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1 Cost Estimation based on Shortest Paths

Problem: Given a road graph and its shortest paths, we want to determine the costs on
the edges that correspond to these shortest paths.

Literature: ’Burton and Toint - 1992 - On an instance of the inverse shortest paths
problem.’

In the above paper, the following problem is solved: Given pre-determined edge costs
and known shortest paths, we want to find additional edge costs that explain these
shortest paths and, additionally, minimize the l2-norm to the given costs. The problem is
formulated as a quadratic optimization problem and is solved using a method that takes
n2 time, where n is the number of nodes. This method could be relevant for railways,
where the spatial distance between two nodes could be used as the ’pre-determined cost’.

Another approach:
A directed, connected, and edge-weighted graph G = (V,E, c) is called k.w.-Graph

(shortest paths are most probable paths) if there exists a stochastic matrix P such that
G and P form a Markov chain, and additionally:

− log(P (i, j)) = c(i, j)
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2 Rail Networks with Timetables

2 Rail Networks with Timetables

A rail network N is a tuple N := (Z,S,B) with a finite set Z of trains and a track space
S (whose elements are called track points), which is initially a topological space and has
a finite cover of closed sets B = (B1, · · · , Bb):

∪1≤i≤b Bi = S (1)

The finite sets Bi are called block sections. A timetable F is a tuple (N, β,T) where
N is a rail network, T = [tS , tE ] is the closed time interval of the timetable, and β is a
function called location curve, such that:

β : Z×T→ S (2)

β is continuous in the second argument, i.e., it is a path.

∀z ∈ Z is t 7→ β(z, t) a continuous function of topological spaces (3)

β is injective in the first argument: (No two trains can be at the same track point at
the same time.)

∀z1 6= z2, z1, z2 ∈ Z∀t ∈ T is β(z1, t) 6= β(z2, t) (4)

However, even more is required: No two trains can be at the same block section
simultaneously: Let:

∀z ∈ Z let βz : T→ S, z 7→ β(z, t) (5)

Then it should hold:

∀B ∈ B∀z1 6= z2, z1, z2 ∈ Z : β−1z1 (B) ∩ β−1z2 (B) = ∅ (6)

Two block sections are connected if they intersect at finitely many track points:

∀B,C ∈ B : B ≡ C :⇐⇒ 0 < |B ∩ C| <∞ (7)

We say: A train z ∈ Z is in block section B (according to timetable F) in the time
interval [ta, td] ⊂ [tS , tE ], if:

∀βz([ta, td]) ⊂ B (8)

We also say: A train z ∈ Z travels over block section B (according to timetable F) in
the time interval [ta, td] ⊂ [tS , tE ], if z is in B in the time interval [ta, td] and:

∀ε > 0 it is {β(z, ta − ε), β(z, td + ε)} ∩B = ∅ (9)

Here, ta is the arrival time and td is the departure time. A train z ∈ Z travels from B
to C with B,C ∈ B if:
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2 Rail Networks with Timetables

∃B = B1 ≡ B2 ≡ · · · ≡ Bn = C,Bi ∈ B (10)

and

∃[ta1 , td1 ], · · · , [tan , tdn ] ⊂ [tS , tE ] : ∀i = 1, · · · , n− 1 : β(z, tdi) = β(z, tai+1) (11)

and z travels over Bi in the time interval [tai , tdi ].
A timetable F̂ is an extension of F :⇐⇒

T ⊂ T̂, β̂|T = β,N ⊂ N̂ (12)

Here, we understand N ⊂ N̂ as follows:

ZN ⊂ ZN̂ as sets,SN ⊂ SN̂ as topological spaces (13)

The above definitions may seem too general, but one should keep in mind the following
image as inspiration, and the definitions can still be changed or are chosen in a way to
generate mathematical examples that can be investigated for algorithmic questions:

A mathematical example is given by the following image:
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2 Rail Networks with Timetables

We imagine that the above image corresponds to the track space of a railway network,
which has not yet been divided into block sections and has no trains and timetable:

After some further consideration, the track space S should have the following proper-
ties:

It consists of a finite family of curves in R2 that satisfy the following conditions:
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2 Rail Networks with Timetables

• The families intersect at a finite set of nodes.

