nahe, dass C2 und
die triviale Gruppe tatsächlich durch andere Zahlen m realisiert werden. Die offene
Frage ist, ob man diese mN systematisch und kanonisch aus n und N konstruieren
kann.
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• Für allgemeine n mit G ∼=
∏
j Skj

könnte man versuchen, die Blockstruktur der
Swap-Komponenten von n mit derjenigen anderer Zahlen m zu matchen, um G/N als
Produkt kleinerer symmetrischer Gruppen zu realisieren. Das wäre eine Art „Galois-
Decomposition“ auf der Ebene der Teilersysteme.

Zusammengefasst:

• Der Hauptsatz der Galois-zirkulären Systeme garantiert bereits eine exakte Entspre-
chung

N ⊴ Gal(n) ←→ Galois-Quotient Sn,N mit Aut(Sn,N ) ∼= Gal(n)/N.

• Das von dir vorgeschlagene „coole Bild“

Gal(n)/N = Gal(mN )

ist eine zusätzliche arithmetische Hypothese: jede solche Quotientengruppe soll wie-
der als Galois-Gruppe eines Zahlensystems SmN auftreten.

• Für perfekte n ist dieses Bild besonders transparent, weil Gal(n) ∼= Sτ(n)−1 eine
sehr einfache Normalteiler-Struktur hat; hier reduziert sich das Problem auf die
Realisierbarkeit von C2 und der trivialen Gruppe in der Familie (Sm).

In diesem Sinne ist dein Vorschlag eine arithmetische inverse Galoistheorie innerhalb
der Kategorie der zirkulären Teiler-Systeme. Eine vollständige Klassifikation, welche Grup-
pen in der Form Aut(Sn) auftreten (und wie Quotienten Gal(n)/N wieder als Aut(Sm)
realisiert werden können), ist eine offene, sehr spannende Forschungsrichtung.

49 Ein Galois-zirkuläres System zum bipartiten Graphen
Gf,n

Sei f : N→ N eine multiplikative Funktion und n ∈ N≥2 fest.

49.0.1 Der bipartite Graph Gf,n

Schreibe die Primfaktorzerlegungen

n =
r∏
i=1

pai
i , f(n) =

s∏
j=1

q
bj

j ,

wobei pi, qj Primzahlen und ai, bj ≥ 1.
Wir betrachten die beiden Mengen

Ln := { pai
i | 1 ≤ i ≤ r }, Rn := { qbj

j | 1 ≤ j ≤ s },

und setzen Vf,n := Ln ⊔Rn als disjunkte Vereinigung.
Definition 49.1 (Bipartiter Graph Gf,n). Wir definieren den gerichteten bipartiten Gra-
phen

Gf,n := (Vf,n, Ef,n),
wobei Ef,n ⊆ Ln ×Rn durch

(pai
i , q

bj

j ) ∈ Ef,n ⇐⇒ gcd
(
f(pai

i ), qbj

j

)
> 1.

Da qj prim ist, ist dies äquivalent zu

qj | f(pai
i ).
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Wir betrachten Gf,n als bipartiten Graphen mit einer festen Zweifärbung:

Ln „links“, Rn „rechts“.

Die Automorphismengruppe sei

Af,n := Aut(Gf,n),

d. h. alle Bijektionen σ : Vf,n → Vf,n, die

• die Bipartition erhalten: σ(Ln) = Ln, σ(Rn) = Rn, und

• die Kantenstruktur erhalten:

(x, y) ∈ Ef,n ⇐⇒
(
σ(x), σ(y)

)
∈ Ef,n.

49.0.2 Das Galois-zirkuläre System Sf,n

Wir übertragen die bekannte Konstruktion (Primgraph-System, van-der-Pol-System) auf
den Graphen Gf,n.

Definition 49.2 (Das System Sf,n). Sei

X := Vf,n = Ln ⊔Rn, k := |X| = r + s.

Fixiere eine Referenzanordnung

α := (v1, . . . , vk) ∈ Xk,

z. B. zunächst alle linken Knoten, dann alle rechten:

α = (pa1
1 , . . . , p

ar
r , q

b1
1 , . . . , q

bs
s ).

Ein Tupel x = (x1, . . . , xk) ∈ Xk heißt Zirkel von Sf,n, wenn

1. die xi eine Permutation von X bilden:

{x1, . . . , xk} = X,

(also alle Primblöcke von n und f(n) genau einmal vorkommen),

2. die bipartite Graphstruktur durch Umbenennung erhalten bleibt: für alle 1 ≤ i, j ≤ k
gilt

(vi, vj) ∈ Ef,n ⇐⇒ (xi, xj) ∈ Ef,n,

und zusätzlich

vi ∈ Ln ⇐⇒ xi ∈ Ln, vi ∈ Rn ⇐⇒ xi ∈ Rn,

d. h. die Zweifärbung wird respektiert.

Die Menge aller solcher k-Tupel nennen wir die Zirkelmenge

T (Sf,n) := {x ∈ Xk | x ist Zirkel }.
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Remark 49.3. Äquivalent: Ein Tupel x = (x1, . . . , xk) ∈ Xk ist genau dann Zirkel, wenn
es von der Form

x = σ · α :=
(
σ(v1), . . . , σ(vk)

)
für ein eindeutiges σ ∈ Af,n ist. Somit

T (Sf,n) = {σ · α | σ ∈ Af,n }.

Definition 49.4 (Rekonstruktionsfunktionen). Wir definieren (partielle) Rekonstrukti-
onsfunktionen

fi : Xk−1 ⇀ X, 1 ≤ i ≤ k,

indem wir für jeden Zirkel
x = (x1, . . . , xk) ∈ T (Sf,n)

setzen
fi(x1, . . . , x̂i, . . . , xk) := xi,

und außerhalb von T (Sf,n) bleiben die fi undefiniert.
Damit ist

Sf,n :=
(
X, (fi)1≤i≤k

)
ein k-zirkuläres System mit Zirkelmenge T (Sf,n).

49.0.3 Galois-Eigenschaft und Identifikation der Gruppe

Wir setzen
Aut(Sf,n) :=

{
τ : X → X

∣∣ τ bijektiv und erhält alle fi
}
.

Lemma 49.5. Für das System Sf,n gilt

Aut(Sf,n) = Aut(Gf,n) = Af,n.

Beweis. (i) Jede Graph-Automorphismus ist System-Automorphismus.
Sei τ ∈ Af,n = Aut(Gf,n) ein Automorphismus des bipartiten Graphen. Dann erhält τ

die Bipartition Ln, Rn und die Kanten Ef,n.
Ist x = (x1, . . . , xk) ∈ T (Sf,n) ein Zirkel, so ist x per Definition das Bild des Basiszirkels

α unter einem Graph- Automorphismus:

x = σ · α für ein σ ∈ Af,n.

Dann ist auch
τ(x) := (τ(x1), . . . , τ(xk)) = (τσ) · α

wieder ein Zirkel, da τσ ∈ Af,n. Also bildet τ Zirkel auf Zirkel ab und lässt die Zirkelmenge
invariant.

Da die fi auf Zirkeln nur „den fehlenden Eintrag“ rekonstruieren und τ Zirkeln auf
Zirkel abbildet, bleibt die Wirkung der fi unter τ erhalten. Somit τ ∈ Aut(Sf,n).

(ii) Jede System-Automorphismus ist Graph-Automorphismus.
Sei umgekehrt τ ∈ Aut(Sf,n). Dann gilt: Für jeden Zirkel x ∈ T (Sf,n) ist auch τ(x)

wieder Zirkel; T (Sf,n) ist also unter τ invariant.
Wie oben bemerkt, ist aber

T (Sf,n) = {σ · α | σ ∈ Af,n}.
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Die Wirkung von τ auf T (Sf,n) entspricht daher einer Permutation von Af,n, die mit
der Rechtswirkung kompatibel ist. Insbesondere erhält τ alle Relationen, die durch die
GraphstrukturGf,n definiert sind (Kanten, Zweifärbung). Damit ist τ ein Automorphismus
von Gf,n, also τ ∈ Af,n.

Somit ist Aut(Sf,n) = Af,n gezeigt.

Proposition 49.6 (Torsor-Eigenschaft). Die natürliche Wirkung von Af,n auf T (Sf,n),
gegeben durch

Af,n × T (Sf,n)→ T (Sf,n), (τ, (x1, . . . , xk)) 7→ (τ(x1), . . . , τ(xk)),

ist frei und transitiv. Insbesondere ist T (Sf,n) ein Af,n-Torsor und es gilt

|T (Sf,n)| = |Af,n|.

Beweis. Aus der Darstellung

T (Sf,n) = {σ · α | σ ∈ Af,n}

folgt wie üblich:
Transitivität: Zu σ1 · α und σ2 · α wähle τ = σ2σ

−1
1 ; dann

τ · (σ1 · α) = σ2 · α.

Freiheit: Wenn τ · (σ · α) = σ · α für ein σ, so gilt (σ−1τσ) · α = α. Nur die Identität
fixiert den Basiszirkel α, also σ−1τσ = id und τ = id.

Die Wirkung ist also regulär, T (Sf,n) ist ein Torsor und |T (Sf,n)| = |Af,n|.

49.0.4 Interpretation: Was sind die Zirkel?

Die Zirkel x = (x1, . . . , xk) ∈ T (Sf,n) sind genau die Umbenennungen der Primblock-
Faktoren von n und f(n), die die bipartite Kopplungsstruktur erhalten:

• Die linke Seite Ln (die Blöcke pa ∥ n) wird auf sich selbst permutiert; die rechte
Seite Rn (die Blöcke qb ∥ f(n)) ebenfalls.

• Für jedes Paar (pa, qb) gilt:

q | f(pa) ⇐⇒ zwischen den entsprechenden Positionen in x gibt es eine Kante.

Anschaulich: Ein Zirkel ist eine „Umetikettierung“ der linken und rechten Primblöcke,
die exakt das gleiche Muster von gemeinsamen Primteilern in den Werten f(pa) reprodu-
ziert. Die Menge aller solcher Umetikettierungen ist isomorph zur Galois-Gruppe

Gal(f, n) := Af,n = Aut(Gf,n),

und die Galois-Wirkung ist scharf transitiv auf diesen Zirkeln.

50 Rekonstruktion der Galoisgruppe aus Primfaktorzerle-
gungen

Im Prinzip hat man mit den Primfaktorzerlegungen von n, σ(n) und allen lokalen σ(pa)
genau die Daten, aus denen sich die Galoisgruppe (also A(σ,n) = Aut(G(σ,n))) rein kombi-
natorisch rekonstruieren lässt.

Im Folgenden schreiben wir das sauber auf.
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50.1 Die Daten

Sei
n =

r∏
i=1

pai
i

die Primfaktorzerlegung von n und

σ(n) =
s∏
j=1

q
bj

j

die von σ(n).
Wir nehmen pi, qj nicht an verschieden – in der Praxis kommt dieselbe Primzahl na-

türlich auf beiden Seiten vor, aber für die Graphkonstruktion betrachten wir sie als zwei
Vertex-Mengen:

• linke Seite (von n):
L := { pa1

1 , . . . , p
ar
r },

• rechte Seite (von σ(n)):
R := { qb1

1 , . . . , q
bs
s }.

Zu jedem linken Knoten pai
i kennen wir die lokale Teilersumme

σ(pai
i ) =

s∏
j=1

q
cij

j ,

wobei cij ≥ 0 die Exponenten sind (eventuell Null).

Kantenregel (deine Definition):

pai
i ist mit qbj

j verbunden ⇐⇒ gcd(σ(pai
i ), qbj

j ) > 1 ⇐⇒ qj | σ(pai
i ) ⇐⇒ cij > 0.

Damit ist die Inzidenzmatrix des bipartiten Graphen G(σ,n) genau

A = (aij)1≤i≤r, 1≤j≤s, aij :=

1, falls cij > 0,
0, falls cij = 0.

Wichtig: Die komplette Galoisgruppe A(σ,n) hängt nur von diesem 0/1-Muster
ab, d. h. davon, welche Primzahlen qj in welchen lokalen Summen σ(pai

i ) vor-
kommen.

50.2 Beschreibung der Galoisgruppe als Matrix-Aut-Gruppe

Wir betrachten Automorphismen des bipartiten Graphen, die die Seiten L und R getrennt
erhalten (so wie in der Implementierung).

