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Abstract

We investigate the combination of maximally separated spherical codes with Fourier-
Weighted Neural Networks (FWNNs) for compact text generation models. The key observa-
tion is that the cosine similarity between concatenated unit-norm code blocks is a tightly
controlled affine proxy for Hamming similarity. This enables the definition of a “soft Ham-
ming” error, whose sensitivity to single-token flips is transparent and whose concentration
improves at rate O(1/v/w). Embedding this surrogate into a softmax classifier yields a
cross-entropy loss that is both geometrically interpretable and provably consistent: under
mild identifiability and mixing assumptions, the expected loss converges as window length
w — 00, and classification error vanishes for large scale parameters. FWNNs complement
this framework by parameterizing weight matrices spectrally, reducing complexity while
maintaining standard backpropagation. The resulting architecture thus combines (i) geomet-
ric calibration via spherical codes, (ii) sample-efficient, stable optimization via FWNNs, and
(iii) a principled link between cosine similarity and discrete Hamming error. We provide both
theoretical guarantees and illustrative constructions, positioning the method as a lightweight
yet mathematically grounded tool for symbolic sequence modeling.

Contents
1 Introduction 2
2 Introduction to Spherical Codes 3
3 Introduction to Fourier Weighted Neural Networks 4
4 Why Maximally Separated Spherical Codes with FWNNs? 5
4.1 From Cosine to (Soft) Hamming Similarity . . . . .. ... ... ... ... ... 6
4.2 A “Soft Hamming” Error and Calibrated Loss . . . . . . . . ... ... ... ... 6
4.3 Why an FWNN Backbone? . . . . . .. .. . .. . o 7
4.4 Takeaways . . . . . . . .o e 7
5 Consistency of a Soft-Hamming Softmax with Unit-Norm Code Windows 7
5.1 Assumptions and concentration . . . . . . ... ... 8
5.2  Main result: expected loss convergesas w —o00 . . . . .. ... L. 9
5.3 When the conclusion can fail (counterexamples) . . . . . . . ... ... ... ... 10
5.4 Takeaways . . . . . . . L 10
6 Hilbert Space Interpretation for w — oo 11
7 Possible Applications 11



8 Application: Single-Instance Sampling of Polyphonic Music via Spherical
Codes 12

9 Further Ideas: Kernel-Based Tokenization on Arbitrary Semantic Spaces 13

10 Why the kernel—token—FWNN pipeline works (theory & heuristics) 14

1 Introduction

Designing compact sequence models that are both predictive and analytically tractable remains
a central challenge in modern machine learning. This paper studies a simple geometric recipe
for symbolic sequences: map tokens to a maximally separated spherical code, concatenate w
code vectors for a context window, £s-normalize the result, and score classes by a function of the
cosine similarity to class references. The key observation is elementary yet powerful: because the
blocks in the concatenation are disjoint, the cosine between two normalized windows equals the
average of their per-position cosines. For well-separated codes (small coherence p), this average
provides an affine, tightly controlled estimator of position-wise Hamming similarity. In other
words, the geometry on the sphere mirrors the discrete Hamming world, but with smoothness
and calibrated gradients.

Building on this link, we introduce a soft Hamming similarity & by linearly rescaling the
window cosine and clipping to [0,1]. A single token flip changes the score by approximately
(1 — p)/w, making the sensitivity transparent; and by Hoeffding-type concentration, the window
cosine concentrates around its mean at rate O(1/y/w). These properties yield losses that carry
a direct discrete meaning (“fraction of matches”) while remaining differentiable end-to-end.

On the modeling side, we adopt a Fourier- Weighted Neural Network (FWNN) backbone, in
which dense linear maps are parameterized by a small number of spectral coeflficients rather
than free entries. FWNNs keep standard backpropagation intact, but reduce parameter count
and memory footprint, offering a practical path to small models without losing the geometric
structure induced by the spherical code embedding.