• Each node can be either a ’switch’ or a ’crossing.’

• At each ’switch,’ three curves touch with the same tangent, with two curves ente-
ring from one direction and one from the other.

• At each ’crossing,’ two curves intersect or one curve intersects itself. (At each
crossing, there are exactly two non-parallel tangents that intersect.)

• Away from the finite set of nodes, the curves are smooth and do not touch or
intersect each other.

I have added an image to describe this geometric construction more precisely. C1, C2,
and C3 are crossings, and S1 and S2 are switches.

Next, we consider decompositions of the track space consisting of three types of block
sections (switch, crossing, straight):

Example:
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2 Rail Networks with Timetables

We can parameterize the function βz by arc length if we assume that for all z ∈ Z and
∀t ∈ T:

∀z ∈ Z,∀t ∈ T : β′z(t) 6= 0 (14)

Let αz(t) be the arc length of train z at time t. Then:

αz(t) =

∫ t

tS

|β′z(τ)|dτ (15)

Since we have assumed in Equation (18) that β′z(τ) 6= 0, αz(t) is strictly monotonically
increasing. Thus, it has an inverse function (or we can solve for t given α), and we can
write:
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3 Definition of the Track Space S

βz(α) = βz(tz(α)), for α ≥ 0 (16)

3 Definition of the Track Space S

Bemerkung 3.1. In the railway network, there are, among other things, simple swit-
ches, double switches, crossings, and straight or curved track sections. We want to att-
empt a mathematical formulation of a railway network, called track space, which includes
simple switches, double switches, and crossings. Afterwards, we aim to divide this track
space into block sections of types: G (straight/curved), W11 (double switches), W21 (sim-
ple switches), K (crossings). In each block section, only one train is allowed during a
specific time period, following Oskar Happel’s (1959) theory of time-locking staircases.
In the next image, an example of a track space divided into block sections is shown.

We want to define an associated graph for each track space:

The track space S is defined by:
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3 Definition of the Track Space S

S = ∪ci=1ri([0, 1]) (17)

where the differentiable paths ri : [0, 1]→ R2, i = 1, · · · , c are subject to the following
properties (Eqs. 18− 24):

The paths are simple, i.e., they do not intersect each other:

ri(t1) 6= ri(t2)∀i = 1, · · · , c∀t1 6= t2, t1, t2 ∈ [0, 1) (18)

(However, a path ri can be closed, i.e., ri(0) = ri(1).)
Different paths intersect at most at one point:

∀i 6= j : |ri([0, 1]) ∩ rj([0, 1])| ≤ 1 (19)

There exists a finite set P ⊂ S, such that:

P = K ∪W11 ∪W12,

|P | = |K|+ |W11|+ |W12| <∞, (as shown below)

K ∩W11 = K ∩W12 = W11 ∩W12 = ∅ (as shown below)

(20)

where the definition of K,W11,W12 is given by:

K = {p ∈ S|∃!{i, j}, 0 < t1, t2 < 1 : ri(t1) = rj(t2) = p, r′i(t1) 6= r′j(t2)} (21)

W11 = {p ∈ S|∃!{i, j}, 0 < t1, t2 < 1 : ri(t1) = rj(t2) = p, r′i(t1) = r′j(t2)} (22)

W12 = {p ∈ S|∃!{i, j, k},
∃!(t1, t2, t3) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} :

ri(t1) = rj(t2) = rk(t3) = p, r′i(t1) = r′j(t2) = r′k(t3)}
(23)

Furthermore, at the finitely many points of P , at least two but at most three paths
should intersect:

∀p ∈ P :

2 ≤ |{i : 1 ≤ i ≤ c,∃t ∈ [0, 1] : ri(t) = p}| ≤ 3
(24)

Outside of P , there are no further intersections:

∀i 6= j :

If q := ri(t1) = rj(t2) for t1, t2 ∈ (0, 1),

then it follows that q ∈ P
However, the case ri(1) = rj(0) cannot occur in S but not in P.

