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Abstract

We prove that every symmetric, rational, and positive de�nite kernel

k : N× N −→ Q with k(n, n) = 1, ∀n ∈ N

admits an embedding ϕ : N → ℓ2(Q) such that

k(a, b) = ⟨ϕ(a), ϕ(b)⟩ℓ2 ∀ a, b ∈ N,

and every coordinate of ϕ(n) lies in Q. The construction proceeds inductively: in the n-
th step one solves a linear system with rational data and chooses the solution of minimal

Euclidean norm. This ensures that all coordinates remain rational and that ∥wn−1∥2 <
k(n, n) = 1 at each stage.

1 Preliminaries

Let

k : N× N −→ Q

be a symmetric, positive de�nite kernel normalized by

k(n, n) = 1 (∀n ∈ N).

Positive de�niteness means: for every �nite subset I ⊂ N and any rational coe�cients {ci}i∈I ⊂
Q, one has ∑

i,j∈I
ci cj k(i, j) > 0.

Our goal is to construct a mapping ϕ(n) ∈ ℓ2(Q) such that

⟨ϕ(a), ϕ(b)⟩ℓ2 = k(a, b) (∀ a, b ∈ N),

and every component of ϕ(n) is rational.
We denote

ℓ2(Q) =
{
(x1, x2, . . . , xN , 0, 0, . . . )

∣∣ xi ∈ Q, N < ∞
}
,

with the standard inner product ⟨x, y⟩ =
∑∞

r=1 xryr.

Base Case (n = 1). De�ne
ϕ(1) = (1, 0, 0, . . . ) ∈ ℓ2(Q).

Then ⟨ϕ(1), ϕ(1)⟩ = 1 = k(1, 1). Clearly, ϕ(1) is rational and nonzero.
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2 Induction Step

Assume we have already constructed ϕ(1), . . . , ϕ(n− 1) ∈ ℓ2(Q) such that

⟨ϕ(i), ϕ(j)⟩ = k(i, j) for all 1 ≤ i, j ≤ n− 1,

and ϕ(1), . . . , ϕ(n−1) are linearly independent. We will show how to determine ϕ(n) with purely

rational components.

2.1 De�nition of Cn−1 and vn−1

Write each ϕ(i) as a �nitely supported vector in Qn−1 (all other entries zero):

ϕ(i) =
(
ϕ(i)1, ϕ(i)2, . . . , ϕ(i)n−1, 0, 0, . . .

)
, ϕ(i)r ∈ Q.

De�ne the (n− 1)× (n− 1)-matrix

Cn−1 =


ϕ(1)1 ϕ(1)2 · · · ϕ(1)n−1

ϕ(2)1 ϕ(2)2 · · · ϕ(2)n−1
...

...
. . .

...

ϕ(n− 1)1 ϕ(n− 1)2 · · · ϕ(n− 1)n−1

 ∈ Q(n−1)×(n−1).

Also set

vn−1 =


k(1, n)

k(2, n)
...

k(n− 1, n)

 ∈ Qn−1.

Since k(i, n) ∈ Q, vn−1 is rational. Furthermore, de�ne

Gn−1 := Cn−1C
T
n−1 = [ k(i, j) ]1≤i,j≤n−1 ∈ Q(n−1)×(n−1).

By the induction hypothesis (ϕ(1), . . . , ϕ(n−1) are linearly independent), one has det(Gn−1) ̸= 0.
Hence Gn−1 is invertible and G−1

n−1 ∈ Q(n−1)×(n−1).

2.2 Moore�Penrose Solution wn−1

De�ne the Moore�Penrose pseudo-inverse

Mn−1 = CT
n−1 G

−1
n−1 ∈ Q(n−1)×(n−1).

Then set

wn−1 := Mn−1 vn−1 ∈ Qn−1.

Properties of wn−1:

1. Cn−1wn−1 = vn−1. Hence wn−1 satis�es ⟨ϕ(i), (wn−1, 0, 0, . . . )⟩ = k(i, n) for 1 ≤ i ≤
n− 1.

2. wn−1 is the unique solution of Cn−1 x = vn−1 with minimal Euclidean norm.