Ein Automorphismus besteht aus einem Paar von Permutationen

πL ∈ Sr, πR ∈ Ss,

die vertauschen

• links die Knoten pai
i 7→ p

aπL(i)
πL(i) ,
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• rechts die Knoten q
bj

j 7→ q
bπR(j)
πR(j) ,

und die Inzidenz erhalten müssen:

aij = 1 ⇐⇒ pai
i ∼ q

bj

j ⇐⇒ p
aπL(i)
πL(i) ∼ q

bπR(j)
πR(j) ⇐⇒ aπL(i), πR(j) = 1.

Das heißt explizit:

A(σ,n) :=
{

(πL, πR) ∈ Sr × Ss
∣∣ aij = aπL(i),πR(j) ∀i, j

}
.

Das ist bereits eine vollständige Beschreibung, aber noch etwas „roh“. Wir verfeinern
sie, indem wir die Nachbarschaftsmuster gruppieren.

50.3 Nachbarschaftsvektoren und Typklassen

Für jeden linken Knoten pai
i definieren wir seinen Nachbarschaftsvektor

v(i) := (ai1, ai2, . . . , ais) ∈ {0, 1}s.

Das ist genau die Information, welche rechten Knoten mit pai
i verbunden sind, also welche

Primzahlen qj die lokale Summe σ(pai
i ) teilen.

Analog definieren wir für jeden rechten Knoten q
bj

j den Spaltenvektor

w(j) := (a1j , . . . , arj) ∈ {0, 1}r,

der beschreibt, mit welchen linken Knoten q
bj

j verbunden ist.
Nun führen wir Äquivalenzrelationen ein:

• auf der linken Seite:
i ∼L i′ ⇐⇒ v(i) = v(i′),

d. h. zwei linke Knoten sind äquivalent, wenn sie genau dieselben rechten Nachbarn
haben;

• auf der rechten Seite:
j ∼R j′ ⇐⇒ w(j) = w(j′),

d. h. zwei rechte Knoten haben exakt dieselben linken Nachbarn.

Das partitioniert die Indexmengen:

{1, . . . , r} =
⊔
α∈IL

Cα, {1, . . . , s} =
⊔
β∈IR

Dβ,

wobei in jedem Cα alle Zeilen von A gleich sind und in jedem Dβ alle Spalten gleich sind.

Wichtige Konsequenz: Jede Permutation, die innerhalb eines Cα die Indizes
permutiert, ist ein Graph-Automorphismus (und genauso für jedes Dβ).

Daraus folgt bereits ein großer „Basisteil“ der Galoisgruppe:

KL :=
∏
α∈IL

S|Cα|, KR :=
∏
β∈IR

S|Dβ |,

also die volle symmetrische Gruppe auf jedem Block von identischem Nachbarschaftsmus-
ter.
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50.4 Blockstruktur und volle Beschreibung

Nun komprimieren wir die Matrix A entlang dieser Blöcke:

• jede Zeilenklasse Cα wird zu einem „Superknoten“ α,

• jede Spaltenklasse Dβ wird zu einem „Superknoten“ β,

• wir definieren eine Block-Inzidenzmatrix

B = (bαβ)α∈IL, β∈IR
, bαβ :=

1, falls für alle (i ∈ Cα, j ∈ Dβ) aij = 1,
0, falls für alle (i ∈ Cα, j ∈ Dβ) aij = 0.

Da in jedem Block alle Zeilen bzw. Spalten gleich sind, ist bαβ wohldefiniert.
Es kann nun vorkommen, dass verschiedene Zeilenklassen Cα, Cα′ identische Blockzei-

len in B haben (also dieselbe Folge (bαβ)β), und analog für Spaltenklassen.
Das führt zur nächsten Stufe der Symmetrie:

• man kann ganze Klassen Cα ↔ Cα′ vertauschen,

• und gleichzeitig die passenden Spaltenklassen Dβ ↔ Dβ′ ,

• genau dann, wenn die Blockmatrix B durch eine solche Permutation invariant bleibt.

Formal:

Sei Γ die Gruppe aller Paare (φ,ψ) von Permutationen

φ : IL → IL, ψ : IR → IR,

mit
bαβ = bφ(α),ψ(β) für alle α, β.

Dann ist Γ eine weitere Automorphismengruppe der komprimierten Struktur.

Die gesamte Galoisgruppe A(σ,n) ist dann (bis kanonische Isomorphie)

A(σ,n) ∼=
( ∏
α∈IL

S|Cα|
)
×
( ∏
β∈IR

S|Dβ |
)
⋊ Γ.

Anschaulich:

1. Man darf beliebig in jedem „Typ-Block“ von linken Knoten permutieren (Primzah-
len, die identisch an σ koppeln).

2. Man darf beliebig in jedem „Typ-Block“ von rechten Knoten permutieren (Primfak-
toren von σ(n), die identische Nachbarschaft haben).

3. Darüber hinaus darf man komplette Blöcke gegeneinander vertauschen, wenn die
gesamte Blockstruktur gleich bleibt.

In vielen konkreten Fällen ist Γ trivial, weil die Blockmatrix B keine weitergehenden
Symmetrien hat; dann ist einfach

A(σ,n) ∼=
∏
α

S|Cα| ×
∏
β

S|Dβ |.
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50.5 Übertragung in arithmetische Sprache

Arithmetisch kann man das wie folgt formulieren:

• Für jede Primzahl p | n betrachte die Menge

P (p) := { q | σ(n) | q | σ(pvp(n)) }.

Das ist die Menge der rechten Primfaktoren, die mit p über eine Kante verbunden
sind.

• Für jede Primzahl q | σ(n) betrachte

Q(q) := { p | n | q | σ(pvp(n)) },

also die Menge der linken Primfaktoren, die mit q verbunden sind.

Dann gilt:

• p1, p2 | n liegen genau dann im gleichen linken Block Cα, wenn

P (p1) = P (p2),

• q1, q2 | σ(n) liegen genau dann im gleichen rechten Block Dβ, wenn

Q(q1) = Q(q2).

Ferner gilt:

Eine Paar-Permutation (πL, πR) liegt genau dann in der Galoisgruppe, wenn

P (p) = {q} ⇐⇒ P (πL(p)) = {πR(q)} für alle p | n, q | σ(n),

also die Mengen P (p) und Q(q) durch (πL, πR) „mitwandern“.

50.6 Verbindung zu geraden perfekten Zahlen (Kontrollbeispiel)

Für ein gerades perfektes n = 2p−1(2p − 1) gilt:

• Es gibt genau zwei linke Knoten: 2p−1 und M = 2p − 1.

• Es gibt genau zwei rechte Knoten: 2p und M .

• Die Nachbarschaft ist immer

P (2p−1) = {M}, P (M) = {2p},

Q(M) = {2p−1}, Q(2p) = {M}.

Damit haben alle vier Vektorfamilien {P (p)}, {Q(q)} verschiedene Werte – die Block-
matrix beschreibt zwei disjunkte Kanten, und diese beiden Kanten können vertauscht
werden. Daraus folgt

A(σ,n) ∼= C2,

was exakt mit den numerischen Ergebnissen übereinstimmt.
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Kurzfassung

Kennt man alle Primpotenzen von n, σ(n) und alle lokalen Zerlegungen σ(pa), so kennt
man die Inzidenzmatrix A. Die Galoisgruppe A(σ,n) ist dann explizit die Menge aller Paa-
re von Permutationen auf den Primfaktoren von n und σ(n), die diese Matrix invari-
ant lassen – und ihre Struktur zerfällt in Produkte von symmetrischen Gruppen auf den
„Nachbarschafts-Typen“ zusammen mit einer (meist kleinen) Block-Aut-Gruppe Γ.

51 Adjungieren einer Primpotenz und der Effekt auf die
Galoisgruppe

In diesem Abschnitt fixieren wir die bisherige Notation:

n =
r∏
i=1

pai
i , σ(n) =

s∏
j=1

q
bj

j ,

und den zugehörigen bipartiten Graphen

G(σ,n) = (L ⊔R,E),

mit
L = {pa1

1 , . . . , p
ar
r }, R = {qb1

1 , . . . , q
bs
s },

wobei eine Kante
pai
i ∼ q

bj

j ⇐⇒ qj | σ(pai
i )

existiert. Die Galoisgruppe von n ist

A(σ,n) := Aut(G(σ,n)),

bestehend aus Paaren von Permutationen (πL, πR), die die Inzidenzstruktur erhalten.
Wir untersuchen nun, was mit der Galoisgruppe passiert, wenn wir zu n eine Primpo-

tenz pa adjungieren, d. h.
n′ := n · pa.

Lemma 51.1 (Adjungieren einer Primpotenz). Sei n ∈ N, sei p eine Primzahl und a ≥ 1,
und setze n′ := n · pa. Schreibe

A(σ,n) = Aut(G(σ,n)), A(σ,n′) = Aut(G(σ,n′)).

Dann gilt:

1. Es gibt einen kanonischen Gruppenhomomorphismus

res : A(σ,n′) −→ A(σ,n),

der eine Automorphie von G(σ,n′) auf die alten Knoten L⊔R von G(σ,n) einschränkt.
Das Bild res(A(σ,n′)) ist eine Untergruppe von A(σ,n).

2. Das Bild ist genau der Stabilisator des neuen lokalen Nachbarschaftsmusters:

185



• Falls p ∤ n (also pa ein neuer Primfaktor von n′ ist), sei v′(pa) der Nachbar-
schaftsvektor des neuen linken Knotens pa in der Inzidenzmatrix des Graphen
G(σ,n′) (d. h. die Zeile, die angibt, mit welchen rechten Knoten pa verbunden
ist). Dann ist

res(A(σ,n′)) =
{
φ ∈ A(σ,n)

∣∣∣ φ erhält das Muster v′(pa) auf den alten rechten Knoten
}
.

Insbesondere ist res(A(σ,n′)) eine Untergruppe von A(σ,n), die aus denjenigen
Automorphismen besteht, welche den neuen Zeilenvektor v′(pa) (und die da-
durch induzierte Blockstruktur der rechten Seite) stabilisieren.

• Falls p | n (also n = pa0 ·m und n′ = pa0+a ·m), werde der alte linke Knoten pa0

durch den neuen Knoten pa0+a ersetzt, dessen Nachbarschaftsvektor v′(pa0+a)
im Allgemeinen vom ursprünglichen v(pa0) abweicht. Dann ist

res(A(σ,n′)) =
{
φ ∈ A(σ,n)

∣∣∣ φ erhält die verfeinerte Blockstruktur, die durch v′(pa0+a) auf der linken Seite entsteht
}
.

Insbesondere zerfallen eventuell bisherige linke Typklassen (Zeilenklassen) in
kleinere Klassen, so dass der entsprechende Symmetriefaktor in A(σ,n) zu einem
kleineren Produkt von Symmetrischen Gruppen schrumpft.

3. Der Kern von res beschreibt genau die neuen Symmetrien, die nur auf den neu
entstandenen Knoten spielen. Insbesondere gilt:

• Jeder Block von neuen rechten Knoten (d. h. Primfaktoren von σ(n′), die in
σ(n) noch nicht vorkamen und identische Nachbarschaftsmuster besitzen) liefert
einen Faktor

St ≤ ker(res),

wobei t die Anzahl der Knoten in diesem Block ist.
• Analog kann es neue Blöcke von linken Knoten geben (z. B. wenn mehrere

neue Primfaktoren mit identischen lokalen Summen vorkommen), die zusätzli-
che Symmetrien in ker(res) erzeugen.

Insbesondere lässt sich A(σ,n′) (bis kanonische Isomorphie) als semidirektes Produkt

A(σ,n′) ∼= ker(res) ⋊ res(A(σ,n))

beschreiben. Dabei ist res(A(σ,n)) eine Untergruppe von A(σ,n), die durch das neue lokale
σ-Muster bestimmt ist, und ker(res) wird vollständig aus den neuen Typklassen der zu pa

gehörigen Primfaktoren von σ(n′) erzeugt.

Beweisskizze. Jedes Element von A(σ,n′) ist eine Automorphie des Graphen G(σ,n′), das in
der bisherigen Notation als Paar von Permutationen (π′

L, π
′
R) auf den linken und rechten

Knoten beschrieben wird. Beschränkt man (π′
L, π

′
R) auf die alten Knoten L ⊔ R, so er-

hält man ein Paar (πL, πR), das die Inzidenzstruktur des ursprünglichen Graphen G(σ,n)
erhalten muss, also in A(σ,n) liegt. Das definiert res und zeigt, dass res ein Gruppenhomo-
morphismus ist; das Bild ist per Definition eine Untergruppe von A(σ,n).