(25)
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3 Definition of the Track Space S

Proposition 3.2. Let U := {q ∈ S|∃i 6= j : ri(t1) = rj(t2) for t1, t2 ∈ [0, 1]}. Then,

P ⊂ U and 0 ≤ |P | ≤ |U | ≤ c(c−1)
2 <∞.

Proof. Let p ∈ P .
If p ∈ K, there exist i 6= j : ri(t1) = rj(t2) for t1, t2 ∈ [0, 1], so p ∈ U .
If p ∈W11, there exist i 6= j : ri(t1) = rj(t2) for t1, t2 ∈ [0, 1], so p ∈ U .
If p ∈W12, there exist i, j, k : ri(t1) = rj(t2) = rk(t3) for t1, t2, t3 ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)},

so p ∈ U . Overall, p ∈ U , and hence, P ⊂ U .
According to equation 19, two paths intersect at most at one point, and since there

are c < ∞ paths, and each path can intersect with the other paths at most once, the
number of intersection points is at most c(c−1)

2 , thus |U | ≤ c(c−1)
2 <∞.

Thus, we have

0 ≤ |P | ≤ |U | ≤ c(c− 1)

2
<∞.

Bemerkung 3.3. Therefore, the finite points in P can be classified into the following
categories:
p ∈ K is a ’crossing point’: There are exactly two different paths ri, rj and 0 < t1, t2 <

1 with ri(t1) = rj(t2) = p, r′i(t1) 6= r′j(t2).
p ∈ W11 is a ’double switch point’: There are exactly two different paths ri, rj and

0 < t1, t2 < 1 with ri(t1) = rj(t2) = p, r′i(t1) = r′j(t2).
p ∈ W12 is a ’single switch point’: There are exactly three pairwise different paths

ri, rj , rk and (t1, t2, t3) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} with ri(t1) = rj(t2) = rk(t3) = p,
r′i(t1) = r′j(t2) = r′k(t3).

Proposition 3.4. With the above definitions of K,W11,W12, it holds that K ∩W11 =
K ∩W12 = W11 ∩W12 = ∅

Proof. Assume p ∈ K ∩ W11. Then there exist i 6= j and t1, t2 with r′i(t1) = r′j(t2)
since p ∈ W11, but also r′i(t1) 6= r′j(t2) since p ∈ K, which is a contradiction. Thus,
K ∩W11 = ∅.

Assume p ∈ K∩W12. Then there exist i 6= j and 0 < t1, t2 < 1 with p = ri(t1) = rj(t2)
and r′i(t1) 6= r′j(t2) since p ∈ K. Furthermore, there exist pairwise different a, b, c and
(ta, tb, tc) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} with p = ra(ta) = rb(tb) = rc(tc) and r′a(ta) =
r′b(tb) = r′c(tc). According to equation 24, the set {i, j, a, b, c} contains two or three
elements. As a, b, c are pairwise different, this set must contain three elements, i.e.,
{i, j, a, b, c} = {a, b, c}. Without loss of generality, assume i = a and j = b. Then
ra(ta) = p = ri(t1) = ra(t1), and ta ∈ {0, 1}, 0 < t1 < 1, which implies ta 6= t1.
This leaves the following possibilities according to equation 18: (ta, t1) = (0, 1), which
contradicts t1 < 1, or (ta, t1) = (1, 0), which contradicts t1 > 0. Hence, our assumption
K ∩W12 6= ∅ cannot hold, and it must be K ∩W12 = ∅.

The case W11 ∩W12 = ∅ is proven analogously:
Assume p ∈ W11 ∩W12. Then there exist i 6= j and 0 < t1, t2 < 1 with p = ri(t1) =

rj(t2) and r′i(t1) = r′j(t2) since p ∈ K. Furthermore, there exist pairwise different a, b, c
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3 Definition of the Track Space S

and (ta, tb, tc) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} with p = ra(ta) = rb(tb) = rc(tc) and r′a(ta) =
r′b(tb) = r′c(tc). According to equation 24, the set {i, j, a, b, c} contains two or three
elements. As a, b, c are pairwise different, this set must contain three elements, i.e.,
{i, j, a, b, c} = {a, b, c}. Without loss of generality, assume i = a and j = b. Then
ra(ta) = p = ri(t1) = ra(t1), and ta ∈ {0, 1}, 0 < t1 < 1, which implies ta 6= t1.
This leaves the following possibilities according to equation 18: (ta, t1) = (0, 1), which
contradicts t1 < 1, or (ta, t1) = (1, 0), which contradicts t1 > 0. Hence, our assumption
W11 ∩W12 6= ∅ cannot hold, and it must be W11 ∩W12 = ∅.