3. Since Cn−1, vn−1, G
−1
n−1 are all rational, every component of wn−1 lies in Q.
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2.3 Strict Inequality ∥wn−1∥2 < k(n, n)

We �rst show

∥wn−1∥2 < k(n, n) = 1.

Consider the Gram matrix

Gn =

(
Gn−1 vn−1

vTn−1 k(n, n)

)
=

(
Gn−1 vn−1

vTn−1 1

)
.

Since k is positive de�nite, det(Gn) > 0 and det(Gn−1) > 0. The Schur complement yields

det(Gn) = det(Gn−1)
(
1− vTn−1G

−1
n−1 vn−1

)
.

Because det(Gn) > 0 and det(Gn−1) > 0, it follows that

1− vTn−1G
−1
n−1 vn−1 > 0.

But

vTn−1G
−1
n−1 vn−1 = wT

n−1wn−1 = ∥wn−1∥2.
Hence

∥wn−1∥2 < 1 = k(n, n).

This shows 0 < 1− ∥wn−1∥2 ∈ Q.

2.4 Choice of ϕ(n) Using Four Squares

We now choose ϕ(n) so that

⟨ϕ(i), ϕ(n)⟩ = k(i, n) (i = 1, . . . , n− 1), ⟨ϕ(n), ϕ(n)⟩ = k(n, n) = 1,

and all components of ϕ(n) lie in Q. First, set the partial vector

ϕ(n)(1... n−1) = wn−1 =
(
wn−1,1, wn−1,2, . . . , wn−1,n−1

)T
.

Then already ⟨ϕ(i), (wn−1, 0, 0, . . . )⟩ = k(i, n) for 1 ≤ i ≤ n − 1. The norm of wn−1 is strictly

less than 1. Let

α := ∥wn−1∥2 < 1, α ∈ Q by induction.

Thus for ϕ(n) we must have:

∥ϕ(n)∥2 = ∥wn−1∥2 +

m∑
ℓ=1

β2
ℓ = 1,

where we introduce m ≥ 2 additional coordinates β1, . . . , βm ∈ Q to realize the di�erence

1 − α as a sum of squares. By Lagrange's four-squares theorem, there exist rational numbers

β1, β2, β3, β4 ∈ Q such that

β2
1 + β2

2 + β2
3 + β2

4 = 1− α > 0.

Then de�ne

ϕ(n) =
(
wn−1, 1, wn−1, 2, . . . , wn−1, n−1, β1, β2, β3, β4, 0, 0, . . .

)
.

Clearly, all entries of ϕ(n) are rational. Moreover,〈
ϕ(i), ϕ(n)

〉
=

n−1∑
r=1

ϕ(i)r wn−1, r = (Cn−1wn−1) i = vn−1,i = k(i, n), i = 1, . . . , n− 1,

and

∥ϕ(n)∥2 = ∥wn−1∥2 + (β2
1 + β2

2 + β2
3 + β2

4) = α+
(
1− α

)
= 1 = k(n, n).

Thus the Gram matrix
[
⟨ϕ(i), ϕ(j)⟩

]
1≤i,j≤n

coincides with
[
k(i, j)

]
1≤i,j≤n

.
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2.5 Linear Independence

It remains to show ϕ(n) /∈ span{ϕ(1), . . . , ϕ(n − 1)}, so that the dimension indeed increases.

Suppose, for the sake of contradiction, that ϕ(n) lies in the (n − 1)-dimensional subspace

span{ϕ(1), . . . , ϕ(n − 1)}. Then, in particular, the �residual� (n − 1)-coordinate block wn−1

would be exactly the representation of ϕ(n) in that basis, and hence

∥ϕ(n)∥2 = ∥wn−1∥2.

But by construction, wn−1 is the minimum-norm solution of Cn−1x = vn−1. Therefore, for any

other solution x of Cn−1x = vn−1, in particular for x = ϕ(n)(1...n−1), one has

∥wn−1∥2 ≤ ∥ϕ(n)(1...n−1)∥2.

