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Abstract
We prove that every symmetric, rational, and positive definite kernel
E:NxN — Q with k(n,n)=1, VneN
admits an embedding ¢: N — ¢5(Q) such that

k(a,b) = (¢(a), o(b))e, Va,beN,

and every coordinate of ¢(n) lies in Q. The construction proceeds inductively: in the n-
th step one solves a linear system with rational data and chooses the solution of minimal
Euclidean norm. This ensures that all coordinates remain rational and that ||w,_1|? <
k(n,n) =1 at each stage.

1 Preliminaries

Let
k:NxN — Q

be a symmetric, positive definite kernel normalized by
k(n,n) = 1 (Vn eN).

Positive definiteness means: for every finite subset I C N and any rational coefficients {¢; };e; C
Q, one has

Z Ci Cj ]{J(Z,]) > 0.

i,J€1

Our goal is to construct a mapping ¢(n) € ¢3(Q) such that

(9(a), ¢(0))e, = K(a,b) (Ya,beN),

and every component of ¢(n) is rational.
We denote

0(Q) = {(:cl,:cg,...,azN,O,O,...) ’ z;, €Q, N < oo},
with the standard inner product (z,y) =Y 2, z,y,.
Base Case (n = 1). Define
#(1) = (1,0,0,...) € £2(Q).
Then (¢(1), (1)) =1 = k(1,1). Clearly, ¢(1) is rational and nonzero.



2 Induction Step
Assume we have already constructed ¢(1),...,¢0(n — 1) € £5(Q) such that
(6(i), ¢(j)) = k(i,j) forall 1 <4,j<n-—1,

and ¢(1),...,¢(n—1) are linearly independent. We will show how to determine ¢(n) with purely
rational components.

2.1 Definition of C,,_; and v,
Write each ¢(i) as a finitely supported vector in Q™! (all other entries zero):

6(i) = (¢(i)1, ¢(i)2, - s Bli)n1, 0,0,...), (i), € Q.

Define the (n — 1) x (n — 1)-matrix

Also set

k(n—1,n)
Since k(i,n) € Q, v, is rational. Furthermore, define
Gno1 = Cpe1 CF ) = [K(i,j) hi<ij<n—1 € QU D*171),
By the induction hypothesis (¢(1), ..., ¢(n—1) are linearly independent), one has det(G,—1) # 0.

Hence G,,_1 is invertible and G1, € Qr—1x(n=1),

2.2 Moore—Penrose Solution w,,_;

Define the Moore—Penrose pseudo-inverse

]\4”’_1 — Cg;fl Gr—Lil c Q(nfl)x(nfl)'

Then set
Wp—-1 = n—1Un—1 € Qn_l-
Properties of wy,_1:
1. Ch—1wp—1 = wvp—1. Hence wy_; satisfies (¢(4), (wnp—1,0,0,...)) = k(i,n) for 1 < i <

n— 1.
2. wp_1 is the unique solution of C},_1 x = v,—1 with minimal Euclidean norm.

3. Since Cp—1, vp—1, G;il are all rational, every component of w,_1 lies in Q.



2.3 Strict Inequality || w, ||* < k(n,n)

We first show
lwatl? < k(n,n) = 1.

Gn 1 . Gn-1 Un—1
_1 B v,{_l 1 '
Since k is positive definite, det Gn ) >0 and det(Gn 1) > 0. The Schur complement yields

det(Gy) = det(G, )(1—vn VGl vnt).
Because det(G),) > 0 and det(G,—1) > 0, it follows that

Consider the Gram matrix

1—vl G v,y > 0.

But

Ug_l Gflil Un—1 = wg—lwnfl = ||wn*1||2'

Hence
lwaoitl® < 1= k(n,n).

This shows 0 < 1 — || w,_1]|* € Q.

2.4 Choice of ¢(n) Using Four Squares

We now choose ¢(n) so that
<¢)(Z)a ¢(n)> = k(lvn) (Z =1...,n— 1)7 <(Z§(7”L), ¢(n)> = k(”?”) =1,

and all components of ¢(n) lie in Q. First, set the partial vector

_ T
¢(n)(1” D = Wn—1 = (wn—l,la Wp—1,25 « -+ wn—l,n—l) .