Proposition 3.5. At every crossing point p ∈ K and at every point of a double switch
p ∈ W11, there exist i 6= j, 1 ≤ i, j ≤ c and closed sets Kij , G

−
i , G

+
i , G

−
j , G

+
j of S such

that:
ri([0, 1]) ∪ rj([0, 1]) = Kij ∪G−i ∪G

+
i ∪G

−
j ∪G

+
j (26)

and it is

|Kij ∩G| = 1 for G ∈ {G−i , G
+
i , G

−
j , G

+
j } (27)

|G ∩H| = 0 for G 6= H,G,H ∈ {G−i , G
+
i , G

−
j , G

+
j } (28)

Proof.
First, we prove the case for a crossing point: Since p ∈ K, there exist t1, t2, 0 <

t1, t2 < 1 and i 6= j such that ri(t1) = p = rj(t2). Set G−i := {ri(t)|0 ≤ t ≤ t1
2 }, G

−
j :=

{rj(t)|0 ≤ t ≤ t2
2 }, G

+
i := {ri(t)|t1 + 1−t1

2 ≤ t ≤ 1}, G+
j := {rj(t)|t2 + 1−t2

2 ≤ t ≤ 1}, and

Kij := {ri(t)| t12 ≤ t ≤ t1 + 1−t1
2 }∪{rj(t)|

t2
2 ≤ t ≤ t2 + 1−21

2 }. Then, G−i ∩Kij = {ri( t12 )},
G−j ∩ Kij = {rj( t22 )}, G+

i ∩ Kij = {ri(t1 + 1−t1
2 )}, G+

j ∩ Kij = {rj(t2 + 1−t2
2 )}, and

ri([0, 1]) ∪ rj([0, 1]) = Kij ∪ G−i ∪ G
+
i ∪ G

−
j ∪ G

+
j , which shows equations 26 and 27.

For equation 28, we observe that ri and rj already intersect at p, so G ∩ H = ∅ for
G 6= H,G,H ∈ {G−i , G

+
i , G

−
j , G

+
j }; otherwise, there would be another point q as an

intersection of ri and rj , which is not possible according to equation 19.
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3 Definition of the Track Space S

In the case of a double switch p ∈W11, there exist t1, t2, 0 < t1, t2 < 1 and i 6= j such
that ri(t1) = p = rj(t2), and we proceed analogously as in a crossing point.

Proposition 3.6. At every point of a single switch p ∈ W12, there exist i, j, k, 1 ≤
i, j, k ≤ c pairwise different and closed sets B,Bi, Bj , Bk of S, such that:

ri([0, 1]) ∪ rj([0, 1]) ∪ rk([0, 1]) = B ∪Bi ∪Bj ∪Bk (29)

and it is

|X ∩ Y | = 0 for X,Y ∈ {Bi, Bj , Bk} (30)

and

|B ∩X| = 1 for X ∈ {Bi, Bj , Bk} (31)
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3 Definition of the Track Space S

Proof.
Since p ∈ W12, there exist three pairwise different paths ri, rj , rk and (t1, t2, t3) ∈
{(0, 0, 1), (0, 1, 0), (1, 0, 0)} such that ri(t1) = rj(t2) = rk(t3) = p, r′i(t1) = r′j(t2) =
r′k(t3). Without loss of generality, assume (t1, t2, t3) = (1, 0, 0). We set Bi := {ri(t)|0 ≤
t ≤ 1

2}, Bj := {rj(t)|1/2 ≤ t ≤ 1}, Bk := {rk(t)|1/2 ≤ t ≤ 1}, and B := {ri(t)|1/2 ≤ t ≤
1} ∪ {rj(t)|0 ≤ t ≤ 1/2} ∪ {rk(t)|0 ≤ t ≤ 1/2}, and equation 29 follows. Equation 30
follows because ri, rj , rk already intersect at p and since two different paths intersect at
most at one point according to equation 19, we have |X∩Y | = 0 for X,Y ∈ {Bi, Bj , Bk},
and equation 30 is shown. It holds that B ∩Bx = {rx(1/2)} for x ∈ {i, j, k}.

