Introduction 0000000000 extension using Kernel Trick

Examples 0000 Runtimes 1st Step

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Inverse shortest paths in directed acyclic graphs Presentation for KLAIM 2023

Sven O. Krumke, Florian Dahms, Orges Leka

Technische Hochschule Bingen o.leka@th-bingen.de

Presentation September 22, 2023

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
000000000	oo	0000	
Overview			

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

1 Introduction

Problem definition of Burton und Toint 1992 Heuristic Idea

2 Extension using Kernel Trick

3 Examples Example Calculation

4 Runtimes 1st Step

Problem definition of Burton und Toint 1992

- Given: A directed graph *G* = (*V*, *E*), costs *c* on the edges, a set *P* of paths.
- we are searching for: costs \hat{c} on the edges, such that:
- $\hat{c} := \operatorname{argmin}_{\hat{c}} \sum_{(u,v) \in E} (c(u,v) \hat{c}(u,v))^2$
- under constraint: $\forall p \in P$ ist p is a shortest path under \hat{c}

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

possible Application:

- given: A directed graph *G* = (*V*, *E*), costs *c* on the edges, a set *P* of paths.
- vertices correspond here to railway routes so called 'Fahrwege'
- edges correspond to connections of Fahrwege
- Set of paths *p* ∈ *P* corresponds to paths from given schedules which were constructed manually

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
00000000	oo	0000	
Heuristic Ide	а		

- Divide the problem of Burton and Toint into two tasks:
- Desired: Costs \hat{c} on the edges such that:
- 1. For all $p \in P$, p is a shortest path under \hat{c}
- 2. Modify \hat{c} to $c^*(u, v) := \hat{c}(u, v) + h_v h_u$, where:

•
$$c^* := \operatorname{argmin}_h \sum_{(u,v) \in E} (c(u,v) - (\hat{c}(u,v) + h_v - h_u))^2$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
000000000	oo	oooo	oo

1st Step in the Heuristic Idea: Straight Line as a Shortest Line

Figure: Example graph G

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
000000000	oo	0000	

1st Step in the Heuristic Idea: Straight Line as a Shortest Line

 $\mathsf{P} = \{ (1,5,10), (1,3,9), (3,6,12) \}$

Figure: Preserve prescribed paths in subgraph S

ション ション ション ション しょう

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
0000000000	oo	oooo	

1st Step in the Heuristic Idea: Straight Line as a Shortest Line

 $P = \{ (1,5,10), (1,3,9), (3,6,12) \}$

Introduction Extension using Kernel Trick Examples Runtimes 1st Step

1st Step in the Heuristic Idea: Straight Line as a Shortest Line

Figure: blue=Prescribed paths, red=Projection_line_white=Graph

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

2nd Step in the Heuristic Idea: Use Potential Function h_v to Modify Costs

Given:

- **c**(*u*, *v*) := Currently used costs
- $\hat{c}(u, v) :=$ Shortest path costs calculated in the 1st step

Introduction	Extension using Kernel Trick	Examples	Runtimes 1st Step
0000000000	oo	0000	

2nd Step in the Heuristic Idea: Use Potential Function h_v to Modify Costs

Desired: Potential function $h: V \rightarrow \mathbf{R}$ that minimizes (*) :

$$(*): \min_{h} \sum_{(u,v)\in E} (\mathbf{c}(u,v) - (\hat{c}(u,v) + h_v - h_u))^2$$

and
$$\gamma(u, v) := \hat{c}(u, v) + h_v - h_u \ge^! 0$$

ション ション ション ション しょう

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

2nd Step in the Heuristic Idea: Use Potential Function h_v to Modify Costs

Two Ideas: (i) Formulate (*) as an optimization problem and solve it with an optimizer (ii) Use a heuristic to solve (*) quickly (Idea from Johnson's or Surballee's Algorithm)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Extension using Kernel Trick

Observation:

The heuristic method only uses distances and inner products in the calculations

This inner product can be replaced by a positive definite kernel *k*

Distance: $d(x, y) = \sqrt{k(x, x) + k(y, y) - 2k(x, y)}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● の Q @

Extension using Kernel Trick

Advantage: Properties of routes such as:

- Number of switches
- Number of intersections
- Length
- Passenger exit yes/no
- Maximum speed

can be taken into account in the cost calculation of the distance function.