Contributions.

e Cosine <+ Hamming calibration. We formalize tight bounds that convert cosine
between unit-normalized, block-concatenated code windows into estimates of position-wise
Hamming similarity, with deviation controlled by code coherence p and window length w.

e A soft Hamming loss. We define a cosine-calibrated soft Hamming similarity & and use
it to build pairwise margin objectives and multiclass softmax scores. The resulting loss
has an interpretable flip sensitivity ~ (1 — u)/w and smooth gradients on the sphere.

o Consistency for long windows. Under mild identifiability (a fixed mean gap in expected
Hamming similarity between the true class and competitors), boundedness, and weak
dependence across positions, we prove that the expected cross-entropy converges as w — 00,
and the 0-1 error vanishes when the softmax scale grows after w.

o Parameter-efficient backbone. We show how a spectral FWNN parameterization
fits naturally with cosine-based scoring: it preserves the unit-norm geometry, simplifies
gradients via the chain rule over the spectral basis, and reduces model size and compute.

e Constructive illustrations. We provide synthetic grammars and controlled codebooks
that exhibit the predicted concentration and calibration, serving as diagnostic testbeds for
loss behavior and scaling with w.



Scope and limitations. Our guarantees hinge on assumptions that are natural but not
automatic. First, a mean-separation condition must hold: the true class should exhibit a strictly
larger expected match fraction than any competitor; otherwise any score monotone in Hamming
similarity is Bayes-inefficient. Second, the spherical code should be sufficiently separated (small
1) so that the affine conversion between cosine and Hamming remains well-conditioned; poor
codes degrade both sensitivity and concentration. Third, weak temporal dependence is required
to invoke Hoeffding/Azuma concentration for window averages. These conditions are explicit in
our statements and lead to straightforward stress tests.

Why this matters. The framework offers a rare combination of interpretability and practicality.
The spherical code embedding turns similarity learning into a controlled geometric problem;
the soft Hamming loss makes discrete error visible in a smooth objective; and FWNNs deliver
compactness without sacrificing differentiability. Together, these ingredients yield lightweight,
analyzable models for symbolic data—useful when resources are limited, when losses must be
audited, or when one wants a principled connection to Hamming-style criteria.

Organization. Section 4 formalizes the cosine-Hamming link and defines the soft Hamming
surrogate. Section 5 develops concentration bounds and proves consistency of the softmax
classifier built on @. We then discuss FWNN parameterization, computational aspects, and
illustrative experiments, and conclude with limitations and open problems.

2 Introduction to Spherical Codes

A spherical code in R" is a finite set C C S"! := {z € R" : ||z|]2 = 1}. Its quality is often
measured by the minimum angular distance

6(C) := min arccos((z,)),
a:,y?éeC
a7y

or, equivalently, by the (non-absolute) coherence

w(C) = E;J%%(x,w (so that p(C) = cos0(C)).
T#Y

Intuitively, a good code spreads points as evenly as possible over the unit sphere, i.e., it has
large 6(C) (small p(C)).

Core optimization problems. Two equivalent viewpoints are standard:

1. Mazimal cardinality at a prescribed angle:

A(n,0) := max{|C|:C cS"! 0(C) >6}.

2. Largest achievable angle (or smallest coherence) at fized size M :

O(n,M) := sup 0(C), w(n,M) := inf p(C).
|C|l=M |Cl=M

Here A(n, ) generalizes spherical packing, while ©(n, M) asks how far M points can “repel”
each other on S*1.



Examples and basic constructions.

e Simplex code: For M = n + 1 there is a regular simplex with pairwise inner products
—1/n. Hence u = —1/n and 6 = arccos(—1/n).

e Orthoplex code: The 2n coordinate axes {%e;}j; satisfy max,.,(z,y) =0, so § = 7/2.

« Kissing number: The kissing number 7(n) equals A(n,7/3), since tangency directions
have mutual angle arccos(1/2) = 7/3. Classical values include 7(2) = 6, 7(3) = 12,
7(4) = 24, 7(8) = 240, and 7(24) = 196,560.

Bounds. Determining A(n,#) or ©(n, M) is difficult, but several general bounds are known:

o Spherical cap packing (volume argument) yields elementary upper bounds via the surface
area of caps of radius 6/2.

o Linear programming (Delsarte—Levenshtein) gives strong upper bounds using positivity of
certain spherical polynomials.

o Semidefinite programming further sharpens these bounds in many fixed dimensions and
angles.

o Welch bound (for M unit vectors in R™) on the absolute coherence v(C) := max,, |(z,y)|:

M —n
C) > ————
MO =\ a1
with equality precisely for equiangular tight frames when they exist.