Proposition 3.7. It is S = ∪bk=1Bk for a natural number b, and B := {B1, · · · , Bb}.
The sets Bk are closed, non-empty, path-connected, and it holds

|Bi ∩Bj | ∈ {0, 1}

Proof. TODO

Definition 3.1. The associated undirected graph GS := (B, E) is defined by:

Bi ≈ Bj :⇐⇒ |Bi ∩Bj | = 1 (32)
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3 Definition of the Track Space S

We divide the block sections into ’Straight’ and ’Bridges’:

G := {B ∈ B|B ∩ P = ∅} =: ’Straight’ (33)

Gc := B−G = {B ∈ B|B ∩ P 6= ∅} =: ’Bridges’ (34)

The bridges Gc are only those block sections of type simple switch, double switch, and
crossing, while in G, the block sections are of type straight.

Let

NB := ∪B≈Bj ,B 6=Bj
Bj = B ∩Bc = B ∩ (S −B) (35)

be the set of ’direction points of B’. Then, |NB| < ∞ and deg(B) = |NB|, where
deg is the degree of B in GS. For each B ∈ B, there exists a ’direction function’ ρB :
NB → P(NB), which describes the possible direction points ρB(x) that are a subset of
NB when a train enters the block section B at a direction point x in NB. This function is
determined / computed based on the paths ri and the block section type (G,W11,W12,K).
Using this function, one can represent how a train can move at a simple / double switch
or crossing.

A bridge D ∈ Gc ’leads from B to C’ (with B,C ∈ G) :⇐⇒

|B ∩ C| = 0 and |B ∩D| = 1 and |D ∩ C| = 1

and (NC ∩ND) ⊂ ρB(NB ∩ND)
(36)

(Each block section / node B in GS has a ’weight µ(B)’ which corresponds to the sum
of the arc lengths of the respective ri’s. Each edge {B,C} has a ’weight µ({B,C}) :=
µ(B) + µ(C)’.) :

Let HS = (G, EH), where the edges are defined as:

B → D :⇐⇒
Either B and D are connected in GS

or they are not connected in GS

and there is a bridge C ∈ Gc, leading from B to D.

(37)

In principle, this directed graph HS is created by removing the bridges from Gc and
considering the direction function.

Examples for the last definition:
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3 Definition of the Track Space S

The associated directed graph HS is given by:
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3 Definition of the Track Space S

We want to define an associated graph for each track space:

Further examples:
Let r(t) := 1 · exp(1 · 2π

√
−1t) + 2 · exp(3 · 2π

√
−1t), 0 ≤ t ≤ 1. We decompose r(t)

into ’smaller paths’ and then into block sections:
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3 Definition of the Track Space S

The undirected graph is then given by:

The directed graph is given by:
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3 Definition of the Track Space S

Here, it can be observed that in principle, there can be no branching during the passage
of the track space, as a train at crossings can only go straight ahead without diverging.
This graph reflects that the track space has been defined by a closed path. Therefore,
the graph is cyclic.

Definition 3.2. The perspective plane Pz of the train z ∈ Z is R2. For each train z,
there are mappings:

α̂z : T→ Pz, t 7→ (

∫ t

tS

|β′z(τ)|dτ, t) = (αz(t), t)

and

t̂z : [0, αE,z]→ Pz, α 7→ (α, tz(α))

.
where αE,z :=

∫ tE
tS
|β′z(τ)|dτ is the total length of the track that train z travels during

the time period T = [tS , tE ] and tz(α) indicates the time point if the arc length α of train
z is given. Furthermore, T = [tS , tE ] is the time interval of the given timetable. Here,
we identify the track section {βz(t) ∈ S|tS ≤ t ≤ tE} that the train z travels on S with
the beginning of the x-axis of R2 starting at the origin and extending to the right.