However, ∥ϕ(n)∥2 = 1, whereas ∥wn−1∥2 < 1. If ϕ(n) lay in span(ϕ(1), . . . , ϕ(n − 1)), then
ϕ(n) would have to be represented entirely by wn−1 (with no additional coordinates), i.e. all

βj = 0, and thus ∥ϕ(n)∥2 = ∥wn−1∥2 < 1, contradicting ∥ϕ(n)∥2 = 1. Therefore ϕ(n) /∈
span{ϕ(1), . . . , ϕ(n− 1)}.

In summary, for each n ∈ N we have found a vector

ϕ(n) ∈ ℓ2(Q)

such that

⟨ϕ(i), ϕ(j)⟩ = k(i, j) ∀ 1 ≤ i, j ≤ n, ϕ(n) /∈ span{ϕ(1), . . . , ϕ(n− 1)}.

It follows immediately:

Theorem 2.1. Let

k : N× N −→ Q

be a symmetric, rational, positive de�nite kernel with k(n, n) = 1. Then there exists a mapping

ϕ : N → ℓ2(Q) such that

k(a, b) = ⟨ϕ(a), ϕ(b)⟩ℓ2 ∀ a, b ∈ N,

and every coordinate of ϕ(n) lies in Q. Moreover, for all n, the set {ϕ(1), . . . , ϕ(n)} is linearly

independent.

3 SageMath Implementation

Below is a SageMath script that implements the inductive minimal-norm embedding for a

positive-de�nite kernel k : N× N → Q. The function phi(n,kernel) returns the vector ϕ(n) ∈
ℓ2(Q) whose inner products reproduce k(i, j) for 1 ≤ i, j ≤ n. If the shortfall 1−∥wn−1∥2 is not
already a perfect square inQ, we use Lagrange's four-squares theorem (via four_squares_rational)

to write it as a sum of four rational squares.

from sage.all import *

from functools import lru_cache

def four_squares_rational(r):
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"""

Given a positive rational r = p/q in lowest terms,

find (b1, b2, b3, b4) in Q^4 so that

b1^2 + b2^2 + b3^2 + b4^2 = r.

Achieved by writing n = p*q and using Sage's four_squares() on integer n.

"""

if r <= 0:

raise ValueError("r must be a positive rational.")

p, q = Integer(r.numerator()), Integer(r.denominator())

n = p * q

wxyz = four_squares(n) # returns [w, x, y, z] with w^2+x^2+y^2+z^2 = n

if len(wxyz) != 4:

raise RuntimeError(f"four_squares returned {wxyz} instead of 4 integers")

w, x, y, z = map(Integer, wxyz)

# Convert to rationals by dividing each by q

return (QQ(w) / QQ(q),

QQ(x) / QQ(q),

QQ(y) / QQ(q),

QQ(z) / QQ(q))

@lru_cache(maxsize=None)

def phi(n, kernel):

"""

Recursively construct phi(n) in l2(Q) for the given `kernel(i,j)`.

Returns phi(n) as a Python list of QQ-coordinates.

Uses memoization so phi(k) for k < n is computed only once.

"""

if n == 1:

# Base case: phi(1) = [1]

return [QQ(1)]

# Recursively obtain phi(1), phi(2), ..., phi(n-1)

prev_vectors = [phi(k, kernel) for k in range(1, n)]

# Determine current embedding dimension d = max length among phi(1..n-1)

d = max(len(vec) for vec in prev_vectors)

# Build C_{n-1} as an (n-1)Öd QQ-matrix; missing entries are 0

def entry(i, j):

row = prev_vectors[i] # phi(i+1)

return row[j] if j < len(row) else QQ(0)

C = Matrix(QQ, n-1, d, entry)

# Build v_{n-1} = (kernel(1,n), ..., kernel(n-1,n))^T in QQ^(n-1)

v = vector(QQ, [ kernel(i+1, n) for i in range(n-1) ])

