
Mathematical Definition and Implementation of the

Pratt-Conway Cellular Automaton

Documentation of PCCA Systems

January 17, 2026

1 Introduction

The Pratt-Conway Cellular Automaton (PCCA) is an arithmetic dynamical system that com-
bines the number-theoretic structure of Pratt Trees with the computational logic of FRAC-
TRAN. Unlike traditional cellular automata where cells are passive states, the PCCA is built
on one fundamental pillar:

1. Dual Role of States: Every cell in the grid contains a natural number n, which serves si-
multaneously as an input value and as the generator for a canonical FRACTRAN program
Fn.

2 Pratt Trees and FRACTRAN Programs

Definition 1 (Pratt Tree). For a prime number p, the Pratt Tree Tp is defined recursively:

� The root of the tree is p.

� The children of p are the Pratt Trees of the prime factors of p− 1.

� The recursion terminates at the prime 2.

Definition 2 (Bounded FRACTRAN Evaluation). Let F = (f1, . . . , fk) be a FRACTRAN
program and let a ∈ N. Define the bounded evaluation

FracRuntmax(F, a)

as follows:

1. Set N0 = a.

2. For t = 0, 1, . . . , tmax − 1:

� Find the first fraction fi such that Nt · fi ∈ N.
� If such fi exists, set Nt+1 = Nt · fi.
� Otherwise halt and return Nt.

3. If no halt occurs within tmax steps, return ⊥.

We define the observable output

Φtmax(F, a) =

{
r, if FracRuntmax(F, a) = r ∈ N,
1, if FracRuntmax(F, a) = ⊥.

1



Definition 3 (Pratt Forest and Multiplicity). For any natural number n > 1, the Pratt Forest
is the collection of Pratt Trees for all prime factors of n. We denote mp(n) as the total count
of the prime p appearing as a node within the entire forest of n.

Definition 4 (Canonical FRACTRAN Mapping). To every n ∈ N, we assign a canonical
FRACTRAN program Fn. This program consists of a sequence of fractions:

Fn =

((
p− 1

p

)mp(n)
)

for all p ≤ n where mp(n) > 0

The fractions are ordered by the magnitude of the prime p.

3 Why canonical?: Fn(n) = 1

We record a basic but crucial normalization fact: each canonical program Fn sends its own index
n to 1.

Theorem 1 (Self-normalization). For every integer n ≥ 1, the canonical FRACTRAN program
Fn halts on input n and returns 1. Equivalently,

Fn(n) = 1 for all n ≥ 1.

Proof. If n = 1, then F1 is the empty program and hence halts immediately with output 1.
Assume n > 1. For each prime p with mp(n) > 0, the program Fn contains the fraction

fp =

(
p− 1

p

)mp(n)

=
(p− 1)mp(n)

pmp(n)
.

Since gcd(p− 1, p) = 1, we have

gcd
(
(p− 1)mp(n), pmp(n)

)
= 1.

Therefore, the FRACTRAN applicability condition for fp on a positive integer N simplifies to

N · fp ∈ N ⇐⇒ pmp(n) | N.

If applicable, the update is

N 7→ N ′ =
N

pmp(n)
(p− 1)mp(n).

In particular, N ′ < N because 0 < (p − 1)mp(n) < pmp(n) for all primes p and all mp(n) ≥ 1.
Hence every successful FRACTRAN step strictly decreases the current integer. This implies
that the run must halt after finitely many steps.

It remains to show that the halting value cannot exceed 1. Let N be any value that occurs
during the run (starting with N = n), and let p be the largest prime dividing N . Consider the
situation when all primes > p have already been eliminated (so p is currently maximal). By
construction of the canonical mapping via Pratt forests, the exponent of p present at that stage
is exactly mp(n): intuitively, each occurrence of p as a node in the Pratt forest corresponds
to one required copy of p that must be “discharged” by the rule fp, and all such copies are
generated only from primes ≥ p (and once primes > p are removed, no further sources of p
remain). Consequently,

pmp(n) | N,

so fp is applicable at that stage.

2



Moreover, applying any rule fq with q < p cannot create new prime factors ≥ p because the
multiplier (q − 1)mq(n) only contains primes < q < p. Thus the maximal prime factor decreases
whenever the rule for the current maximal prime is eventually applied. Since the run is strictly
decreasing in N and cannot avoid applying the maximal-prime rule forever, the maximal prime
factor must drop stepwise until only the prime 2 remains.

Finally, once N is a power of 2, the rule f2 = (1/2)m2(n) (which is present whenever m2(n) >
0) removes blocks of 2-power without introducing any new primes, and strict decrease forces the
terminal value to be 1. Therefore the computation halts with output 1, i.e. Fn(n) = 1.

Remark. The key simplification above is that each fraction in Fn is reduced and has denomi-
nator pmp(n) with gcd

(
(p− 1)mp(n), pmp(n)

)
= 1, so applicability depends only on divisibility by

pmp(n).

4 The Pratt-Conway Cellular Automaton Rules

The PCCA operates on a 2D grid ZW × ZH using a Moore neighborhood but it can also be
implemented in van Neumann neighborhood.

Rule 1 (Local Update Rule). Let nt(x, y) be the value of cell (x, y) at time t. Let Fnt(x,y) be its
associated canonical FRACTRAN program.

For each neighbor (x′, y′) ∈ N (x, y) define

vx′,y′ = Φtmax

(
Fnt(x,y), nt(x

′, y′)
)
.

Then the next state of the cell is given by

nt+1(x, y) = max
(x′,y′)∈N (x,y)

vx′,y′ + 2.

Interpretation. Each cell queries its neighbors for arithmetic information by running its own
FRACTRAN program on the neighbors’ values. Only the largest successfully computed result
influences the update, and the constant offset +2 guarantees strict growth even in quiescent
configurations.

The timeout fallback value 1 acts as a neutral element and prevents non-halting programs
from dominating the dynamics.

� The automaton is deterministic and synchronous.

� Information flow is purely local; there is no directional memory.

� Canonical normalization (Fn(n) = 1) implies that homogeneous regions are dynamically
stable up to the additive constant.

3


	Introduction
	Pratt Trees and FRACTRAN Programs
	Why canonical?: Fn(n)=1
	The Pratt-Conway Cellular Automaton Rules