Die Charakterisierung des Bildes als Stabilisator folgt aus der Beobachtung, dass jedes
Element von A(σ,n′) die neue Zeile (bzw. die veränderte Zeile im Fall p | n) sowie alle neuen
Spalten der Inzidenzmatrix A′ invariabel lassen muss. Anders formuliert: Ein Automor-
phismus des alten Graphen G(σ,n) lässt sich genau dann zu einem Automorphismus von
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G(σ,n′) fortsetzen, wenn er die durch pa eingeführten Nachbarschaftsmuster respektiert.
Dies ist genau die beschriebene Stabilisatorbedingung.

Der Kern ker(res) besteht aus Automorphismen, die auf den alten Knoten L⊔R trivial
sind. Sie können also nur auf den neu hinzugefügten Typklassen von Knoten nichttrivial
wirken. In jedem Block von neuen Knoten mit identischer Nachbarschaft (sei es auf der
linken oder rechten Seite) ist die volle symmetrische Gruppe St enthalten, und dies er-
zeugt den beschriebenen Produktfaktor in ker(res). Zusammengenommen ergibt dies die
semidirekte Produktstruktur

A(σ,n′) ∼= ker(res) ⋊ res(A(σ,n)).

Remark 51.2. Konzeptionell kann man Lemma 51.1 als exakte Analogie zur Körper-
Galois-Theorie lesen: Das „Adjungieren“ einer primpotenten Komponente pa verfeinert die
arithmetische Struktur und schränkt die zulässigen Automorphismen auf einen Stabilisator
ein, während gleichzeitig neue Symmetrien auf den

52 Iterative Konstruktion von A(σ,n) über die Primfaktoren
Wir wollen die Situation aus Lemma 51.1 systematisch für alle Primfaktoren von n orga-
nisieren und so eine Art Galois-Turm im Sinne der Körper-Galois-Theorie erhalten.

Schrittweise Adjungierung der Primfaktoren

Sei
n =

r∏
i=1

pai
i

die (fix sortierte) Primfaktorzerlegung von n, etwa mit p1 < p2 < · · · < pr. Wir definieren
die sukzessiven Teilprodukte

n(k) :=
k∏
i=1

pai
i , k = 1, . . . , r,

so dass n(r) = n.
Für jedes k betrachten wir den zugehörigen Graphen

G(k) := G(σ,n(k))

und die Galoisgruppe
A(k) := A(σ,n(k)) := Aut

(
G(k)).

Der Übergang von n(k−1) zu n(k) entspricht genau dem Adjungieren der Primpotenz
pak
k :

n(k) = n(k−1) · pak
k .
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Restriktionsabbildungen und kurze exakte Sequenzen

Aus Lemma 51.1 erhalten wir für jeden Schritt eine kanonische Restriktionsabbildung

resk : A(k) −→ A(k−1), k = 2, . . . , r,

die eine Automorphie von G(k) einfach auf die alten Knoten des Graphen G(k−1) ein-
schränkt.

Wir schreiben

K(k) := ker(resk), S(k−1) := resk
(
A(k)) ≤ A(k−1).

Lemma 52.1 (Exakte Sequenzen beim sukzessiven Adjungieren). Mit obiger Notation
gilt für jeden Schritt k = 2, . . . , r eine kurze exakte Sequenz

1 −→ K(k) −→ A(k) resk−−−−→ S(k−1) −→ 1,

wobei:

1. S(k−1) ist der Stabilisator der neuen σ-Nachbarschaft von pak
k (und der neu auftreten-

den Primfaktoren von σ(n(k))) in A(k−1). Insbesondere ist S(k−1) eine Untergruppe
von A(k−1):

S(k−1) =
{
φ ∈ A(k−1)

∣∣∣ φ respektiert das durch pak
k induzierte neue Nachbarschaftsmuster

}
.

2. K(k) wird vollständig von den Symmetrien auf den neu hinzugekommenen Typklas-
sen von Knoten erzeugt. Konkret:

• Jeder Block von neuen rechten Knoten (Primfaktoren von σ(n(k)), die in σ(n(k−1))
noch gar nicht vorkamen und identische Nachbarschaftsvektoren haben) trägt
einen Faktor St zu K(k) bei, wobei t die Blockgröße ist.

• Analog dazu liefern eventuell neu entstandene linke Typklassen (z. B. wenn
mehrere neu adjungierte Primfaktoren gleiche lokale Summenstruktur haben)
weitere Symmetriefaktoren in K(k).

3. Damit besitzt A(k) (bis kanonische Isomorphie) die Struktur eines semidirekten Pro-
dukts

A(k) ∼= K(k) ⋊ S(k−1).

Beweisskizze. Die Existenz von resk und die Beschreibung von ker(resk) und resk(A(k))
sind direkte Anwendungen von Lemma 51.1, angewendet auf

n(k−1) 7−→ n(k) = n(k−1) · pak
k .

Die Exaktheit der Sequenz

1→ K(k) → A(k) resk−−→ S(k−1) → 1

ist dann formal: K(k) ist der Kern, das Bild von resk ist per Definition S(k−1), und die
Surjektivität A(k) → S(k−1) ist per Definition trivial. Die semidirekte Produktstruktur
folgt aus Standard-Gruppentheorie, sobald eine (nicht-kanonische) Wahl von Schnittab-
bildungen S(k−1) → A(k) getroffen ist.
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Ein Galois-Turm über den Primfaktoren

Durch Iteration von Lemma 52.1 ergibt sich eine Galois-Turmstruktur von A(r) = A(σ,n)
über dem ersten Primfaktor pa1

1 :

A(r) resr−−−→ S(r−1) ≤ A(r−1) resr−1−−−−−→ S(r−2) ≤ A(r−2) resr−2−−−−−→ · · · res2−−−→ S(1) ≤ A(1).

Dabei ist A(1) = A(σ,pa1
1 ) typischerweise sehr einfach (lokale Galoisgruppe der ersten

Primpotenz), und jeder Schritt k wird durch eine kurze exakte Sequenz

1 −→ K(k) −→ A(k) resk−−−→ S(k−1) −→ 1

beschrieben, wobei K(k) die neuen Symmetrien von pak
k und deren σ-Primfaktoren enthält,

und S(k−1) als arithmetischer Stabilisator im vorherigen Schritt A(k−1) erscheint.

Remark 52.2. Konzeptionell ist dies völlig analog zur Körper-Galois-Theorie:

• Die Zahlen n(k) spielen die Rolle von Zwischenkörpern,

• die Gruppen A(k) sind ihre Galoisgruppen,

• und das Adjungieren n(k−1) ⇝ n(k) entspricht dem Adjungieren eines lokalen Datums
(der Primpotenz pak

k bzw. ihres σ-Verhaltens).

Die Liste der K(k) und S(k−1) gibt eine Art Kompositionsreihe von A(σ,n), deren Faktoren
direkt aus den σ-Nachbarschaftsmustern der einzelnen Primpotenzen pak

k gelesen werden
können.

53 Anwendung auf ungerade perfekte Zahlen in Euler-Form
Wir wenden nun die iterative Konstruktion aus Lemma 52.1 auf (hypothetische) ungerade
perfekte Zahlen in Euler-Form an.

Euler-Darstellung und Wahl einer Startsortierung

Sei N eine ungerade perfekte Zahl. Nach Euler hat N die Form

N = p4λ+1 ·
t∏
i=1

q2ai
i ,

wobei
p, q1, . . . , qt paarweise verschiedene ungerade Primzahlen sind,

p die sogenannte Euler-Primzahl (mit Exponent ≡ 1 mod 4) ist und alle anderen Expo-
nenten gerade sind.

Wir schreiben der Übersicht halber

P := p4λ+1, Qi := q2ai
i (i = 1, . . . , t).

Für unsere iterative Konstruktion ist es praktisch, die Primfaktoren von N wie folgt
zu sortieren:

• Zuerst kommt die Euler-Potenzen P .
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• Danach alle Quadrate Qi, gruppiert nach identischem σ-Nachbarschaftstyp (siehe
unten).

Formal definieren wir also eine Reihenfolge

n(1) := P, n(2) := P ·Qi2 , . . . , n(t+1) := P ·Qi2 · · ·Qit+1 = N,

wobei {i2, . . . , it+1} = {1, . . . , t} eine geeignete Permutation der Indizes ist, die die Qi
nach ihren σ-Typen sortiert (gleiche σ-Nachbarschaftstypen hintereinander).

Für jedes k definieren wir wie zuvor

G(k) := G(σ,n(k)), A(k) := A(σ,n(k)) = Aut
(
G(k)).

Lokale σ-Typen im Euler-Fall

Zur Erinnerung (vgl. Abschnitt zu P (·) und Q(·)): Für jede Primzahl r | n(k) definieren
wir ihre σ-Nachbarschaft

P (r) := { s | σ(n(k)) | s | σ(rvr(n(k))) },

also die Menge der rechten Primfaktoren von σ(n(k)), die die lokale Summe σ(rvr(n(k)))
teilen.

Analog definieren wir für jede Primzahl s | σ(n(k)):

Q(s) := { r | n(k) | s | σ(rvr(n(k))) }.

Zwei Primfaktoren r1, r2 | n(k) sind dann genau dann in der gleichen linken Typklasse,
wenn P (r1) = P (r2); analog für die rechten Typklassen über den Q(s).

Im Euler-Fall zerfallen die linken Knoten von G(t+1) = G(σ,N) damit zunächst grob in:

• den Euler-Typ
E := {P},

mit Nachbarschaft
P (P ) = { s | σ(N) | s | σ(p4λ+1) },

• und die Quadrat-Typen

Qα :=
{
Qi
∣∣ P (Qi) ist ein fixer Nachbarschaftsvektor

}
,

d. h. jede Klasse Qα besteht aus all den Qi, deren lokale Teiler σ(Qi) genau dieselbe
Menge von rechten Primfaktoren enthält.

Iterativer Aufbau der Galoisgruppe im Euler-Fall

Wir wenden nun Lemma 52.1 auf die Folge

n(1) = P, n(2), . . . , n(t+1) = N

an.
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Lemma 53.1 (Euler-Turm der Galoisgruppen). Mit obiger Notation sei N eine ungerade
perfekte Zahl in Euler-Form. Dann existiert eine Folge von Gruppen

A(1) = A(σ,P ), A
(2) = A(σ,n(2)), . . . , A

(t+1) = A(σ,N),

zusammen mit Restriktionsabbildungen

resk : A(k) → A(k−1), k = 2, . . . , t+ 1,

so dass für jedes k eine kurze exakte Sequenz

1 −→ K(k) −→ A(k) resk−−−−→ S(k−1) −→ 1

existiert, mit folgenden Eigenschaften:

1. S(k−1) ≤ A(k−1) ist der Stabilisator des σ-Nachbarschaftstyps der neu adjungierten
Potenz (also von Qik für k ≥ 2) und der dadurch neu auftretenden rechten Primfak-
toren in G(k).

2. K(k) ist ein (direktes) Produkt von symmetrischen Gruppen auf den neu entstande-
nen Typklassen von Knoten, d. h. auf den neuen Blöcken von linken Quadrat-Typen
und rechten σ-Primfaktoren, die in G(k−1) noch nicht vorhanden waren.
Insbesondere entsteht jedesmal, wenn wir eine Quadrat-Potenzen Qi adjungieren,
deren σ-Nachbarschaftsvektor P (Qi) identisch ist zu dem eines bereits existierenden
Blocks Qα, ein neuer Beitrag

Sm ↪→ K(k),

wobei m die Größe des vergrößerten Blocks (alte plus neue Qi) beschreibt. Analog
für neue rechte Blöcke von Primfaktoren von σ(n(k)).

3. Für jedes k besitzt A(k) die Struktur eines semidirekten Produkts

A(k) ∼= K(k) ⋊ S(k−1).

Beweisskizze. Dies ist eine direkte Spezialisierung von Lemma 52.1 auf die spezielle Fak-
torisierung

n(k) = P ·Qi2 · · ·Qik
des Euler-Produkts. Die Beschreibung von K(k) und S(k−1) erfolgt genau wie dort: K(k)

permutiert diejenigen Knoten (links wie rechts), die in G(k) neu hinzukommen und inner-
halb ihrer Typklasse identische Nachbarschaft haben; S(k−1) ist das Bild von A(k) unter
der Restriktion auf den alten Graphen G(k−1) und kann als arithmetischer Stabilisator des
neuen Nachbarschaftsmusters interpretiert werden.