# Compute Gram G_{n-1} = C * C^T

G = C * C.transpose()
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Ginv = G.inverse() # invertible over QQ by positive definiteness

# Moore�Penrose minimal-norm solution w_{n-1} = C^T * G^{-1} * v

M = C.transpose() * Ginv

w = M * v # length-d vector in QQ

# Compute a = ||w||^2 = w*w in QQ

alpha = w.dot_product(w)

if not (alpha < QQ(1)):

raise AssertionError(f"Expected a < 1 but got a = {alpha} at n = {n}")

# Let r = 1 - a > 0

r = QQ(1) - alpha

# Represent r as sum of four rational squares

beta1, beta2, beta3, beta4 = four_squares_rational(r)

# Form phi(n) by concatenating w plus these four betas

phi_n = list(w) + [beta1, beta2, beta3, beta4]

return phi_n

# -------------------------------------------------------

# Example 1: k(a,b) = min(a,b)/max(a,b)

# -------------------------------------------------------

def k1(a, b):

a, b = Integer(a), Integer(b)

return QQ(min(a,b), max(a,b))

# Compute phi(1), ..., phi(6) for k1

print("Embedding vectors for k(a,b) = min(a,b)/max(a,b):")

for i in range(1, 7):

vec = phi(i, k1)

print(f"phi({i}) = {vec}")

# -------------------------------------------------------

# Example 2: k(a,b) = gcd(a,b)^2 / (a*b)

# -------------------------------------------------------

def k2(a, b):

a, b = Integer(a), Integer(b)

return QQ(gcd(a,b)**2, a*b)

print("\nEmbedding vectors for k(a,b) = gcd(a,b)^2/(a*b):")

for i in range(1, 7):

vec = phi(i, k2)

print(f"phi({i}) = {vec}")

# -------------------------------------------------------

# Example 3: k(a,b) = 2*gcd(a,b)/(a+b)

# -------------------------------------------------------
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def k3(a, b):

a, b = Integer(a), Integer(b)

return QQ(2*gcd(a,b), a+b)

print("\nEmbedding vectors for k(a,b) = 2*gcd(a,b)/(a+b):")

for i in range(1, 7):

vec = phi(i, k3)

print(f"phi({i}) = {vec}")

4 Computed Examples

Below are the explicit embedding vectors ϕ(n) returned by the above SageMath code, for three

di�erent kernels.

4.1 1. Kernel

ϕ(1) = [ 1 ],

ϕ(2) =
[
1
2 , 0,

1
2 ,

1
2 ,

1
2

]
,

ϕ(3) =
[
1
3 , 0,

1
3 ,

1
3 ,

1
3 , 0, 0,

1
3 ,

2
3

]
,

4.2 2. Kernel

ϕ(1) = [ 1 ],

ϕ(2) =
[
1
2 , 0,

1
2 ,

1
2 ,

1
2

]
,

ϕ(3) =
[
1
3 , 0, 0, 0, 0, 0,

2
9 ,

2
9 ,

8
9

]
,

ϕ(4) =
[
1
4 , 0,

1
4 ,

1
4 ,

1
4 , 0, 0, 0, 0, 0,

1
2 ,

1
2 ,

1
2

]
,

4.3 3. Kernel

ϕ(1) = [ 1 ],

ϕ(2) =
[
2
3 , 0, 0,

1
3 ,

2
3

]
,

ϕ(3) =
[
1
2 , 0, 0,

1
25 ,

2
25 ,

1
125 ,

1
50 ,

11
250 ,

43
50

]
,

5 Extending to p.d. kernels k not necessarily with k(n, n) = con-

stant

The method can be extended to any p.d. kernels k over the natural numbers, taking rational

values, by letting in the induction start:

ϕ(1) = (a, b, c, d)

where the rational coordinates a, · · · , d satisfy a2+b2+c2+d2 = k(1, 1) by Lagranges theorem
and in the induction step we chose a, b, c, d to match a2 + b2 + c2 + d2 = k(n, n)− |wn−1|2 > 0.