The worldline Lz of the train z ∈ Z is defined as Lz := {(α, tz(α)) ∈ Pz|0 = αS ≤
α ≤ αE,z} = α̂z(T). The x-coordinate of a point on the worldline Lz represents the arc

17



3 Definition of the Track Space S

length of train z, and the y-coordinate represents the time at which the train has traveled
the arc length.

Bemerkung 3.8. The perspective plane Pz of train z represents the plane containing
the worldline Lz, and other worldlines of other trains could be drawn in this plane. In
manual timetable planning, this perspective is used to schedule trains collision-free. It is
important to note that the definition of Pz and Lz depends on the path that train z travels
on the track space S using βz. In other words, two trains that have disjoint paths will also
have disjoint perspective planes. Only for trains that share a common path (partially),
the rectangles of their respective perspective planes can intersect, and one worldline may
appear/partially appear in the perspective of the other train.

Definition 3.3. For each straight block section B ∈ G, the perspective of B is defined

18



3 Definition of the Track Space S

as:
PB := ∪βz(T)∩B 6=∅α̂z(β

−1
z (B))

(With this definition, we aim to describe parts of the worldlines of all trains that can
be observed from the perspective of an individual straight block section. The idea is to
combine the perspectives of several straight block sections that form a path in the graph
HS to consider the worldlines of all trains that travel on this path in the graph HS.)

Proposition 3.9. For each straight block section B ∈ G and two distinct trains z1 6= z2,
it holds:

α̂z1(β−1z1 (B)) ∩ α̂z2(β−1z2 (B)) = ∅
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4 Quadratic Optimization on a Perspective Plane

(In other words: The worldlines of different trains at a straight block section do not
intersect.)

Proof. Assume there exists a point (αz1(t1), t1) = (αz2(t2), t2) in the intersection. Then,
we have t := t1 = t2, and it follows that t = t2 = t1 ∈ β−1z1 (B) and t = t1 = t2 ∈ β−1z2 (B).
Thus, β−1z1 (B) ∩ β−1z2 (B) contains the time point t, which contradicts the assumption
β−1z1 (B) ∩ β−1z2 (B) = ∅ (Eq. 5) in a timetable.

4 Quadratic Optimization on a Perspective Plane

In this section, we want to define a density for a vector and examine when this density is
minimized. Based on this, we want to extend this density to functions that correspond
to the worldlines of trains and attempt to describe an algorithm that shifts an existing
worldline of a train in a given perspective plane so that the density becomes as small as
possible.

Definition 4.1. For a vector x = (x1, · · · , xn), we define the density δ(x) as:

δ(x) :=

√√√√n−1∑
i=1

|xi − xi+1|2 (38)

Proposition 4.1. For all x = (x1, · · · , xn): The density is minimized if:

xi+1 − xi =
xn − x1
n− 1

for all i = 1, · · · , n− 1 (39)

In this case, it holds:

δ(x) =
|xn − x1|√
n− 1

(40)

while for any x:

δ(x) ≥ |xn − x1|√
n− 1

(41)

Proof. Assume xi+1 − xi = xn−x1
n−1 for all i = 1, · · · , n− 1. Then we have:

δ(x) =

√√√√n−1∑
i=1

|xi − xi+1|2 =

√√√√n−1∑
i=1

(xn − x1)2
(n− 1)2

=

√
(n− 1)(xn − x1)2

(n− 1)2
=
|xn − x1|√
n− 1

Now, for an arbitrary x, set ai := xi+1 − xi, bi := 1 for i = 1, · · · , n − 1, and a =
(a1, · · · , an−1), b = (b1, · · · , bn−1). By Cauchy-Schwarz, we have:

〈a, b〉2 ≤ 〈a, a〉 · 〈b, b〉
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4 Quadratic Optimization on a Perspective Plane

⇐⇒ (a21 + · · ·+ a2n−1)(b
2
1 + · · ·+ b2n−1) ≥ (a1b1 + · · ·+ an−1bn−1)

2

⇐⇒ ((x1 − x2)2 + (x2 − x3)2 + · · ·+ (xn−1 − xn)2) · · · (n− 1) ≥

((x1 − x2) · 1 + (x2 − x3) · 1 + · · ·+ (xn−1 − xn) · 1)2 = (xn − x1)2

Hence:

(x1 − x2)2 + (x2 − x3)2 + · · ·+ (xn−1 − xn)2 ≥ (xn − x1)2

n− 1

or equivalently:

δ(x) =
√

(x1 − x2)2 + · · ·+ (xn−1 − xn)2 ≥ |xn − x1|√
n− 1

Definition 4.2. Let f = (f1, · · · , fn) be a vector of functions that are quadratically
integrable over [x1, x2]. Define the ’density of ’ f as:

δ(f) :=

√√√√n−1∑
i=1

|fi − fi+1|2 (42)

where |g| :=
√∫ x2

x1
g(x)2dx is the L2([x1, x2]) norm.

Proposition 4.2. For all f = (f1, · · · , fn): (Conjecture) The density of f is minimized
if:

fi+1 − fi =
fn − f1
n− 1

for all i = 1, · · · , n− 1 (43)

(Conjecture) In this case, it holds:

δ(f) =
|xn − x1|√
n− 1

(44)

while for any f :

δ(f) ≥ |fn − f1|√
n− 1

(45)

Proof. We prove 45: For x1 ≤ x ≤ x2, let f(x) := (f1(x), · · · , fn(x)). Then, according to
41, we have:

δ(f(x))2 =

n−1∑
i=1

(fi+1(x)− fi(x))2 ≥41 |fn(x)− f1(x)|2

n− 1

Thus, we have (∗):

δ(f(x))2 ≥ |fn(x)− f1(x)|2

n− 1

. Integrating over x, we obtain:
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4 Quadratic Optimization on a Perspective Plane

δ(f)2 =
n−1∑
i=1

|fi+1 − fi|2 =
n−1∑
i=1

∫ x2

x1

(fi+1(x)− fi(x))2dx ≥(∗)

∫ x2

x1

|fn(x)− f1(x)|2

n− 1
dx =

1

n− 1
· |fn − f1|2

Thus, we have:

δ(f) ≥ |fn − f1|√
n− 1

Bemerkung 4.3. Suppose we consider two trains whose worldlines are given by the
functions g > f in a perspective plane and we want to shift the worldline of a third train
p with a linear transformation m · p(x) + n such that this worldline ’fits well between
f < m · p+ n < g’ and ’does not waste too much space’. Multiplying p by m corresponds
to changing the speed of the train, while adding n to mp corresponds to shifting departure
or arrival times. To simulate the lock stair times, we choose a positive number δ.

One possible task could be: Choose m,n such that the square of the hatched area |(g −
δ)− (mp+ n+ δ)|2 is minimized, subject to the constraints:
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δ > 0, ∀x ∈ [x1, x2], g(x)− δ ≥ mp(x) + n+ δ

Proposition 4.4. The task: Choose m,n such that the square of the hatched area |(g−
δ)− (mp+ n+ δ)|2 is minimized, subject to the constraints:

δ > 0, ∀x ∈ [x1, x2], g(x)− δ ≥ mp(x) + n+ δ

leads to a quadratic optimization problem.

Proof. It is

|(g − δ)− (mp+ n+ δ)|2 =

∫ x2

x1

(g(x)−mp(x)− n− 2δ)2dx =

= am2 + 2bm+ 2cmn+ 2dn+ en2 + f

(46)

where

• a =
∫ x2
x1
p(x)2dx

• b =
∫ x2
x1

2δp(x)− g(x)p(x)dx

• c =
∫ x2
x1
p(x)dx

• d =
∫ x2
x1

4δ − 2g(x)dx

• e = x2 − x1

• f =
∫ x2
x1
g(x)2 − 4δg(x) + 4δ2dx

Constraints:
∀x ∈ [x1, x2] : g(x)− δ ≥ mp(x) + n+ δ

Idea: Divide the interval [x1, x2] into r parts:

x̂1 < x̂2 < · · · < x̂r : x̂i ∈ [x1, x2]

Constraints : (47)

• g(x̂1)− δ ≥ mp(x̂1) + n+ δ

• g(x̂1)− δ ≥ mp(x̂1) + n+ δ

• · · ·

• g(x̂r−1)− δ ≥ mp(x̂r−1) + n+ δ

• g(x̂r)− δ ≥ mp(x̂r) + n+ δ
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Let h = (g(x̂1)−δ, · · · , g(x̂r)−δ)T ,G = ((p(x̂1, 1), · · · (p(x̂r, 1))T ,Q = ((2a, 2c), (2c, 2e))T ,
v = (2b, 2d)T , w = (m,n)T .