Then already (¢(i), (wp—1,0,0,...)) = k(i,n) for 1 <i <n —1. The norm of w,_; is strictly
less than 1. Let
a = ||lw,_1]* < 1, a € Q by induction.

Thus for ¢(n) we must have:

To)1? = lwal® + Y 57 = 1,
(=1

where we introduce m > 2 additional coordinates f31,...,05, € Q to realize the difference
1 — « as a sum of squares. By Lagrange’s four-squares theorem, there exist rational numbers

B1, B2, B3, B4 € Q such that
BB+ 4+ =1—a > 0.
Then define

¢(n) = (Wn-1,1, Wn—1,2, - - - Wp—1,n—1, B1, B2, B3, B1, 0,0,...).
Clearly, all entries of ¢(n) are rational. Moreover,
n—1
(6(i), p(n)) = i)y wn-1,r = (ConawWp-1)i = V-1, = k(i,n), i=1,...,n—1,
r=1
and
le(m)[1> = l| wa—r|* + (B + 53 + 83 + B7) = a+ (1 —a) =1 = k(n,n).
Thus the Gram matrix [ (¢(i), $(j))] coincides with [k(i, )]

1<i,j<n 1<i,j<n’



2.5 Linear Independence

It remains to show ¢(n) ¢ span{¢(1),...,¢(n — 1)}, so that the dimension indeed increases.
Suppose, for the sake of contradiction, that ¢(n) lies in the (n — 1)-dimensional subspace
span{¢(1),...,¢(n — 1)}. Then, in particular, the “residual” (n — 1)-coordinate block wy,_1
would be exactly the representation of ¢(n) in that basis, and hence

lo(m)II* = [l wa—1]*.

But by construction, wy_1 is the minimum-norm solution of C,,_1x = v,_1. Therefore, for any
other solution z of Cp,_12 = v,_1, in particular for z = ¢(n)"=1, one has

lwa—1]® < [l@(m)-"=)2.

However, ||¢(n)||? = 1, whereas || w,_1]|> < 1. If ¢(n) lay in span(¢(1),...,¢(n — 1)), then
¢(n) would have to be represented entirely by w,—1 (with no additional coordinates), i.e. all
B; = 0, and thus [|¢(n)||*> = ||wy—1]|*> < 1, contradicting ||¢(n)[|> = 1. Therefore ¢(n) ¢

span{o(1),. ... 6(n —1)}.
In summary, for each n € N we have found a vector
$(n) € £2(Q)

such that

(6(0), 6(7)) = k(i,j) Y1<ij<n, ¢(n)¢span{d(1),...,é(n— 1)}

It follows immediately:

Theorem 2.1. Let
E:NxN — Q

be a symmetric, rational, positive definite kernel with k(n,n) = 1. Then there exists a mapping
¢: N — (5(Q) such that

k(a,b) = (¢(a), p(b))e, Va,beN,

and every coordinate of ¢(n) lies in Q. Moreover, for all n, the set {¢(1),...,¢(n)} is linearly
independent.

O

3 SageMath Implementation

Below is a SageMath script that implements the inductive minimal-norm embedding for a
positive-definite kernel k: N x N — Q. The function phi(n,kernel) returns the vector ¢(n) €
¢2(Q) whose inner products reproduce k(i,j) for 1 < i,j < n. If the shortfall 1 — ||w,_1]|? is not
already a perfect square in Q, we use Lagrange’s four-squares theorem (via four_squares_rational)
to write it as a sum of four rational squares.

from sage.all import *
from functools import lru_cache

def four_squares_rational(r):