Different distance functions could be defined and empirically tested for suitability.

Extension using Kernel Trick

Examples •ooo

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへぐ

Graph G with Distance Costs

$$c(u,v) := \sqrt{|\min(u,u) + \min(v,v) - 2 \cdot \min(u,v)|} = \sqrt{|u-v|}$$

Figure: Graph G with Distance Costs

Runtimes 1st Step

Graph H with Currently Used Costs

Figure: Graph H with Currently Used Costs

▲ロト▲母ト▲目ト▲目ト 目 のへぐ

Introduction 0000000000 Extension using Kernel Trick

Examples oo●o Runtimes 1st Step

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Graph I with Costs for Shortest Paths

Figure: Graph I with Costs for Shortest Paths

Introduction 0000000000 Examples

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Prescribed Paths

paths = [(1, 2, 6, 12), (1, 3, 6, 12)] shortest path as required: (1, 2, 6, 12) 1212.06 1212.06 shortest path as required: (1, 3, 6, 12) 1212.06 1212.06 not a shortest path as required: (1, 2, 4, 12) 1215.39 1212.06

Runtimes for the 1st Step in the Heuristic

	nrNodesinGraph	nrEdgesInGraph	nrRndPaths	graphCreationTimeInSec	rndPathCreationTimesInSec	graphProjectionTimesInSec
0	100	171	5	0.008509397506713867	0.008020401000976562	0.15915966033935547
1	100	171	10	0.008509397506713867	0.0007266998291015625	0.017099857330322266
2	100	171	15	0.008509397506713867	0.0009381771087646484	0.01642012596130371
3	500	1008	25	0.05508828163146973	0.00228118896484375	0.09429073333740234
4	500	1008	50	0.05508828163146973	0.004318714141845703	0.09512495994567871
5	500	1008	75	0.05508828163146973	0.00675201416015625	0.09413337707519531
6	1000	2126	50	0.12341570854187012	0.007304665426513672	0.2034435272216797
7	1000	2126	100	0.12341570854187012	0.013124465942382812	0.22152495384216309
8	1000	2126	150	0.12341570854187012	0.021610498428344727	0.20542025566101074
9	5000	11738	250	0.86210036277771	0.11178779602050781	1.164170742034912
10	5000	11738	500	0.86210036277771	0.22905516624450684	11609125137329102
11	5000	11738	750	0.86210036277771	0.35599493980407715	11684775352478027
12	10000	24300	500	1.7901675701141357	0.4459238052368164	2.4443984031677246
13	10000	24300	1000	1.7901675701141357	0.8848965167999268	2.485508918762207
14	10000	24300	1500	1.7901675701141357	1.3129947185516357	2.4497201442718506
15	100000	268400	5000	30.827675580978394	51.31938123703003	32.245984785548706
16	100000	266400	10000	30.827675580978394	104.8054690361023	31.861108779907227
17	100000	266400	15000	30.827675580978394	154.85676980018616	32.35290741920471
18	1000000	2853708	50000	411.71499848365784	5268.441532611847	478.899352312088
19	1000000	2853708	100000	411.71499848365784	10475.782470464706	479.71676087379456
20	1000000	2853708	150000	411.71499848365784	16124.274740934372	470.5861692428589

Figure: Result: Heuristic 1st Step, Runtimes in seconds

Thank you for your attention

Any Questions? Comments?

Code and paper may be found here: https://github.com/githubuser1983/klaim2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 …