Then, minimizing 46 subject to the constraints 47 is equivalent to:

min
w

1/2wTQw + wT v

Gw ≤ h
(48)

and that is a quadratic optimization problem.

5 TODOs / Ideas

Idea:

• Use path integrals in the last proposition.

• Analogy to physics: No two trains on the same block section at the same time

⇐⇒

Pauli exclusion principle: No two particles at the same location at the same time.

• This analogy may seem far-fetched, but path integrals are also used in physics
(Feynman integral).

Desired properties of the track space S, the set of block sections B, direction points
Ni, and bridges Gc:

• S = ∪bi=1Bi,B = {B1, · · · , Bb}

• |Bi ∩Bj | ∈ {0, 1} for i 6= j

• S is closed and should be path-connected.

• ∀i : Bi is closed, path-connected, and non-empty.

• Definition of the undirected graph GS : Bi ≈ Bj :⇐⇒ |Bi ∩Bj | = 1

• Definition of direction points: Ni := Bi∩ (S −Bi) and in the graph GS : deg(Bi) =
|Ni| ∈ {1, 2, 3, 4}

• Definition of block sections of type Straight: G := {B ∈ B| deg(B) = |NB| ≤ 2}

• Definition of block sections of type Bridge: Gc := B − G = {B ∈ B|deg(B) =
|NB| ∈ {3, 4}}

• ∀B ∈ G : ∃l > 0 and there exists a homeomorphism φB : B → [0, l]

• Existence of a direction function: ∀B ∈ B : ∃ρB : NB → P(NB)
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It is interesting that the automorphism group of the graph, which is generated by

[(5, 9)(6, 8)(11, 12), (2, 4)(5, 11)(9, 12), (1, 3), (10, 1)(2, 8)(3, 7)(4, 6)(9, 11)]

has order 32 and is non-abelian SmallGroup(32,27), as can be computed with SAGE-
MATH:

#
G = Graph ( { 1 : [ 2 , 4 ] , 2 : [ 1 , 3 , 1 1 , 1 2 ] ,

3 : [ 2 , 4 ] , 4 : [ 1 , 3 ] , 5 : [ 4 , 6 ] ,
6 : [ 1 1 , 7 , 1 0 , 5 ] , 7 : [ 6 , 8 ] ,
8 : [ 9 , 1 0 , 1 2 ] , 9 : [ 4 , 8 ] , 1 0 : [ 6 , 8 ] ,
1 1 : [ 2 , 6 ] , 1 2 : [ 2 , 8 ] } )

p l o t (G) . show ( )
GG = G. automorphism group ( )
print ( l i s t (GG. gens ( ) ) )
print (GG. id ( ) )

• Define on the set of trains Z in the schedule F a quasi-order:

z1 ≤F z2 :⇐⇒ βz1(T) ⊂ βz2(T)

• This could potentially be used to draw the world lines of all trains y ≤ x in the
perspective plane Px.

• A quasi-order defines a finite topology on the set of all trains, where for example,
open sets are defined as: Oz := {y ∈ Z|y ≤ z}. Continuous functions f are then
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5 TODOs / Ideas

precisely the monotonic functions: f is continuous / monotonic ⇐⇒ ∀x, y ∈ Z :
x ≤ y ⇒ f(x) ≤ f(y).

• Subdivision of S into disjoint block sections of types: Straight, Intersection, Simple
Switch, Double Switch. [x]

• Prove that this subdivision covers the whole S and is pairwise disjoint (’modulo a
finite number of intersection points’.)

• Define graphs based on the subdivision. [x]

• Explore: 2D splines / Euler spirals / Clothoids / Spiro-Curve by Ralph Levin
Python module.

• Cost estimation for the block sections based on the weights of the graph and the
method of Burton and consider how to incorporate it here.
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