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1 Primes as Expected Values

Let N ≥ 3 be a �xed natural number. De�ne

ΩN = { y ∈ N | 1 < y ≤ N, gcd(y,N) = 1}.

Set

P (A) =
|A|
|ΩN |

=
|A|

ϕ(N)− 1
for any A ⊆ ΩN ,

where ϕ is Euler's totient function. In particular, for a single value y ∈ ΩN ,

P (y) = P ({y}) =
1

ϕ(N)− 1
.

De�ne the counting-function

χ(N, y) =
∣∣{ a ∈ N | 1 < a ≤ y, gcd(a,N) = 1}

∣∣,
so that

P
(
Y ≤ y

)
=

χ(N, y)

ϕ(N)− 1
.

We draw with replacementm independent samples y1, . . . , ym from ΩN , each with probability
1/(ϕ(N)− 1). Let

Ymin = min{y1, . . . , ym}.

Then the distribution of Ymin is given by the standard order�statistic formula:

P
(
Ymin ≤ y

)
= 1−

(
1− P (Y ≤ y)

)m
= 1−

(
1− χ(N,y)

ϕ(N)−1

)m
.

Hence the probability mass function is

P
(
Ymin = y

)
=

(
1− χ(N,y−1)

ϕ(N)−1

)m
−
(
1− χ(N,y)

ϕ(N)−1

)m
.

Let
r = minΩN .

By de�nition r is the smallest prime not dividing N . Clearly

χ(N, r − 1) = 0, χ(N, r) = 1.

Thus
P
(
Ymin = r

)
= (1− 0)m −

(
1− 1

ϕ(N)−1

)m
= 1−

(
1− 1

ϕ(N)−1

)m
.

Passing to the limit,
lim

m→∞
P
(
Ymin = r

)
= 1,

and for every other y ̸= r,
lim

m→∞
P
(
Ymin = y

)
= 0.

Proposition 1.1. As m → ∞, the expected value of Ymin converges to r:

E(Ymin) =
∑
y∈ΩN

y P (Ymin = y) =⇒ lim
m→∞

E(Ymin) = r.

Proof. Interchange limit and sum (all terms nonnegative):

lim
m→∞

E(Ymin) =
∑
y∈ΩN

y lim
m→∞

P (Ymin = y) = r · 1 +
∑
y ̸=r

y · 0 = r.
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2 The Primorial Case

Let Pk = p1p2 · · · pk be the k-th primorial, k ≥ 2. Then

ΩPk
= { y ≤ Pk : gcd(y, Pk) = 1} =⇒ r = minΩPk

= pk+1.

Hence in this special case,
lim

m→∞
E(Ymin) = pk+1,

showing that by repeatedly sampling coprime residues modulo a primorial, in the large-sample
limit one �discovers� the next prime.

3 A recursive formula for the n-th prime

Let p1 < p2 < · · · < pn be the �rst n primes and set

Pn =

n∏
i=1

pi.

A well-known characterization of the (n+ 1)-th prime is

pn+1 = min
{
x > 1 : gcd(x, Pn) = 1

}
.

We now show that one may �soften� the minimum via a log-sum-exp approximation and still
recover pn+1 in the limit.

Theorem 3.1. De�ne, for each real ρ > 0,

S(ρ) =
∞∑
x=2

exp
(
−ρ x

)
exp

(
−
(
gcd(Pn, x)

)ρ)
.

Then

pn+1 = lim
ρ→∞

[
−1

ρ logS(ρ)
]
.

Proof. We will sandwich S(ρ) between two expressions whose −1
ρ log both tend to pn+1.

1. Lower bound.

Since the summand is strictly positive for every x ≥ 2, in particular the term x = pn+1 appears:

S(ρ) ≥ exp
(
−ρ pn+1

)
exp

(
− gcd(Pn, pn+1)

ρ
)

= exp
(
−ρ pn+1

)
exp(−1),

because gcd(Pn, pn+1) = 1. Hence

−1
ρ logS(ρ) ≤ −1

ρ

[
−ρ pn+1 − 1

]
= pn+1 +

1
ρ ,

and so
lim sup
ρ→∞

[
−1

ρ logS(ρ)
]

≤ pn+1.