Given a positive rational r = p/q in lowest terms,
find (bl, b2, b3, b4) in Q"4 so that
b172 + b272 + b372 + b4"2 = r.
Achieved by writing n = p*q and using Sage’s four_squares() on integer n.
nuan
if r <= 0:
raise ValueError("r must be a positive ratiomnal.")
P, 9 = Integer(r.numerator()), Integer(r.denominator())
n=p=xgq
wxyz = four_squares(n) # returns [w, x, y, z] with w™2+x"2+y~2+z"2 = n
if len(wxyz) != 4:
raise RuntimeError(f"four_squares returned {wxyz} instead of 4 integers")
w, X, vy, z = map(Integer, wxyz)
# Convert to rationals by dividing each by q
return (QQ(w) / QQ(q),
QQ(x) / QQq),
QQ(y) / QQla),
QQ(z) 7/ QQlq))

@lru_cache (maxsize=None)
def phi(n, kernel):
nuan
Recursively construct phi(n) in 12(Q) for the given ‘kermel(i,j)‘.
Returns phi(n) as a Python list of QQ-coordinates.
Uses memoization so phi(k) for k < n is computed only once.
if n ==
# Base case: phi(1) = [1]
return [QQ(1)]

# Recursively obtain phi(1), phi(2), ..., phi(n-1)
prev_vectors = [phi(k, kernel) for k in range(1l, n)]

# Determine current embedding dimension d = max length among phi(l..n-1)
d = max(len(vec) for vec in prev_vectors)

# Build C_{n-1} as an (n-1)xd QQ-matrix; missing entries are O
def entry(i, j):

row = prev_vectors[i] # phi(i+1)

return row[j] if j < len(row) else QQ(0)

C = Matrix(QQ, n-1, d, entry)

# Build v_{n-1} = (kernel(l,n), ..., kernel(n-1,n))"T in QQ~(n-1)
v = vector(QQ, [ kernel(i+l, n) for i in range(n-1) 1)

# Compute Gram G_{n-1} = C * C°T
G = C * C.transpose()



Ginv = G.inverse() # invertible over QQ by positive definiteness

# Moore-Penrose minimal-norm solution w_{n-1} = C°T * G {-1} * v
M = C.transpose() * Ginv
w=M=x* v # length-d vector in QQ

# Compute a = |lwl|~"2 = wtw in QQ
alpha = w.dot_product (w)
if not (alpha < QQ(1)):
raise AssertionError(f"Expected a < 1 but got a = {alpha} at n = {n}")

#letr=1-a>0
r = QQ(1) - alpha

# Represent r as sum of four rational squares
betal, beta2, beta3, betad = four_squares_rational(r)

# Form phi(n) by concatenating w plus these four betas
phi_n = list(w) + [betal, beta2, beta3, betad]
return phi_n

def ki(a, b):
a, b = Integer(a), Integer(b)
return QQ(min(a,b), max(a,b))

# Compute phi(1), ..., phi(6) for ki
print ("Embedding vectors for k(a,b) = min(a,b)/max(a,b):")
for i in range(l, 7):

vec = phi(i, k1)

print (f"phi({i}) = {vec}")

B ol
# Example 2: k(a,b) = gcd(a,b)"2 / (a*b)

B o .
def k2(a, b):

a, b = Integer(a), Integer(b)
return QQ(gcd(a,b)**2, axb)

print ("\nEmbedding vectors for k(a,b) = gcd(a,b)~2/(axb):")
for i in range(l, 7):

vec = phi(i, k2)

print (f"phi({i}) = {vec}")



def k3(a, b):
a, b = Integer(a), Integer(b)
return QQ(2*gcd(a,b), atb)

print ("\nEmbedding vectors for k(a,b) = 2*gcd(a,b)/(a+b):")
for i in range(l, 7):

vec = phi(i, k3)

print (f"phi({i}) = {vec}")

4 Computed Examples

Below are the explicit embedding vectors ¢(n) returned by the above SageMath code, for three
different kernels.