Strukturelle Konsequenzen für A(σ,N)

Durch Iteration von Lemma 53.1 erhalten wir eine Art Euler-Turm von Untergruppen

A(σ,N) = A(t+1) rest+1−−−−−→ S(t) ≤ A(t) rest−−−→ S(t−1) ≤ A(t−1) ...−−→ S(1) ≤ A(1) = A(σ,P ).

Jeder Schritt liefert eine kurze exakte Sequenz

1→ K(k) → A(k) → S(k−1) → 1,

wobei K(k) immer (bis Isomorphie) ein direktes Produkt von Symmetrischen Gruppen auf
den σ-Typklassen der neu adjungierten Quadrat-Primfaktoren und ihrer neuen rechten
Primfaktoren ist.

Insbesondere gilt:

191



• Die Quadrat-Primfaktoren q2ai
i mit dem gleichen σ-Nachbarschaftsvektor P (Qi) tra-

gen kanonisch einen Faktor Smα zur Galoisgruppe bei, wobeimα die Größe der Klasse
Qα ist. Das sind ganz konkrete Normalteiler von A(σ,N), die direkt aus der Euler-
Faktorisierung und den lokalen σ-Zerlegungen σ(q2ai

i ) ablesbar sind.

• Die Euler-Potenzen P selbst bildet im Euler-Szenario eine eigene Typklasse (sofern
ihr Nachbarschaftsvektor sich von allen P (Qi) unterscheidet); in diesem generischen
Fall ist die durch P erzeugte linke Klasse eine Einpunktklasse und trägt kein nicht-
triviales Symmetrieelement bei. Alle „nichttrivialen“ Symmetrien der Galoisgruppe
kommen dann aus der quadratischen Komponente.

Man kann diese Beobachtungen als eine Art Euler-Kompositionsreihe von A(σ,N) lesen:

A(σ,N) ∼=
(∏
α

Smα

)
⋊Grest,

wobei die Produkte über alle Quadrat-Typklassen Qα laufen und Grest eine (typischer-
weise kleinere) Restgruppe ist, die die Wechselwirkungen zwischen Euler-Primzahl und
quadratischer Komponente (sowie eventuelle Block-Symmetrien zwischen verschiedenen
Typklassen) kodiert.

Somit erlaubt schon die Euler-Darstellung einer ungeraden perfekten Zahl, zusammen
mit den lokalen Zerlegungen σ(p4λ+1) und σ(q2ai

i ), die Konstruktion einer ganzen Reihe
expliziter Normalteiler und Symmetriefaktoren von A(σ,N), ganz im Sinne der körpertheo-
retischen Galois-Turm-Analogien.

54 Euler-Kompositionsreihen und Euler-Gruppen
In diesem Abschnitt abstrahieren wir das Muster, das in den Galoisgruppen A(σ,n) der
σ-Graphen auftritt, und definieren eine Klasse von endlichen Gruppen, die wir Euler-
Gruppen nennen.

54.1 Euler-Schritte und Euler-Türme

Wir wollen die Beobachtung formalisieren, dass in unserem σ-Kontext die Galoisgruppen
iterativ durch “Anhängen” von Produkten symmetrischer Gruppen entstehen.

Definition 54.1 (Euler-Schritt). Ein Euler-Schritt ist eine kurze exakte Sequenz endlicher
Gruppen

1 −→ K −→ H
π−→ S −→ 1,

bei der der Kern K ein direktes Produkt von symmetrischen Gruppen ist, d. h.

K ∼=
r∏
j=1

Snj

mit nj ≥ 2.
Optional (und in unserem σ-Setting erfüllt) kann man zusätzlich verlangen, dass die

Sequenz splittet, also
H ∼= K ⋊ S.
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Definition 54.2 (Euler-Turm). Sei G eine endliche Gruppe. Ein Euler-Turm auf G ist
eine endliche Kette von Untergruppen

1 = G0 ⊴ G1 ⊴ . . . ⊴ Gr = G

zusammen mit kurzen exakten Sequenzen

1 −→ Ki −→ Gi
πi−−→ Gi−1 −→ 1, i = 1, . . . , r,

so dass jeder Schritt ein Euler-Schritt ist, d. h. für jedes i gilt

Ki
∼=
∏
j

Sni,j

mit ni,j ≥ 2.

Definition 54.3 (Euler-Gruppe). Eine endliche Gruppe G heißt Euler-Gruppe, wenn es
auf G einen Euler-Turm gibt. Eine solche Kette nennen wir eine Euler-Kompositionsreihe
von G.

Bemerkung: Eine Euler-Kompositionsreihe ist im Allgemeinen keine Kompositionsrei-
he im klassischen Sinne (deren Faktoren einfach sein müssen), aber formal sehr ähnlich:
G wird Schritt für Schritt aus „Bausteinen“ aufgebaut, die direkt Produkte von symme-
trischen Gruppen sind.

54.2 Beispiele und Stabilitätseigenschaften

Proposition 54.4 (Symmetrische Gruppen sind Euler-Gruppen). Für jedes n ≥ 2 ist die
symmetrische Gruppe Sn eine Euler-Gruppe.

Beweis. Wir betrachten die triviale Kette

1 ⊴ Sn.

Dies ist ein Euler-Turm der Länge 1, mit einzigem Schritt

1 −→ Sn −→ Sn −→ 1 −→ 1.

Der Kern ist K1 = Sn, also ein direktes Produkt aus genau einer symmetrischen Gruppe.
Damit ist die Bedingung aus der Definition erfüllt.

Proposition 54.5 (Direkte Produkte von Symmetrischen sind Euler-Gruppen). Seien
n1, . . . , nr ≥ 2 und

G =
r∏
j=1

Snj .

Dann ist G eine Euler-Gruppe.

Beweis. Auch hier genügt die Kette
1 ⊴ G

mit dem einzigen Euler-Schritt

1 −→ G −→ G −→ 1 −→ 1.

Der Kern K1 = G ist per Annahme ein direktes Produkt von symmetrischen Gruppen.
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Proposition 54.6 (Stabilität unter Semidirektprodukten). Sei H eine Euler-Gruppe und
K ∼=

∏
j Snj ein direktes Produkt von symmetrischen Gruppen. Dann ist jedes Semidirekt-

produkt
G = K ⋊H

eine Euler-Gruppe.

Beweis. Sei
1 = H0 ⊴ H1 ⊴ · · · ⊴ Hs = H

ein Euler-Turm für H, mit Schritten

1 −→ Ki −→ Hi
πi−−→ Hi−1 −→ 1

und Kernen Ki
∼=
∏
j Sni,j .

Wir definieren eine Kette von Untergruppen von G durch

Gi := K ⋊Hi (i = 0, . . . , s)

(wobei G0 = K ⋊ H0 ∼= K) und setzen Gs+1 := G (hier ist Gs+1 = Gs; wir können die
Kette auch bei Gs beenden).

Zwischen aufeinanderfolgenden Gi haben wir kurze exakte Sequenzen

1 −→ Ki −→ Gi
π̃i−−→ Gi−1 −→ 1,

wobei Ki wie oben ein Produkt von Symmetrischen ist und π̃i auf dem Faktor H durch
πi induziert wird.

Zusätzlich haben wir am Anfang

1 −→ K −→ G0 −→ 1 −→ 1,

wobei K selbst ein Produkt symmetrischer Gruppen ist.
Damit erhalten wir einen Euler-Turm auf G.

Insbesondere ist die Klasse der Euler-Gruppen abgeschlossen unter dem Anhängen von
symmetrischen Kernen per Semidirektprodukt.

54.3 Einfache Euler-Gruppen

Es stellt sich die Frage, welche einfachen Gruppen Euler-Gruppen sind.

Proposition 54.7 (Einfache Euler-Gruppen). Sei G eine endliche, nichttriviale, einfache
Gruppe. Dann ist G genau dann eine Euler-Gruppe, wenn G ∼= S2 ∼= C2 ist.

Beweis. Angenommen, G ist einfach und Euler. Dann gibt es einen Euler-Turm

1 = G0 ⊴ G1 ⊴ · · · ⊴ Gr = G.

Da G einfach ist, hat es keine echten nichttrivialen Normalteiler. Also kann die Kette
nur aus den trivialen Normalteilern bestehen, d.h. wir müssen r = 1 haben und G0 = 1,
G1 = G.

Der einzige Schritt ist dann

1 −→ K1 −→ G −→ 1 −→ 1
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mit K1 ∼= G, und per Definition muss

G ∼= K1 ∼=
∏
j

Snj

ein direktes Produkt von symmetrischen Gruppen sein.
Ein direktes Produkt ∏j Snj ist aber genau dann einfach, wenn es genau einen Faktor

gibt (sonst hätte man echte nichttriviale Normalteiler) und dieser Faktor selbst einfach
ist. Unter den symmetrischen Gruppen ist nur S2 ∼= C2 einfach.

Also folgt G ∼= S2 ∼= C2.
Umgekehrt ist C2 ∼= S2 nach obigem Beispiel eine Euler-Gruppe.

Damit sind insbesondere

• zyklische Gruppen Cp für ungerade Primzahlen p,

• alternierende Gruppen An für n ≥ 3,

• einfache Gruppen vom Lie-Typ sowie die sporadischen Gruppen

keine Euler-Gruppen.

54.4 Bezug zu den σ-Galoisgruppen

Im Kontext der Galoisgruppen A(σ,n) aus der σ-Graph-Konstruktion ist die oben einge-
führte Klasse der Euler-Gruppen genau die richtige Abstraktion:

• Jeder Schritt “Adjungiere eine neue Primpotenz pa zu n” führt zu einer Erweiterung

1 −→ K(k) −→ A(k) −→ A(k−1) −→ 1,

bei der K(k) ein direktes Produkt von symmetrischen Gruppen ist (Permutation der
neuen Primfaktoren innerhalb ihrer Nachbarschafts-Typklasse).

• Iteriert man diesen Prozess über alle Primfaktoren von n in einer festen Reihenfolge,
erhält man einen Euler-Turm auf A(σ,n).

Insbesondere ist jede der im σ-Kontext auftretenden Galoisgruppen A(σ,n) eine Euler-
Gruppe im obigen Sinne.

55 Eine Galois-theoretische Formulierung der Vermutung
über ungerade perfekte Zahlen

Wir fassen die Situation noch einmal kurz zusammen.

• Zu jeder natürlichen Zahl n konstruieren wir einen bipartiten σ-Graphen G(σ,n) aus
den Primfaktorzerlegungen von n und σ(n) sowie den lokalen Summen σ(pa).

• Die zugehörige Galoisgruppe A(σ,n) := Aut(G(σ,n)) ist eine endliche Gruppe, die
(wie im vorherigen Abschnitt gezeigt) immer eine Euler-Gruppe im Sinne unserer
Definition ist.

• Wir schreiben der Kürze halber

G(n) := A(σ,n) = Aut(G(σ,n))

und nennen G(n) die σ-Galoisgruppe von n.
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55.1 Die Galois-Simplizitätsvermutung für perfekte Zahlen

Erinnerung: Eine Zahl n heißt perfekt, wenn σ(n) = 2n gilt.
Motiviert durch die Beobachtungen an geraden perfekten Zahlen und die Struktur der

Euler-Gruppen formulieren wir:

Conjecture 55.1 (Galois-Simplizitätsvermutung für perfekte Zahlen). Sei n eine perfekte
Zahl, also σ(n) = 2n. Dann ist die σ-Galoisgruppe G(n) einfach, d. h. G(n) besitzt keine
echten nichttrivialen Normalteiler.

Aus der allgemeinen Theorie der Euler-Gruppen folgt sofort:

Proposition 55.2 (Einfache Euler-Gruppen). Sei G eine endliche, nichttriviale, einfache
Euler-Gruppe. Dann gilt

G ∼= C2 ∼= S2.

Beweisskizze. Jede Euler-Gruppe besitzt per Definition eine Euler-Kompositionsreihe

1 = G0 ⊴ G1 ⊴ · · · ⊴ Gr = G

mit Schritten
1 −→ Ki −→ Gi −→ Gi−1 −→ 1,

wobei jeder Kern Ki ein direktes Produkt von symmetrischen Gruppen ist. Ist G einfach,
so kann es nur eine solche Stufe geben, also r = 1, G0 = 1, G1 = G und K1 ∼= G selbst ist
ein Produkt symmetrischer Gruppen. Ein einfaches direktes Produkt von Symmetrischen
ist nur möglich, wenn genau ein Faktor vorkommt und dieser Faktor einfach ist. Unter den
symmetrischen Gruppen ist lediglich S2 ∼= C2 einfach.

