Mathematical Definition and Implementation of the
Pratt-Conway Cellular Automaton

Documentation of PCCA Systems

January 17, 2026

1 Introduction

The Pratt-Conway Cellular Automaton (PCCA) is an arithmetic dynamical system that com-
bines the number-theoretic structure of Pratt Trees with the computational logic of FRAC-
TRAN. Unlike traditional cellular automata where cells are passive states, the PCCA is built
on one fundamental pillar:

1. Dual Role of States: Every cell in the grid contains a natural number n, which serves si-
multaneously as an input value and as the generator for a canonical FRACTRAN program
F,.

2 Pratt Trees and FRACTRAN Programs

Definition 1 (Pratt Tree). For a prime number p, the Pratt Tree T), is defined recursively:
e The root of the tree is p.
o The children of p are the Pratt Trees of the prime factors of p — 1.
e The recursion terminates at the prime 2.

Definition 2 (Bounded FRACTRAN Evaluation). Let F' = (fi,...,fx) be a FRACTRAN
program and let a € N. Define the bounded evaluation

FracRuny,,. (F,a)

as follows:
1. Set Ny = a.
2. Fort=0,1,... tmax — 1:

e Find the first fraction f; such that Ny - f; € N.
o [f such f; exists, set Nyy1 = Ny - fi.

o Otherwise halt and return N;.
8. If no halt occurs within tmax steps, return L.

We define the observable output

r, if FracRuny,, (F,a) =r €N,

P Fia) =
t (£, ) {1, if FracRuny,, (F,a) = L.



Definition 3 (Pratt Forest and Multiplicity). For any natural number n > 1, the Pratt Forest
is the collection of Pratt Trees for all prime factors of n. We denote m,(n) as the total count
of the prime p appearing as a node within the entire forest of n.

Definition 4 (Canonical FRACTRAN Mapping). To every n € N, we assign a canonical
FRACTRAN program F,,. This program consists of a sequence of fractions:

p— 1 mp(n)
F, = <> for all p < n where my(n) >0
p

The fractions are ordered by the magnitude of the prime p.

3 Why canonical?: F,(n) =1

We record a basic but crucial normalization fact: each canonical program F}, sends its own index
n to 1.

Theorem 1 (Self-normalization). For every integer n > 1, the canonical FRACTRAN program
F,, halts on input n and returns 1. Equivalently,

FE.,(n)=1 foralln>1.

Proof. If n =1, then F} is the empty program and hence halts immediately with output 1.
Assume n > 1. For each prime p with m,(n) > 0, the program F,, contains the fraction

p=1\" _ (p =1y
we () = e

p
Since ged(p — 1,p) = 1, we have
ged ((p — 1)me() pmp(n)) =1.
Therefore, the FRACTRAN applicability condition for f, on a positive integer N simplifies to
N-fpeN <= pmp(")|N.

If applicable, the update is

N — N = (p—1)me(™),

pmp (n)

In particular, N’ < N because 0 < (p — 1)™(™ < p™»() for all primes p and all m,(n) > 1.
Hence every successful FRACTRAN step strictly decreases the current integer. This implies
that the run must halt after finitely many steps.

It remains to show that the halting value cannot exceed 1. Let N be any value that occurs
during the run (starting with N = n), and let p be the largest prime dividing N. Consider the
situation when all primes > p have already been eliminated (so p is currently maximal). By
construction of the canonical mapping via Pratt forests, the exponent of p present at that stage
is exactly my(n): intuitively, each occurrence of p as a node in the Pratt forest corresponds
to one required copy of p that must be “discharged” by the rule f,, and all such copies are
generated only from primes > p (and once primes > p are removed, no further sources of p
remain). Consequently,

pmp(n) | ‘]\/'7

so fp is applicable at that stage.



Moreover, applying any rule f, with ¢ < p cannot create new prime factors > p because the
multiplier (¢ — 1)™q (") only contains primes < ¢ < p. Thus the maximal prime factor decreases
whenever the rule for the current maximal prime is eventually applied. Since the run is strictly
decreasing in N and cannot avoid applying the maximal-prime rule forever, the maximal prime
factor must drop stepwise until only the prime 2 remains.

Finally, once N is a power of 2, the rule fo = (1/2)™2(") (which is present whenever my(n) >
0) removes blocks of 2-power without introducing any new primes, and strict decrease forces the
terminal value to be 1. Therefore the computation halts with output 1, i.e. Fj,(n) = 1. O

Remark. The key simplification above is that each fraction in Fj, is reduced and has denomi-
nator p"» (™ with ged ((p — 1)), pmp(")) = 1, so applicability depends only on divisibility by
pmp(n)

4 The Pratt-Conway Cellular Automaton Rules

The PCCA operates on a 2D grid Zy X Zy using a Moore neighborhood but it can also be
implemented in van Neumann neighborhood.

Rule 1 (Local Update Rule). Let n¢(z,y) be the value of cell (x,y) at time t. Let F, be its
associated canonical FRACTRAN program.

For each neighbor (z',y') € N(x,y) define

t(l‘,y)

,levyl = thax (Fnt(a:,y)a nt(x/7y/)) :
Then the next state of the cell is given by

n x, = max Vgl o+ 2.
o) = e U

Interpretation. Each cell queries its neighbors for arithmetic information by running its own
FRACTRAN program on the neighbors’ values. Only the largest successfully computed result
influences the update, and the constant offset +2 guarantees strict growth even in quiescent
configurations.

The timeout fallback value 1 acts as a neutral element and prevents non-halting programs
from dominating the dynamics.

e The automaton is deterministic and synchronous.
¢ Information flow is purely local; there is no directional memory.

e Canonical normalization (F,(n) = 1) implies that homogeneous regions are dynamically
stable up to the additive constant.



	Introduction
	Pratt Trees and FRACTRAN Programs
	Why canonical?: Fn(n)=1
	The Pratt-Conway Cellular Automaton Rules