Connections and applications. Spherical codes arise in many areas:

o Communication theory: Signal constellations on the sphere (e.g., phase constellations
and higher-dimensional analogues), beamforming, and quantization under AWGN.

e Frame theory & signal processing: Design of low-coherence dictionaries for sparse
recovery and compressed sensing.

o Geometry & combinatorics: Links to lattice vectors (e.g., Eg and the Leech lattice),
spherical t-designs, and packing/covering problems.

Summary. Spherical codes formalize the task of distributing finitely many points as evenly
as possible on S"~!. The subject blends deep geometric questions with practical design in
communications. Today’s toolkit combines explicit constructions, asymptotic probabilistic
methods, and powerful convex bounds (LP/SDP).

3 Introduction to Fourier Weighted Neural Networks

Modern neural networks achieve remarkable accuracy across vision, language, and tabular
domains, but their dense parameterization imposes substantial runtime and memory costs, which
can hinder deployment on resource-constrained hardware. Fourier Weighted Neural Networks
(FWNNSs) address this tension by constructing layer weights from a compact Fourier basis
rather than learning each entry of a dense matrix independently. This spectral parameterization
preserves standard backpropagation while drastically reducing the number of free parameters
and improving training stability. :contentReference[oaicite:0]index=0



Core idea. Instead of storing a full weight matrix W € R¥>*S FWNNs generate each entry
from a truncated cosine series

r+s
N_1"

R
W,s = Z ¢j cos(j Ors), 0,s =
=R

where {¢; }f:_  are shared Fourier coefficients, R is the maximal mode (“spectral rank”), and N
normalizes indices. This replaces O(H S) parameters by only (2R+1) coefficients (plus biases), en-
forcing a smooth, low-frequency structure over anti-diagonals of W. Because |cos(-)| < 1, entries
are bounded, which in turn yields well-conditioned gradients. :contentReference[oaicite:1]index=1

Optimization and stability. A practical advantage of the cosine-based construction is
that gradients are naturally bounded and non-vanishing. Consequently, FWNNs tolerate sub-
stantially higher learning rates without destabilizing training, often accelerating convergence
relative to dense baselines while keeping the usual forward/backward mechanics unchanged
(the gradient w.r.t. c; aggregates dense gradients against the fixed cosine basis). :contentRefer-
ence[oaicite:2]index=2

Computational footprint. The spectral parameterization yields linear scaling in both runtime
and memory with respect to the number of layers and the spectral rank:

complexity = O((2R + 1) x #Layers),

a favorable contrast to the quadratic storage of dense layers. This economy also improves cache
locality (via reusable cosine bases) and serves as an implicit regularizer through a low-frequency
bias. :contentReference[oaicite:3]index=3

Empirical evidence. Across a range of standard classification and regression tasks (e.g., Breast
Cancer, Iris, Wine, Digits, Diabetes, and California Housing), FWNNs maintain competitive
accuracy and error metrics while using far fewer parameters; experiments further corroborate
the stability of large learning rates and rapid loss reduction under the bounded-gradient regime.
:contentReference|oaicite:4]index=4

Summary. FWNNs recast weight learning as spectral coefficient estimation on a unit cosine
basis. The result is a compact, hardware-friendly layer family with: (i) strong parameter
efficiency, (ii) stable, large-step optimization due to bounded gradients, and (iii) linear scaling in
depth and spectral rank—without sacrificing performance on diverse benchmarks. :contentRefer-
ence[oaicite:5|index=5

4 Why Maximally Separated Spherical Codes with FWNNs?

Setting. Let P = [py,...,pr| € R>K be a mazimally separated spherical code: ||p;|2 = 1 and

m def m;??( |(pi,pj)| is minimal over all K-point codebooks on sé-t,
i#j

Given a token window (i1, ...,14,) we map it to the block-concatenation
. ~ X _
T = ¢(11:w) = [qu DPiss -5 Diy ] € Rdw: xr = m € de 1'

For two windows 1., and j1.,, define

def def 1 ) )
Pt :e <pit7pjt>7 o :e E#{t Zt:Jt}‘

5



Because the blocks are disjoint in the concatenation, we have

N 2y )
@9 = Lk ~ XM* W

4.1 From Cosine to (Soft) Hamming Similarity

Maximal separation implies |p;| < p for iy # j; and py = 1 if i, = jy. Thus

—pntal+p) < cos(2,9) < ptall-p) . (2)
—_————— —_———
all mismatches at —p all mismatches at +p