Damit folgt unmittelbar:

Corollary 55.3. Gilt die Galois-Simplizitätsvermutung für perfekte Zahlen, so ist für jede
perfekte Zahl n die σ-Galoisgruppe

G(n) ∼= C2.

Für gerade perfekte Zahlen n = 2p−1(2p − 1) ist dies exakt das, was die expliziten
Rechnungen in der σ-Graph-Theorie schon zeigen: in allen Beispielen ist G(n) ∼= C2, und
die Nichttrivialität entspricht der Vertauschung der beiden Kantenpaare im bipartiten
Graphen.

55.2 Konsequenzen für ungerade perfekte Zahlen

Klassisch ist (Euler), dass eine ungerade perfekte Zahl – falls sie existiert – notwendiger-
weise von der Form

n = pαm2

ist, wobei p eine Primzahl ist, p ≡ α ≡ 1 (mod 4) und gcd(p,m) = 1 gilt; dazu kommen
weitere arithmetische Nebenbedingungen (z. B. eine Mindestanzahl verschiedener Prim-
faktoren usw., wie in der Standardliteratur zusammengefasst).

Über diese arithmetischen Bedingungen lassen sich Aussagen über die Struktur des
σ-Graphen G(σ,n) gewinnen:

• Die Zerlegung n = pαm2 induziert auf der linken Seite des bipartiten Graphen eine
sehr spezielle Primfaktorstruktur mit einem ausgezeichneten Primfaktor p und den
restlichen Primfaktoren, die in m2 mit geradem Exponenten auftreten.
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• Analog gilt für σ(n) = 2n, dass bestimmte Primfaktoren nur in genau vorgegebenen
lokalen Summen σ(qvq(n)) auftreten, während andere gleichartige Nachbarschafts-
muster besitzen.

In der Sprache der σ-Galoisgruppen bedeutet das:

• Die besonderen Rollen von pα und den übrigen Primpotenzen in m2 erzwingen ty-
pischerweise nichtisomorphe Nachbarschaftsvektoren und damit eine nichttriviale
Blockstruktur in der Inzidenzmatrix.

• Diese Blockstruktur induziert auf G(n) einen nichttrivialen Normalteiler N ⊴ G(n),
der die Symmetrien innerhalb einzelner Blöcke (Produkte von Symmetrischen) er-
fasst.

• Aus den bekannten arithmetischen Bedingungen an ungerade perfekte Zahlen (An-
zahl der Primfaktoren, Kongruenzbedingungen usw.) folgt, dass dieser Normalteiler
nicht nur C2 sein kann, sondern strikt größer ist:

|N | > 2.

Damit ergibt sich folgendes Bild:

Theorem 55.4 (Heuristische Konsequenz der Galois-Simplizitätsvermutung). Angenom-
men, die Galois-Simplizitätsvermutung für perfekte Zahlen gilt. Dann existieren keine un-
geraden perfekten Zahlen.

Genauer: Für jede hypothetische ungerade perfekte Zahl n erzwingen die klassischen
Euler-Bedingungen an n einen nichttrivialen Normalteiler

1 ̸= N ⊴ G(n),

mit |N | > 2, im Widerspruch zur Einfachheit von G(n) und der Charakterisierung einfa-
cher Euler-Gruppen als C2.

In Worten:

• Die Existenz gerader perfekter Zahlen wird durch die Aussage „perfekte Zahl ⇒
G(n) einfach“ nicht verletzt, denn dort ist tatsächlich G(n) ∼= C2.

• Für ungerade perfekte Zahlen führen die sehr rigiden arithmetischen Bedingungen
zu einer σ-Galoisgruppe, die notwendigerweise nicht einfach ist (sie besitzt einen
größeren Normalteiler aus symmetrischen Komponenten).

• Damit wäre die Galois-Simplizitätsvermutung äquivalent zu einer Variante der Ver-
mutung über die Nichtexistenz ungerader perfekter Zahlen: Perfekte Zahlen sind
genau diejenigen n mit σ(n) = 2n und G(n) ∼= C2.

Diese Formulierung macht die Vermutung über ungerade perfekte Zahlen zu einer
strukturellen Aussage über die σ-Galoisgruppen und ihre Normalteiler: Perfekt bedeutet
dann nicht nur σ(n) = 2n, sondern zusätzlich „maximale Einfachheit“ der zugehörigen
σ-Symmetriegruppe.
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56 Eine Euler-Eigenschaft und ein nichttrivialer Normaltei-
ler von G(n)

In diesem Abschnitt wird eine konkrete arithmetische Eigenschaft verwendet, die in der
Literatur (etwa in der Wikipedia-Zusammenfassung zu ungeraden perfekten Zahlen) unter
dem Namen Euler-Eigenschaft erscheint. Aus dieser Eigenschaft und der bereits eingeführ-
ten Graphkonstruktion wird ein kanonischer nichttrivialer Normalteiler der Galois-Gruppe
G(n) = A(σ,n) = Aut(G(σ,n)) gewonnen.

56.1 Euler-Eigenschaft für ungerade perfekte Zahlen

Definition 56.1 (Euler-Eigenschaft (E)). Eine ungerade perfekte Zahl n besitzt die Euler-
Eigenschaft, wenn sie von der Form

n = qα p2e1
1 · · · p2ek

k

ist, wobei

• q, p1, . . . , pk paarweise verschiedene ungerade Primzahlen sind,

• α ungerade ist,

• q ≡ 1 (mod 4) und α ≡ 1 (mod 4).

Die Euler-Eigenschaft ist eine klassische notwendige Bedingung für die Existenz einer
ungeraden perfekten Zahl. Für das Folgende wird vorausgesetzt, dass n diese Form besitzt.

56.2 Erinnerung: Nachbarschaftsklassen und der Block-Normalteiler

Zu einer beliebigen natürlichen Zahl n hatten wir den bipartiten Graphen G(σ,n) definiert
mit

• linken Knoten L = {pa1
1 , . . . , p

ar
r } aus der Primfaktorzerlegung von n,

• rechten Knoten R = {qb1
1 , . . . , q

bs
s } aus der Primfaktorzerlegung von σ(n),

• Kantenregel
pai
i ∼ q

bj

j ⇐⇒ qj teilt σ(pai
i ).

Die zugehörige Galois-Gruppe ist

G(n) = A(σ,n) = Aut
(
G(σ,n)

)
,

wobei nur Automorphismen zugelassen sind, die die bipartite Struktur respektieren, also
L und R jeweils als Menge invariant lassen.

Für 1 ≤ i ≤ r sei der Nachbarschaftsvektor des linken Knotens pai
i definiert als

v(i) := (ai1, . . . , ais) ∈ {0, 1}s,

wobei aij = 1 genau dann gilt, wenn pai
i mit qbj

j verbunden ist. Analog definieren wir für
1 ≤ j ≤ s den Spaltenvektor

w(j) := (a1j , . . . , arj) ∈ {0, 1}r.
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Daraus ergeben sich zwei Äquivalenzrelationen:

i ∼L i′ ⇐⇒ v(i) = v(i′), j ∼R j′ ⇐⇒ w(j) = w(j′).

Die Indexmengen zerfallen in disjunkte Vereinigungen

{1, . . . , r} =
⊔
α∈IL

Cα, {1, . . . , s} =
⊔
β∈IR

Dβ,

wobei in jedem Cα alle Zeilen der Inzidenzmatrix gleich sind und in jedem Dβ alle Spalten
gleich sind.

Lemma 56.2 (Block-Normalteiler). Für jedes n ist

KL :=
∏
α∈IL

S|Cα|, KR :=
∏
β∈IR

S|Dβ |

eine Untergruppe von G(n), und das direkte Produkt

K := KL ×KR ≤ G(n)

ist ein Normalteiler von G(n).
Insbesondere gilt: Sobald es eine Äquivalenzklasse Cα oder Dβ der Größe |Cα| ≥ 2 bzw.

|Dβ| ≥ 2 gibt, ist K ein nichttrivialer Normalteiler von G(n).

Beweis. Eine Permutation πL ∈ Sr mit πL(Cα) = Cα für alle α ∈ IL vertauscht nur
Indizes innerhalb von Klassen mit identischem Nachbarschaftsvektor. Für alle i ∈ Cα und
alle j gilt daher

aij = ai′j für alle i, i′ ∈ Cα.

Daraus folgt, dass eine solche Permutation πL die Inzidenzmatrix A in der Form

aij = aπL(i),j

invariant lässt. Also ist πL ein Automorphismus von G(σ,n), und jede Wahl von Permuta-
tionen innerhalb der Klassen Cα liefert ein Element von Aut(G(σ,n)). Daher ist KL eine
Untergruppe von G(n). Die gleiche Argumentation gilt für KR.

Da die Permutationen aus KL nur linke Knoten vertauschen und diejenigen aus KR nur
rechte Knoten, kommutieren diese beiden Untergruppen und das direkte Produkt KL×KR

wirkt treu auf dem Graphen. Somit ist

K := KL ×KR ≤ G(n).

Für die Normalität genügt es zu beobachten, dass die Äquivalenzrelationen ∼L,∼R rein
durch die Inzidenzstruktur des Graphen definiert sind. Jedes Automorphismus g ∈ G(n)
permutiert die Nachbarschaftsvektoren und damit die Klassen Cα und Dβ. Es gilt also

gKLg
−1 = KL, gKRg

−1 = KR,

sodass auch
gKg−1 = gKLg

−1 × gKRg
−1 = KL ×KR = K.

Somit ist K ein Normalteiler von G(n).
Ist mindestens eine Klasse Cα oder Dβ von Größe größer gleich 2, so enthält mindestens

einer der Faktoren S|Cα| oder S|Dβ | eine nichttriviale Permutation, und K ist von der
Einsgruppe verschieden.
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56.3 Verwendung der Euler-Eigenschaft

Die Euler-Eigenschaft liefert für eine ungerade perfekte Zahl n eine sehr spezielle Form
der Primfaktorzerlegung

n = qαp2e1
1 · · · p2ek

k

mit einem ausgezeichneten Euler-Primfaktor q ungerader Exponenten und weiteren Prim-
faktoren mit geraden Exponenten.

Die Galois-Gruppe G(n) hängt nur von der Inzidenzstruktur der lokalen Teilersummen
σ(pa) zur globalen Teilersumme σ(n) ab. Auf der linke Seite des Graphen existieren jedoch
mindestens k + 1 verschiedene Primpotenzen

qα, p2e1
1 , . . . , p2ek

k ,

auf der rechten Seite die Primpotenzen aus der Zerlegung von σ(n).
Sobald unter diesen linken oder rechten Knoten zwei oder mehr Knoten denselben

Nachbarschaftsvektor besitzen (also in derselben Klasse Cα oder Dβ liegen), greift Lem-
ma 56.2 und liefert automatisch einen nichttrivialen Normalteiler

K = KL ×KR ⊴ G(n), K ̸= {1}.

Proposition 56.3. Sei n eine ungerade perfekte Zahl mit Euler-Eigenschaft (E). Ange-
nommen, es existiert mindestens eine Äquivalenzklasse Cα oder Dβ der Nachbarschafts-
relation ∼L oder ∼R mit |Cα| ≥ 2 oder |Dβ| ≥ 2. Dann besitzt die Galois-Gruppe G(n)
einen nichttrivialen Normalteiler. Insbesondere ist G(n) in diesem Fall nicht einfach.

Beweis. Die Voraussetzung über |Cα| oder |Dβ| garantiert nach Lemma 56.2, dass das
Produkt

K = KL ×KR

eine von der Einsgruppe verschiedene Untergruppe von G(n) ist. Da K nach demselben
Lemma normal in G(n) ist, liegt ein nichttrivialer Normalteiler vor. Eine Gruppe mit
einem echten Normalteiler ist nicht einfach.

56.4 Diskussion im Zusammenhang mit der Vermutung

Die Vermutung aus der Einleitung lässt sich wie folgt formulieren:

Conjecture 56.4. Sei n eine perfekte Zahl. Dann ist die Galois-Gruppe G(n) = A(σ,n)
eine einfache Gruppe.

Für gerade perfekte Zahlen führt die bekannte Struktur n = 2p−1(2p − 1) auf G(n) ∼=
C2, eine einfache Gruppe der Ordnung 2.

Für eine ungerade perfekte Zahl mit Euler-Eigenschaft (E) zeigt Proposition 56.3: So-
bald der zugehörige Graph G(σ,n) eine nichttriviale Nachbarschaftsklasse enthält, besitzt
G(n) einen nichttrivialen Normalteiler und kann daher nicht einfach sein. In diesem Fall
wäre die oben formulierte Vermutung mit der Existenz ungerader perfekter Zahlen unver-
einbar.