2. Upper bound.

Split the sum at x = pn+1:

S(ρ) =

pn+1−1∑
x=2

e−ρx e−(gcd(Pn,x))ρ +
∞∑

x=pn+1

e−ρx e−(gcd(Pn,x))ρ .
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- For 2 ≤ x < pn+1, every prime dividing x is among p1, . . . , pn, so gcd(Pn, x) ≥ 2, hence

e−(gcd(Pn,x))ρ ≤ e−2ρ .

There are at most pn+1 − 2 ≤ 2pn such x, so

pn+1−1∑
x=2

e−ρx e−(gcd(Pn,x))ρ ≤ 2pn e−2ρ .

- For x ≥ pn+1, we have gcd(Pn, x) = 1, so

e−(gcd(Pn,x))ρ = e−1.

Thus

∞∑
x=pn+1

e−ρx e−1 = e−1
∞∑
k=0

e−ρ (pn+1+k) = e−1 e−ρpn+1

∞∑
k=0

e−ρk = e−1 e−ρpn+1
1

1− e−ρ
.

For su�ciently large ρ, e−ρ < 1
2 , so

1
1−e−ρ ≤ 1 + 2e−ρ. Hence

∞∑
x=pn+1

e−ρx e−(gcd(Pn,x))ρ ≤ e−ρpn+1−1
(
1 + 2e−ρ

)
.

Combining both parts,

S(ρ) ≤ 2pne
−2ρ + e−ρpn+1−1

(
1 + 2e−ρ

)
.

Since 2pne
−2ρ decays super-exponentially as ρ → ∞, we get

−1
ρ logS(ρ) ≥ −1

ρ log
[
e−ρpn+1−1(1 + 2e−ρ) + o(1)

]
= pn+1 +

1
ρ − 1

ρ log(1 + 2e−ρ) + o(1/ρ),

and thus
lim inf
ρ→∞

[
−1

ρ logS(ρ)
]

≥ pn+1.

By the squeeze (sandwich) theorem,

lim
ρ→∞

[
−1

ρ logS(ρ)
]

= pn+1,

as claimed.

Remark. Numerically one can verify this convergence in SageMath for moderate n and ρ.
While elegant, this formula does not (so far) yield new e�ective bounds on primes, since the
limit occurs at extremely large ρ.

4 Random primes, 13.01.2022

By Euclid and the sieve of Eratosthenes,

pk = min{x > 1 : gcd(x, p1 · · · pk−1) = 1}.

This process is deterministic. Now introduce randomness:

y = min
i=1,...,k

{xi}, xi
iid∼ Uniform{2, . . . , N} subject to gcd(xi, N) = 1.
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Extreme-value theory studies min,max of iid variables as k → ∞. The Gumbel distribu-
tion often appears (see Wikipedia), and there is empirical work linking primes and EVT, e.g.
arXiv:1301.2242.

In our model, the CDF is

F (y) =
χ(N, y)

ϕ(N)− 1
, χ(N, y) = |{2 ≤ a ≤ y : gcd(a,N) = 1}|,

and
P (Ymin = y) = (1− F (y − 1))m − (1− F (y))m.

Hence
E
(
Y

(N,m)
min

)
=

∑
2≤k≤N

gcd(k,N)=1

k
[
(1− F (k − 1))m − (1− F (k))m

]
.

As m → ∞, for N = Pk the expectation tends to pk+1.

Empirical SageMath code:

def PK(k):

return prod(primes(nth_prime(k)))

def FF(N,m,k):

return 1/( euler_phi(N) -1)*len([a for a in range(2,k+1) if gcd(a,N)

==1])

def EE(N,m):

return sum([k*((1-FF(N,m,k-1))**m - (1-FF(N,m,k))**m)

for k in range(2,N+1) if gcd(k,N)==1])

for n in range (3,7):

print(nth_prime(n), EE(PK(n), PK(n)))

Conclusion

We've modeled random draws of units mod N and studied the minimum. As the sample size
grows, the minimum concentrates on the smallest prime not dividing N , recovering in particular
the next prime after a primorial.
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