6 Equivalence between Integral Conditions and Integer-valued

Embeddings

Let

k : N× N −→ Q
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be a positive-de�nite kernel. For each n ∈ N, denote

Gn =
[
k(i, j)

]
1≤i,j≤n

its n× n Gram matrix, and let

vn =
(
k(1, n+ 1), k(2, n+ 1), . . . , k(n, n+ 1)

)T ∈ Qn.

We write adj(M) for the adjugate (classical adjoint) of a matrix M .

Theorem 6.1. The following two statements are equivalent:

I. Integral conditions.

1. k(1, 1) ∈ N.
2. For every n, G−1

n vn ∈ Zn.

3. k(a, b) ∈ Z for all a, b ∈ N.

II. Integer-valued Hilbert embedding.

1. There exists a map ϕ : N → ℓ2(Z) such that

k(a, b) =
〈
ϕ(a), ϕ(b)

〉
ℓ2

∀ a, b ∈ N.

2. For every n,
det(Gn)

∣∣ [adj(Gn) vn
]
i

(1 ≤ i ≤ n),

i.e. det(Gn) divides each entry of adj(Gn) vn.

Before proving the equivalence, we recall:

Remark 6.2 (Sylvester's criterion). A real symmetric matrix A is positive de�nite if and only

if all its leading principal minors are positive. In particular, det(Gn) > 0 for every n.

Proof of (II) =⇒ (I). 1. Since ϕ(1) ∈ ℓ2(Z) has �nitely many nonzero integer coordinates ai,

k(1, 1) = ⟨ϕ(1), ϕ(1)⟩ =
∑
i

a2i ∈ N,

and is nonzero by positive de�niteness.

2. By Sylvester's criterion, det(Gn) > 0 and

G−1
n =

adj(Gn)

det(Gn)
,

so II.2 gives

G−1
n vn =

adj(Gn) vn
det(Gn)

∈ Zn,

proving I.2.

3. Finally, for any a, b ∈ N,
k(a, b) = ⟨ϕ(a), ϕ(b)⟩ ∈ Z,

establishing I.3.
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Proof of (I) =⇒ (II). We construct ϕ(1), ϕ(2), . . . inductively in ℓ2(Z).
Base case (n = 1). By Lagrange's four-square theorem, write

k(1, 1) = a2 + b2 + c2 + d2, a, b, c, d ∈ Z.

Set ϕ(1) = (a, b, c, d, 0, 0, . . . ) so that ∥ϕ(1)∥2 = k(1, 1).
Inductive step. Assume ϕ(1), . . . , ϕ(n) satisfy〈

ϕ(i), ϕ(j)
〉
= k(i, j) (1 ≤ i, j ≤ n).

Let

Gn = [k(i, j)]1≤i,j≤n, vn = (k(1, n+ 1), . . . , k(n, n+ 1))T .

By I.2�I.3, Gn ∈ Zn×n is invertible over Q and

wn = G−1
n vn ∈ Zn.

Then Sylvester's criterion gives

det(Gn+1) = det(Gn)
(
k(n+ 1, n+ 1)− vTnG

−1
n vn

)
= det(Gn)

(
k(n+ 1, n+ 1)− ∥wn∥2

)
> 0,

so ∥wn∥2 < k(n+1, n+1), and the integer k(n+1, n+1)−∥wn∥2 > 0 is a sum of four squares,

k(n+ 1, n+ 1)− ∥wn∥2 = β2
1 + β2

2 + β2
3 + β2

4 , βi ∈ Z.

De�ne

ϕ(n+ 1) =
(
wn,1, . . . , wn,n, β1, β2, β3, β4, 0, . . .

)
.

One checks

⟨ϕ(i), ϕ(n+ 1)⟩ = vn,i = k(i, n+ 1), ∥ϕ(n+ 1)∥2 = ∥wn∥2 +
4∑

j=1

β2
j = k(n+ 1, n+ 1),

and ϕ(n + 1) /∈ span{ϕ(1), . . . , ϕ(n)}. This completes the induction and yields the desired ϕ.
Finally, I.2 is equivalent to II.2 by the adjugate formula.
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