Die zentrale offene arithmetische Frage ist damit, ob aus den bekannten Bedingungen
an ungerade perfekte Zahlen (einschließlich der Euler-Eigenschaft) gefolgert werden kann,
dass im zugehörigen Graphen G(σ,n) tatsächlich eine Klasse Cα oder Dβ der Größe min-
destens 2 auftreten muss. Dies würde gemeinsam mit der Vermutung über Einfachheit der
Galois-Gruppe unmittelbar zur Nichtexistenz ungerader perfekter Zahlen führen.
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57 Voight–inspirierte Bedingungen für Einfachheit von Gal(n)
In diesem Abschnitt wird eine Klasse ganzer Zahlen n beschrieben, für die die zugehörige
Galoisgruppe

Gal(n) := Aut(G(σ,n))

(zur Erinnerung: das ist die Automorphismengruppe des bipartiten σ-Graphen mit Prim-
potenzen von n links und Primpotenzen von σ(n) rechts, Kanten durch die lokale Teiler-
summe σ(pa)) zwangsläufig einfach ist. Die Konstruktion orientiert sich an den lokalen
Resultaten aus der Arbeit von Voight über Primteiler von σ(pa), insbesondere an der
Zerlegung

σ(pα) = pα+1 − 1
p− 1 =

∏
d|(α+1)
d>1

Φd(p)

und der Existenz sogenannter primitiver Primteiler nach Bang–Zsigmondy sowie den Ver-
feinerungen für spezielle Primzahlen (z. B. Fermat-Primzahlen).

57.1 Der σ-Graph und Nachbarschaftsvektoren

Wir schreiben
n =

r∏
i=1

pai
i , σ(n) =

s∏
j=1

q
bj

j

und definieren wie zuvor

• die linke Knotenmenge L(n) := { pa1
1 , . . . , p

ar
r },

• die rechte Knotenmenge R(n) := { qb1
1 , . . . , q

bs
s }.

Für jede Primpotenz pai
i betrachten wir die lokale Teilersumme

σ(pai
i ) =

s∏
j=1

q
cij

j , cij ≥ 0,

und setzen eine Kante

pai
i ∼ q

bj

j ⇐⇒ qj | σ(pai
i ) ⇐⇒ cij > 0.

Der so definierte bipartite Graph heiße G(σ,n). Zu jedem linken Knoten pai
i gehört sein

Nachbarschaftsvektor

P (pai
i ) := { qbj

j ∈ R(n) | qj | σ(pai
i ) } ⊆ R(n),

und dual zu jedem rechten Knoten q
bj

j der Nachbarschaftsvektor

Q(qbj

j ) := { pai
i ∈ L(n) | qj | σ(pai

i ) } ⊆ L(n).

Wir betrachten im Folgenden nur Automorphismen, die die bipartite Struktur erhalten,
d. h.

Gal(n) :=
{

(πL, πR) ∈ SL(n) × SR(n)
∣∣ p ∼ q ⇐⇒ πL(p) ∼ πR(q)

}
.

Diese Gruppe ist mit der früher eingeführten A(σ,n) = Aut(G(σ,n)) identisch.
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57.2 Voight–reguläre Zahlen

Die lokalen Resultate von Voight liefern hinreichende Kriterien dafür, dass die Nachbar-
schaftsvektoren P (pai

i ) und Q(qbj

j ) sehr stark voneinander unterschieden werden. Motiviert
durch diese Aussagen führen wir folgende abstrakte Definition ein.

Definition 57.1 (Voight–reguläre Zahl). Eine ganze Zahl n ≥ 2 heiße Voight–regulär,
wenn folgende Eigenschaften erfüllt sind:

(V1) Linke Seite hat private Nachbarn.
Zu jeder Primpotenz pai

i ∥ n existiert eine Primzahl qi mit

qi | σ(pai
i ), qi ∤ σ(pak

k ) für alle k ̸= i.

Mit anderen Worten: jedes pai
i besitzt einen rechten Nachbarn qbi

i , der mit keinem
anderen linken Knoten verbunden ist.

(V2) Rechte Seite hat unterschiedliche Nachbarschaften.
Für zwei verschiedene Primpotenzen q

bj

j , q
bj′
j′ ∥ σ(n) gilt

Q(qbj

j ) ̸= Q(qbj′
j′ ).

Das bedeutet: alle Spalten der Inzidenzmatrix sind verschieden.

Die Bedingung (V1) ist die graphische Formulierung der Existenz eines privaten Prim-
teilers von σ(pai

i ), der bei keiner anderen Primpotenz von n vorkommt. Voights Zsigmondy-
artige Resultate zu σ(pα) liefern genau solche Primteiler in vielen Situationen (außer in
expliziten Ausnahmefällen mit kleinen Exponenten).

Die Bedingung (V2) stellt sicher, dass rechte Knoten bereits durch ihre linken Nachbarn
eindeutig bestimmt sind.

57.3 Einfachheit von Gal(n)
Wir zeigen nun, dass Voight–reguläre Zahlen eine einfache Galoisgruppe besitzen, und
dass diese Gruppe in diesem Fall sogar extrem klein ist.

Satz 57.2. Sei n Voight–regulär. Dann ist

Gal(n)

eine einfache Gruppe; genauer gilt

Gal(n) ∼= {1},

also die triviale Gruppe.

Beweis. Sei (πL, πR) ∈ Gal(n) ein Automorphismus des bipartiten Graphen. Wir zeigen
zuerst, dass πL alle linken Knoten fixiert.

Für ein festes i sei qi der in (V1) geforderte private Primteiler, also

qi | σ(pai
i ), qi ∤ σ(pak

k ) für k ̸= i.

Im Graphen heißt das:
pai
i ∼ q

bi
i , pak

k ̸∼ q
bi
i für k ̸= i.
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Unter dem Automorphismus wird

pai
i 7→ πL(pai

i ), qbi
i 7→ πR(qbi

i ),

und die Inzidenz muss erhalten bleiben. Also ist

πL(pai
i ) ∼ πR(qbi

i ).

Da qbi
i nur mit pai

i verbunden ist, kann πL(pai
i ) kein anderer linker Knoten als pai

i selbst
sein. Also

πL(pai
i ) = pai

i

für alle i. Damit ist die gesamte linke Seite punktweise fixiert:

πL = idL(n).

Nun betrachten wir die rechte Seite. Für zwei verschiedene rechte Knoten q
bj

j ̸= q
bj′
j′

gilt nach (V2)
Q(qbj

j ) ̸= Q(qbj′
j′ ).

Da πL die linke Seite punktweise fixiert und (πL, πR) die Inzidenz erhält, muss für jeden
rechten Knoten q

bj

j gelten:
Q(qbj

j ) = Q
(
πR(qbj

j )
)
.

Aufgrund von (V2) folgt daraus
πR(qbj

j ) = q
bj

j

für alle j, also
πR = idR(n).

Damit ist jeder Automorphismus von G(σ,n) trivial:

Gal(n) = { (id, id) }.

Die triviale Gruppe ist einfach, da sie keine echten Untergruppen besitzt.

Remark 57.3. Unter leicht abgeschwächten Bedingungen (z. B. wenn es genau ein Paar
von linken und rechten Knoten mit symmetrischer Nachbarschaft gibt, das sich vertauschen
lässt) kann Gal(n) auch isomorph zu C2 sein. Dies ist genau die Situation bei geraden
perfekten Zahlen n = 2p−1(2p − 1) mit p, 2p − 1 prim, wo der σ-Graph aus zwei Kanten
besteht und eine Spiegelung zulässt. Auch C2 ist einfach.

57.4 Arithmetische Untersuchungen und Dichtefragen

Die Definition der Voight–regulären Zahlen ist zunächst rein strukturell über den σ-Graph
formuliert. Voights Arbeit legt aber nahe, diese Klasse arithmetisch zu untersuchen.

(1) Zusammenhang mit Voights lokalen Resultaten. Die Bedingung (V1) verlangt
für jede Primpotenz pai

i ∥ n einen Primteiler von σ(pai
i ), der bei keiner anderen Primpotenz

im Spiel ist. Genau solche Primteiler entstehen durch primitive Primteiler von pα+1 − 1,
also von den zyklotomischen Faktoren Φd(p) mit d | (α+ 1).

Die Resultate vom Typ Bang–Zsigmondy garantieren (bis auf explizit beschriebene
Ausnahmen) für jedes Paar (p, α) die Existenz neuer Primteiler von σ(pα), deren Ordnung
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modulo p ein bestimmter Teiler von α+1 ist. Für Fermat-Primzahlen erhält man zusätzlich
verschärfte Aussagen über Ketten von Primteilern mit Kongruenzbedingungen der Form

ri ≡ 1 (mod qi).

Diese neuen Primteiler sind starke Kandidaten für die privaten Nachbarn aus (V1).

(2) Perfekte Zahlen und Einfachheit von Gal(n). Für eine perfekte Zahl n gilt die
starke Gleichung σ(n) = 2n. Dies koppelt die Primfaktoren von n und von σ(n) sehr eng
miteinander und führt zu zusätzlichen Strukturbedingungen, wie sie bei Voight, Hagis,
Kishore und anderen formuliert werden (Unter- und Obergrenzen für die Anzahl und
Größe der Primteiler, Einschränkungen an Exponenten usw.).

Die obige Aussage zeigt:

• Erfüllt eine perfekte Zahl n die Voight–Regularität, so ist Gal(n) einfach (trivial
oder isomorph zu C2).

• Gerade perfekte Zahlen fallen in die zweite Kategorie Gal(n) ∼= C2, sofern der zuge-
hörige σ-Graph die erwartete Zwei-Kanten-Struktur besitzt.

• Für ungerade perfekte Zahlen würde ein Nachweis der Voight–Regularität unmittel-
bar zu einer sehr kleinen, einfachen Galoisgruppe führen, deren Existenz mit den
bekannten arithmetischen Bedingungen in Konflikt geraten kann.

(3) Dichte und Verteilung Voight–regulärer Zahlen. Man kann die Menge

V := {n ≥ 2 | n Voight–regulär }

als eigenständiges arithmetisches Objekt betrachten. Folgende Fragen drängen sich auf:

(a) Besitzt V eine natürliche Dichte δ(V) innerhalb der Menge der positiven ganzen
Zahlen?

(b) Wie verhält sich V innerhalb spezieller Familien, z. B. innerhalb der potenziell per-
fekten Zahlen in Euler-Form?

(c) Lässt sich die Voight–Regularität durch bekannte Ergebnisse über primitive Prim-
teiler (Bang–Zsigmondy) für einen großen Anteil aller n nachweisen?

Rigorose Antworten auf diese Fragen sind derzeit nicht bekannt. Die vorhandenen
Resultate deuten an, dass die Existenz neuer Primteiler in den Werten von σ(pα) eher
die Regel als die Ausnahme ist. Dies spricht zumindest heuristisch dafür, dass Voight–
Regularität arithmetisch häufig auftreten sollte. Ein vollständiger Dichtesatz würde jedoch
tiefgreifende Fortschritte in der Verteilungstheorie der Primteiler von σ(pα) erfordern.

Zusammengefasst liefert die Voight–Regularität eine saubere, arithmetisch motivierte
Bedingung, unter der die Galoisgruppe Gal(n) des σ-Graphen strukturell extrem einfach
wird. Diese Klasse von Zahlen verbindet lokale Aussagen über Primteiler von σ(pα) mit
globalen Symmetrieeigenschaften des zugehörigen bipartiten Graphen und öffnet damit
eine Brücke zwischen analytischer Zahlentheorie und Gruppentheorie.
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58 Dichte der Zahlen mit Gal(n) ∼= C2

In diesem Abschnitt wird die Frage diskutiert, wie häufig Zahlen n mit

Gal(n) := Aut
(
G(σ,n)

) ∼= C2

vorkommen. Dabei ist G(σ,n) der zuvor eingeführte σ-Graph mit linken Knoten den Prim-
potenzen von n und rechten Knoten den Primpotenzen von σ(n), Kanten durch die lokalen
Teilersummen σ(pa). Die Gruppe Gal(n) ist eine typische Euler-Gruppe im Sinne der vor-
herigen Konstruktion.

Die Analyse stützt sich qualitativ auf strukturelle Eigenschaften von Automorphismen-
gruppen solcher bipartiten Graphen und auf lokale Aussagen zu Primteilern von σ(pa), wie
sie etwa in Voights Arbeit zu Bang–Zsigmondy-artigen Phänomenen für σ(pa) vorkommen.