4.1 1. Kernel

o(1) = [1],
¢(2):[%a 07 %a %7%]7
_I1 1 1 1 1 2
¢(3)_[§7 07 37 37 3> Oa 07 575]7
4.2 2. Kernel
o(1) = [1],
¢(2) =13, 0, 3, 3 3],
1 2 2 8
¢(3>:[§7 07 07 07 07 07 9 §7§:|7
1 1 1 1 1 1 1
¢(4):[Za Oa 40 40 40 07 07 07 07 Oa 29 575]7
4.3 3. Kernel
¢<1 :[1]7
¢<2 :[%7 07 07 %7%}7
1 2 1 1 1 43
¢(3)=[3, 0,0, 55, 5, 5> 30> Wo» 50>

5 Extending to p.d. kernels k not necessarily with k(n,n) = con-
stant

The method can be extended to any p.d. kernels k over the natural numbers, taking rational
values, by letting in the induction start:

o(1) = (a,b,c,d)

where the rational coordinates a, - - - , d satisfy a?+b%+c?+d? = k(1,1) by Lagranges theorem
and in the induction step we chose a, b, ¢, d to match a® + b? + ¢? + d? = k(n,n) — |w,_1|> > 0.

6 Equivalence between Integral Conditions and Integer-valued
Embeddings

Let
E:NxN — Q



be a positive-definite kernel. For each n € N, denote
Gn = [k(273)] 1<i,j<n
its n x n Gram matrix, and let
Uy, = (k:(l,n +1), k(2,n+1), ..., k(n,n+ 1))T e Q"
We write adj(M) for the adjugate (classical adjoint) of a matrix M.
Theorem 6.1. The following two statements are equivalent:

I. Integral conditions.

1. k(1,1) e N.
2. For every n, G v, € Z".
3. k(a,b) € Z for all a,b € N.

II. Integer-valued Hilbert embedding.

1. There exists a map ¢: N — ¢2(7Z) such that
k(a,b) = (¢(a), ¢(0)),, Va,beN.

2. For every n,
det(Gr) | [adj(Gn)vn]

i.e. det(G,) divides each entry of adj(Gy,) vy.

;. (1<i<n),
Before proving the equivalence, we recall:

Remark 6.2 (Sylvester’s criterion). A real symmetric matrix A is positive definite if and only
if all its leading principal minors are positive. In particular, det(G,) > 0 for every n.

Proof of (II) => (I). 1. Since ¢(1) € ¢*(Z) has finitely many nonzero integer coordinates aj,

k(1,1) = (6(1),6(1)) = Za? €N,

and is nonzero by positive definiteness.
2. By Sylvester’s criterion, det(Gy,) > 0 and

-1 _ adJ(Gn)
" det(Gy)’

so I1.2 gives
- adj(Gy) vn n
p= 2 e zm
G o = etGr) ©
proving 1.2.
3. Finally, for any a,b € N,
a,h) = (9(a),00)) € Z,

establishing [.3.



Proof of (I) = (II). We construct ¢(1),#(2), ... inductively in ¢?(Z).
Base case (n = 1). By Lagrange’s four-square theorem, write

E1,1)=a®> +b*+ 2 +d* a,becdel.

Set ¢(1) = (a,b,¢,d,0,0,...) so that ||¢(1)]|* = k(1,1).
Inductive step. Assume ¢(1),...,¢(n) satisty

(6(i),0(5)) = k(i,5) (1 <i,j<n).

Let
Gn = [k(i,j)]lgi,jgn, Vp = (k(l, n -+ 1), cey k:(n,n + 1))T.

By 1.2-1.3, G,, € Z™*™ is invertible over QQ and
Wy, = G;lvn e 7"
Then Sylvester’s criterion gives
det(Gpp1) = det(Gr) (k(n+1,n+ 1) — vl G, v,) = det(Gp) (k(n + 1,n+ 1) — [Jw,|?) > 0,
s0 [|wp||? < k(n+1,n41), and the integer k(n+1,n+1) — |wy,||? > 0 is a sum of four squares,
k(n+1n+1) —|lwal* = 87 + B3 + B3 + B;, fi € L.

Define
d)(n + 1) = (wn,b s 7wn,n7ﬁ1752a533ﬁ4707 .- )

One checks

4
(@), p(n +1)) = vng = k(i,n+ 1), ||¢(n+1)|> = [lwal® + Y 5} = k(n + 1,n+ 1),
j=1

and ¢(n + 1) ¢ span{¢(1),...,¢(n)}. This completes the induction and yields the desired ¢.
Finally, 1.2 is equivalent to I1.2 by the adjugate formula. O
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