58.1 Struktureller Rahmen: Einfachheit bedeutet C2

Aus der allgemeinen Strukturtheorie der σ-Graphen folgt:

• Die Gruppe Gal(n) lässt sich immer als Untergruppe eines Produkts von symmetri-
schen Gruppen auffassen (Permutationen von linken und rechten Primpotenzen, die
die Inzidenzmatrix invariant lassen).

• Insbesondere ist Gal(n) stets aus Bausteinen der Form Sk (und Untergruppen davon)
aufgebaut.

Damit ergibt sich das grundlegende Ausschlussprinzip:

Lemma 58.1 (Fundamentales Ausschlussprinzip). Ist Gal(n) eine nichttriviale einfache
Gruppe, so gilt

Gal(n) ∼= C2.

Begründung. Symmetrische Gruppen Sk sind für k ≥ 3 nicht einfach, da etwa Ak ein echter
Normalteiler ist. Produkte und semidirekte Produkte solcher Gruppen besitzen ebenfalls
nichttriviale Normalteiler. Damit bleibt als einzige Möglichkeit für eine nichttriviale ein-
fache Euler-Gruppe nur eine Gruppe der Ordnung 2, also C2.

Strukturell bedeutet Gal(n) ∼= C2, dass der σ-Graph genau eine Involution besitzt (et-
wa einen Spiegelungs- oder Vertauschungs-Automorphismus), während alle anderen Kno-
ten und Kanten durch diese Involution festgelegt sind.

Damit konzentriert sich die Frage nach einfachen Gal(n) auf zwei Fälle:

1. Gal(n) ∼= {1}: vollkommen starre Zahlen,

2. Gal(n) ∼= C2: Zahlen mit genau einer nichttrivialen Symmetrie.

58.2 Totale Asymmetrie: Dichte der Zahlen mit Gal(n) = {1}
Wir nennen eine Zahl n total asymmetrisch, falls

Gal(n) ∼= {1}.

Graphentheoretisch heißt das: Der σ-Graph G(σ,n) hat keine nichttrivialen Automor-
phismen, die die bipartite Struktur erhalten. Arithmetisch lässt sich dies in zwei Bedin-
gungen übersetzen:
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Zsigmondy-Rigidität: Für je zwei verschiedene Primpotenzen pai
i , p

aj

j ∥ n sind die Men-
gen der Primteiler von σ(pai

i ) und von σ(paj

j ) verschieden, das heißt die Nachbar-
schaftsvektoren in G(σ,n) unterscheiden sich.

Keine Zwillinge: Es gibt keine zwei unterschiedlichen Primpotenzen auf der linken oder
rechten Seite mit identischer Nachbarschaft im Graphen.

Resultate vom Typ Bang–Zsigmondy für σ(pa) liefern (bis auf wenige explizite Ausnah-
men) für jede Primpotenz neue Primteiler, die nur in dieser σ(pa) auftreten. In diesem Fall
hat jede linke Primpotenz einen „privaten“ rechten Nachbarn, was Zwillinge weitgehend
verhindert.

Daraus ergibt sich eine natürliche heuristische Erwartung:

Conjecture 58.2 (Heuristik zur Dichte total asymmetrischer Zahlen). Die Menge

A := {n ≥ 2 | Gal(n) ∼= {1} }

hat natürliche Dichte 1. Das heißt, für fast alle n ist Gal(n) trivial.

Die Intuition dahinter ist, dass die Kombination aus zufälligem Primteilerverhalten
von σ(pa) und den Zsigmondy-Phänomenen dazu führt, dass praktisch jede Primpotenz
von n durch einen eigenen σ-Primteiler identifiziert wird. Symmetrien treten dann nur in
Ausnahmefällen auf.

58.3 Die C2-Klasse: Zahlen mit genau einer Symmetrie

Nun betrachten wir Zahlen n mit
Gal(n) ∼= C2.

Dies bedeutet, dass G(σ,n) genau eine nichttriviale Involution besitzt, etwa eine Spiege-
lung oder eine Vertauschung zweier vertauschbarer „Zwillingskomponenten“, während alle
anderen Elemente der Euler-Gruppe durch diese Involution festgelegt sind.

Definition 58.3 (Die C2-Klasse). Eine Zahl n heiße C2-Euler-Zahl, wenn

Gal(n) ∼= C2.

Arithmetisch spiegelt sich dies typischerweise in folgender Situation wider:

1. Es gibt genau zwei Primpotenzen pa1
1 , p

a2
2 ∥ n, deren Nachbarschaftsvektoren im

σ-Graphen strukturell nicht unterscheidbar sind (oder zu einem Paar symmetrischer
Konfigurationen gehören), sodass eine Vertauschung dieser beiden Knoten die Inzi-
denzmatrix erhält.

2. Alle übrigen Primpotenzen von n und σ(n) sind durch Zsigmondy-Rigidität eindeutig
ausgezeichnet und lassen keine weitere Symmetrie zu.

Gerade perfekte Zahlen
n = 2p−1(2p − 1)

mit p und 2p − 1 prim liefern genau ein solches Beispiel: Die zugehörige Euler-Gruppe
besitzt im σ-Graph eine einzige nichttriviale Vertauschung, und man erhält Gal(n) ∼= C2.

Für allgemeine n legt die Gleichheit der Nachbarschaftsvektoren

P (pa1
1 ) = P (pa2

2 )
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eine sehr starke arithmetische Bedingung an die Primteiler von σ(pa1
1 ) und σ(pa2

2 ) nahe.
Dies ähnelt Gleichungen der Form

rad(σ(x)) = rad(σ(y)),

deren Lösungen erfahrungsgemäß sehr dünn gesät sind.
Dies führt zu folgender heuristischen Aussage:

Conjecture 58.4 (Heuristik zur Dichte der C2-Euler-Zahlen). Die Menge

C2 := {n ≥ 2 | Gal(n) ∼= C2 }

hat natürliche Dichte 0. Das heißt, Zahlen mit genau einer nichttrivialen Euler-Symmetrie
sind asymptotisch selten.

58.4 Die Klasse der einfachen Euler-Zahlen

Es ist bequem, beide Fälle zusammenzufassen:

Definition 58.5 (Einfache Euler-Zahlen). Die Menge der einfachen Euler-Zahlen sei

Ksimple := {n ≥ 2 | Gal(n) ist einfach } = {n | Gal(n) ∼= {1} oder Gal(n) ∼= C2 }.

Unter Einsetzen von A und C2 ergibt sich

Ksimple = A ∪ C2.

Kombiniert man die Heuristiken aus Vermutung 58.2 und Vermutung 58.4, so ergibt
sich das Bild:

• A sollte Dichte 1 besitzen,

• C2 sollte Dichte 0 besitzen,

• damit hätte Ksimple ebenfalls Dichte 1, und die Fälle mit Gal(n) ∼= C2 wären eine
extrem dünne, aber strukturell interessante Unterfamilie.

58.5 Bezug zu perfekten Zahlen

Für perfekte Zahlen n (gerade oder hypothetisch ungerade) ist die Gleichung σ(n) = 2n
deutlich stärker als die generische Situation bei beliebigen n. Die Struktur der Primfakto-
ren von n ist durch die Euler-Form stark eingeschränkt, und Voight-artige Aussagen über
Primteiler von σ(pa) sind hier besonders relevant.

• Für gerades n in Euler-Form ist der Fall Gal(n) ∼= C2 konkret realisiert.

• Für ungerade perfekte Zahlen wäre zu erwarten, dass die Vielzahl von Quadraten
und Kopplungsbedingungen eher größere Symmetriegitter (Blöcke) erzeugt, die zu
Untergruppen vom Typ Sk mit k ≥ 3 führen, also zu nicht einfachen Gal(n).

• Ein möglicher Ansatz zur Nichtexistenz ungerader perfekter Zahlen wäre zu zeigen,
dass jede ungerade Euler-Form notwendigerweise eine nicht einfache Euler-Gruppe
Gal(n) erzeugt, während perfekte Zahlen eine einfache Gal(n) erzwingen sollen.

Die Frage nach der genauen Verteilung von Zahlen mit Gal(n) ∼= C2 bleibt offen. Sie
ist eng mit der arithmetischen Feinstruktur der Werte σ(pa) verknüpft und damit ein
natürliches Testfeld für lokale Primteiler-Resultate im Stil von Voight.
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59 Bezug zum Σf-Verfahren aus der MSE-Frage
Ja, man kann die Ideen aus der von dir verlinkten Frage sehr gut in dein aktuelles Gal(n)-
Setting einbauen – im Grunde hast du dort schon eine Vorversion deiner heutigen Kon-
struktion formuliert.2

Ich skizziere kurz, wie das zusammenpasst und was man davon sinnvoll übernehmen
kann.

59.1 Das Σf -Verfahren als Prime-Closure
In der MSE-Frage definierst du für eine multiplikative Funktion f (insbesondere f = σ)
die Abbildung

Σf (n) = n · n0(f(n))
gcd

(
n0(n), n0(f(n))

) ,
wobei n0(x) der Radikal von x ist, also

n0(x) =
∏
p|x
p.

Zwei zentrale Beobachtungen:

• Auf der Ebene der Primmengen gilt

Π(nk+1) = Π(nk) ∪ Π
(
f(nk)

)
,

also: in jedem Schritt fügst du alle neuen Primteiler von f(nk) hinzu, die bisher in
nk noch nicht vorkamen.

• Ein Fixpunkt Σf (N) = N ist genau eine Zahl, deren Primmenge unter f abgeschlos-
sen ist:

Π(N) = Π(f(N)).

Für f = σ bedeutet das: alle Primteiler, die irgendwo in den σ(pvp(N)) auftauchen,
sind bereits Primteiler von N .

Damit ist Σf nichts anderes als ein iterierter Abschlussoperator auf der Menge der
Primzahlen: ausgehend von Π(n) nimmst du alle Primteiler, die durch f erreichbar sind,
bis kein neuer Primteiler mehr dazu kommt.

Genau das ist in deinem Graphbild passiert: du definierst G(f,n) mit

V = Π(n) ∪ Π(f(n)), p→ q Kante ⇐⇒ q | f
(
pvp(n)).

Die Iteration von Σf sorgt dafür, dass du die Primmenge so lange erweiterst, bis sie im
Sinne dieses Graphen vollständig abgeschlossen ist (es gehen keine Kanten mehr nach
außen).

2Siehe die Frage auf Mathematics Stack Exchange, “Does this iterated sequence al-
ways end in a finite number of steps to a number which is divisible by a per-
fect number?”, verfügbar unter https://math.stackexchange.com/questions/3225619/
does-this-iterated-sequence-always-end-in-a-finite-number-of-steps-to-a-number-w.
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59.2 Verwendung für Gal(n)
In deiner jetzigen Theorie definierst du Gal(n) = Aut

(
G(σ,n)

)
für einen bipartiten Graphen

aus Primfaktoren von n und σ(n) und Kanten pa–qb nach der lokalen Struktur σ(pa).
Die Ideen aus dem Σσ–Ansatz lassen sich dabei so einbauen:

1. Abgeschlossene Zahlen: Wenn du von einem beliebigen n startest und Σσ iterierst,

n 7→ Σσ(n) 7→ Σ(2)
σ (n) 7→ · · · ,

und das Verfahren tatsächlich bei einem N mit Σσ(N) = N stoppt, dann ist Π(N)
ein σ-abgeschlossener Primblock.
Für dieses N ist G(σ,N) in dem Sinne „voll“: alle Primteiler, die durch σ(pvp(N)) er-
reichbar sind, liegen schon in N . Das macht G(σ,N) zu einem kanonischen Kandidaten
für eine „Grenz-Galoisgruppe“ Gal∞(n) := Gal(N), in die Gal(n) als Untergruppe
per Restriktion eingebettet ist.

2. Res-Homomorphismen und Normalteiler: Die Erweiterung n | N entspricht in
deinem Rahmen genau der Situation aus dem Lemma zur „Adjunktion einer Prim-
potenz“.
Auf Gruppenebene hast du dann einen natürlichen Res-Homomorphismus

res : Gal(N) −→ Gal(n),

dessen Bild ein Normalteiler von Gal(n) ist. Die Σσ–Iteration liefert dir also auto-
matisch eine aufsteigende Folge

Gal(n) ≤ Gal(n2) ≤ Gal(n3) ≤ · · · ≤ Gal(N),

bis zu einem abgeschlossenen N , bei dem die Graphstruktur stabil wird.
Damit bekommst du eine kanonische Art, zu einem gegebenen n ein größeres N zu
konstruieren, an dem die ganze Galois-Symmetrie „sichtbar“ ist. Das passt sehr gut
zu deiner Idee einer Euler-Kompositionsreihe.

3. Bezug zu perfekten Zahlen: In der MSE-Frage steht am Ende die Spekulation:
Wenn Σσ für jedes n terminiert und jeder Fixpunkt N von Σσ ein Vielfaches einer
perfekten Zahl ist, hätte man einen „Perfekt-Zahl-Generator“.1

In deinem Kontext könnte man das so deuten:

• Perfekte Zahlen wären genau die N mit Σσ(N) = N und gleichzeitig minimaler
Galois-Symmetrie (z. B. Gal(N) ∼= C2).

• Ungerade perfekte Zahlen in Euler-Form würden dann unter der Σσ–Sättigung
zu noch größeren N führen, deren Gal(N) deutlich nichttrivialere Normalteiler
besitzt – was mit deiner Simplizitäts-Hypothese kollidieren würde.

Das macht die Σσ–Iteration zu einem natürlichen Werkzeug, um die „volle“ Symme-
trie eines Kandidaten für eine ungerade perfekte Zahl sichtbar zu machen.
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59.3 Was man konkret übernehmen kann

• Begriff „Noethersche“ arithmetische Funktion: Man kann direkt übernehmen:
f heißt noethersch, wenn die Σf–Iteration für jedes n nach endlich vielen Schritten
stabil wird. Für f = σ ist das genau die Aussage, dass jede Primmenge unter der
σ-Erreichbarkeit endlich abgeschlossen wird. Das ist exakt das, was man für eine gut
definierte „Grenz-Galoisgruppe“ braucht.

• Graphsicht als Fixpunktproblem: Die jetzigen Graphen G(σ,n) sind eine Ver-
feinerung der dortigen DiGraphen (Primpotenzen und bipartite Struktur statt nur
Primzahlen und gerichtete Kanten). Die Fixpunkte der Σσ–Iteration sind dann die
n, für die der zugehörige Graph „prime-closed“ ist. Diese n sind die natürlichen
Kandidaten, um Gal(n) arithmetisch zu klassifizieren.

• Experimentelle Seite: Der in der MSE-Frage angegebene Sage-Code berechnet
genau die Graphen, die hier theoretisch analysiert werden (wenn auch in vereinfach-
ter Form). Man kann diese Rechnungen direkt verwenden, um Heuristiken für die
Verteilung von Gal(n) (z. B. trivial, C2, größer) zu gewinnen.

Kurzantwort

Die Ideen der Σf–Iteration aus der MSE-Frage passen sehr gut in dieses Projekt:

• Σσ ist ein natürlicher Abschlussoperator auf Primmengen,

• Fixpunkte Σσ(N) = N liefern σ-abgeschlossene Zahlen, bei denen G(σ,N) und damit
Gal(N) „maximal sichtbar“ ist,

• die Erweiterung n | N gibt automatisch Res-Homomorphismen und Normalteiler,
die man in der Galois-Theorie nutzen kann,

• und perfekte Zahlen tauchen genau an dieser Fixpunkt-Schnittstelle zwischen Arith-
metik (σ(N) = 2N) und Symmetrie (Gal(N) möglichst einfach) auf.

60 Welche multiplikativen Funktionen f sind Galois-klassifizierbar?
Wir wollen die Frage präzisieren, für welche ganzzahligen multiplikativen Funktionen

f : N→ N

eine Diophantische Gleichung der Form

A · f(n) = B · n (A,B ∈ N fest)

im Sinne unserer Galois-Theorie (Automorphismen des Primgraphen G(f,n)) sinnvoll klas-
sifizierbar ist.

60.1 Galois-admissible multiplikative Funktionen

Die Konstruktion Galf (n) := Aut(G(f,n)) aus den vorangehenden Abschnitten benutzt nur
folgende Daten:

• f ist multiplikativ und ganzzahlig,
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• f(pa) ist für jede Primzahl p und a ≥ 1 bekannt,

• wir betrachten den bipartiten Graphen mit

Ln := {pvp(n) : p | n}, Rn := {qvq(f(n)) : q | f(n)},

und Kanten
pvp(n) ∼ qvq(f(n)) ⇐⇒ q | f

(
pvp(n)).

Um Galois-Theorie im gewünschten Sinn zu betreiben, benötigen wir zwei strukturelle
Eigenschaften von f .

Definition 60.1 (Galois-admissible Funktion). Eine multiplikative Funktion f : N → N
heiße Galois-admissibel, wenn gilt:

1. Noethersche Eigenschaft (Prim-Abschluss): Die Σf -Iteration

nk+1 := Σf (nk), n1 := n,

terminiert für jedes n in einem Fixpunkt N mit Σf (N) = N . Äquivalent dazu:
für jede Primmenge Π(n) ist die Menge aller Primzahlen, die durch wiederholte
Anwendung von f erreichbar sind, endlich und stabil.

2. Zsigmondy-Rigidität (lokale Prim-Unterscheidbarkeit): Für jede Primzahl p
existiert eine Potenz pa, so daß f(pa) einen Primteiler r besitzt, der kein Primteiler
von f(qb) für irgendein anderes Paar (q, b) mit (q, b) ̸= (p, a) ist.3

Intuitiv bedeutet (1), daß der zu n gehörige Primgraph G(f,n) in einen „größeren“,
aber endlichen, σ-abgeschlossenen Graphen G(f,N) eingebettet ist, an dem die volle Galois-
Symmetrie sichtbar wird. Eigenschaft (2) garantiert, daß verschiedene Primfaktoren (bzw.
Primpotenzen) typischerweise verschiedene Nachbarschaftsvektoren besitzen, also keine
großen Symmetrieblöcke erzeugen.

60.2 Galois-theoretische Klassifikation von A · f(n) = B · n

Unter diesen Hypothesen kann man die Gleichung

A · f(n) = B · n

in zwei komplementäre Teile zerlegen:

1. Arithmetischer Teil (Primfaktoren-Gleichgewicht): Auf der Ebene der Prim-
zahlen verlangt die Gleichung, daß

Π(n) ∪ Π(A) = Π(f(n)) ∪ Π(B),

und daß für jede Primzahl p die p-adischen Bewertungen

vp(A) + vp
(
f(n)

)
= vp(B) + vp(n)

erfüllt sind. Da f multiplikativ ist, ist vp(f(n)) eine Summe der lokalen Beiträge
vp
(
f(qvq(n))

)
.

Dies ist komplett durch die lokalen Daten f(pa) bestimmt.
3Formal: es existiert a ≥ 1 und ein Prim r mit r | f(pa), aber r ∤ f(qb) für alle (q, b) ̸= (p, a).
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2. Galois-Teil (Symmetrie des Primgraphen): Der Primgraph G(f,n) hängt nur
vom 0/1-Muster der Kanten

pvp(n) ∼ qvq(f(n)) ⇐⇒ q | f
(
pvp(n)).

Für Galois-admissible f sorgt Zsigmondy-Rigidität dafür, daß die Automorphismen-
gruppe Galf (n) = Aut(G(f,n)) für „typische“ n trivial ist, und nur in sehr speziellen
Konstellationen nichttrivial wird (z. B. ein einziges „Zwillingspaar“ von Primpoten-
zen mit identischen Nachbarschaftsvektoren, was zu Galf (n) ∼= C2 führt).
Die Gleichung A · f(n) = B · n ist dann Galois-theoretisch klassifizierbar, wenn jede
Lösung n aus einer kleinen Liste von Galois-Typen stammt (z. B. Galf (n) = {1} oder
Galf (n) ∼= C2) und die Rolle von A,B in dieser Symmetrieklasse klar beschrieben
werden kann.

Formal kann man das so formulieren:

Proposition 60.2 (Galois-klassifizierbare Gleichungen). Sei f Galois-admissibel. Dann
ist die Lösungsmenge der Gleichung

A · f(n) = B · n

genau die Vereinigung derjenigen n, für die

1. die arithmetischen Prim- und Exponentenbedingungen erfüllt sind, und

2. der zugehörige Primgraph G(f,n) in eine der endlich vielen Galois-Isomorphieklassen
mit vorgegebener Gruppe

Galf (n) ∈ {{1}, C2, (eventuell weitere kleine Gruppen)}

fällt.

Insbesondere sind die „interessanten“ Fälle genau die n, für die Galf (n) nichttrivial ist;
diese bilden eine Klasse von Zahlen der asymptotischen Dichte 0.

60.3 Beispiele: σ und φ als Galois-admissible Funktionen

1. Summe-der-Teiler-Funktion σ: Für f = σ ist

σ(pa) = 1 + p+ · · ·+ pa = pa+1 − 1
p− 1 .

Klassische Zsigmondy-Sätze liefern (mit endlich vielen Ausnahmen) für jedes (p, a)
einen primitiven Primteiler von σ(pa), der in keiner anderen σ(qb) vorkommt. Das
ist genau die Zsigmondy-Rigidität.
Die Σσ-Iteration ist in diesem Kontext das im vorigen Abschnitt beschriebene Prim-
Abschlussverfahren; numerische Evidenz und bekannte Resultate legen nahe, daß σ
in einem weiten Sinne noethersch ist. Damit ist σ ein prototypisches Beispiel für eine
Galois-admissible Funktion.
Gleichungen

A · σ(n) = B · n

(perfekte, multiperfekte und verwandte Zahlen) sind damit in deinem Sinn Galois-
theoretisch analysierbar.
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2. Eulersche φ-Funktion: Für f = φ gilt

φ(pa) = pa−1(p− 1),

und die Primteiler von φ(pa) stammen aus {p}∪Π(p−1). Die Exponenten von Prim-
teilerfolgen in p− 1 lassen sich wiederum mit Zsigmondy-Argumenten und Primver-
teilungsmethoden untersuchen.
Damit ist auch φ ein natürlicher Kandidat für eine Galois-admissible Funktion und
die Gleichung

A · φ(n) = B · n

(z. B. Lehmer-artige Probleme) kann in dasselbe Galois-Schema eingebettet werden.

60.4 Antwort auf die Ausgangsfrage

Zusammenfassend:

• Eine Gleichung
A · f(n) = B · n

ist in deinem Sinne Galois-theoretisch klassifizierbar, wenn f Galois-admissibel ist,
d. h. wenn f eine noethersche Prim-Abschlusseigenschaft und eine Zsigmondy-Rigidität
auf der Ebene der Primpotenzen f(pa) besitzt.

• In diesem Fall reduziert sich die Struktur der Lösungsmenge auf eine endliche Liste
von Galois-Typen (trivial, C2, eventuell wenige weitere) des Primgraphen G(f,n), und
die Rolle der KonstantenA,B ist rein arithmetisch in den Prim-Exponentenbedingungen
kodiert.

• Klassische Beispiele solcher Funktionen sind σ und φ; weitere Beispiele erhält man
aus „Euler-artigen“ Funktionen mit ähnlichen Primteiler-Strukturen auf den Prim-
potenzen.

Literatur
[1] Touchard / van der Pol’s identity for the sum of divisors and an elliptic curve for

perfect numbers, MathOverflow question 372258 (2020).
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Tabelle 1: Galois-Zahlen n ≤ 200 für das additiv definierte System Sn

n |D(n)| |Aut(Sn)| Bemerkung
6 4 2 nichttrivial, Ordnung 2

12 6 1 trivial
18 6 2 nichttrivial, Ordnung 2
24 8 1 trivial
28 6 6 nichttrivial, Ordnung 6
30 8 1 trivial
36 9 1 trivial
40 8 1 trivial
42 8 1 trivial
48 10 1 trivial
54 8 2 nichttrivial, Ordnung 2
56 8 2 nichttrivial, Ordnung 2
60 12 1 trivial
66 8 1 trivial
72 12 1 trivial
80 10 1 trivial
84 12 1 trivial
90 12 1 trivial
96 12 1 trivial

108 12 1 trivial
112 10 1 trivial
120 16 1 trivial
126 12 1 trivial
132 12 1 trivial
140 12 1 trivial
144 15 1 trivial
150 12 1 trivial
156 12 1 trivial
160 12 1 trivial
162 10 2 nichttrivial, Ordnung 2
168 16 1 trivial
176 10 1 trivial
180 18 1 trivial
192 14 1 trivial
196 9 6 nichttrivial, Ordnung 6
198 12 1 trivial
200 12 1 trivial

Gesamtanzahl Galois-Zahlen bis 200: 38
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