Inverting the bounds yields a tight conversion between cosine and Hamming similarity o:
cos(Z,9) — p <a< cos(&,9) +p 3)
1—p 1+ p

Hence, with small p (max-sep codes), cos(Z,9) is an affine, tightly controlled estimator of the
position-wise Hamming similarity. In particular, a single-position change modifies the cosine by
about (1 — p)/w:

1—
Acos ~ — P, (4)
w

Concentration for long windows. Assume the pairs (i, j;) are independent draws from
some distribution on {1,..., K}? with E[p;] = p and —u < p; < 1. By Hoeffding,

we?
Pr (| cos(Z,9) — p| > 5) < 2exp <_(12+M)2> , (5)

i.e., cos(Z, ) concentrates at rate O(1/y/w). For random, unaligned windows with Pr[i; = j;] =
1/K and near-orthogonal mismatches (E[p; | it # ji] ~ 0), we have p ~ 1/K; thus typical
random pairs are nearly orthogonal in the concatenated, normalized space.

4.2 A “Soft Hamming” Error and Calibrated Loss

Using (3), define the cosine-calibrated soft Hamming similarity
PP . (cos(Z,9) — p Sy def PO
ateg) = ctip( D=L 0.1), Dute) = 1-a(9) )

where Dy is the corresponding soft Hamming distance (soft error). By (4), Dy changes by
~ (1 — p)/w under a single-position flip, giving a transparent sensitivity scale.

Pairwise loss. For a positive pair (Z,47) and a set of negatives {9, } one may use a margin
loss on the soft errors,

£pair = [ﬁH(Zi‘,@ ) DH( )+5} (7)

with margin 6 > 0 (and averaging over negatives j). Equivalently, using similarities: Lpar =

[a(2,97) —a(&,9") +4],.

Multiclass loss (softmax on soft Hamming). If each class ¢ provides a reference g,
(prototype or feature), define logits by a scaled similarity

esy(w)
3@

where 5 > 0 is a temperature. This implements a cross-entropy whose scores are calibrated
estimates of Hamming similarity between the input window and class references.

SC('i‘) = 6&\(@7.@6)7 £CE = _log (8)



Calibration properties. By (3) and (5), & is an affine, high-probability estimator of the true
Hamming similarity o with deviation controlled by p and concentration improving as O(1/v/w).
Thus Dy is a Lipschitz surrogate of the Hamming error that (i) has a known flip sensitivity
~ (1 — p)/w, and (ii) yields well-behaved gradients through the cosine on the unit sphere.

4.3 Why an FWNN Backbone?

Let the last linear map be parameterized spectrally as in FWNN:

R

Wrs = Z Ckgok(T,S),
k=—R

with structured basis (e.g., Fourier/circulant/Toeplitz). This yields:

o Parameter efficiency. Dense W € RHouwsxHin needs H .\ Hiy parameters, whereas FWNN
needs O(R) + O(H,y) coefficients and biases; typically R < min(Hiy, Hout)-

 Fast inference. Convolutive/circulant structure implies W can be applied in O(H log H)
via FFTs rather than O(H?).

« Simple gradients. With a cosine-based score (e.g., (8)), the feature gradient has the
standard L2-normalized form g—? 0 fl”2 (I—ffT)g(f), so the FWNN coefficients follow

by the chain rule % =2 s 8%,5 i (r, s).

4.4 Takeaways

1. Max-sep codes = cosine ~ (soft) Hamming. Via (3), the window cosine tightly
estimates the fraction of position-wise matches, with deviation controlled by p.

2. Long windows concentrate. By (5), cos(Z, ) concentrates at rate O(1//w); single-
token flips change the cosine only by ~ (1 — p)/w (4).

~

3. Soft Hamming error is a calibrated surrogate. The quantity Dy = 1 — @ provides a
geometrically meaningful, Lipschitz surrogate for Hamming distance, usable in pairwise
margins (7) or multiclass CE (8).

4. FWNN brings efficiency without sacrificing geometry. Spectral parameterization
reduces memory/compute and meshes naturally with cosine-based objectives on unit-norm
inputs.

5 Consistency of a Soft-Hamming Softmax with Unit-Norm
Code Windows

Setting (unit-norm windows from a spherical code). Let P = [py,...,px] € R™>*K be a
mazimally separated spherical code with ||p;||2 = 1 and

def
p= max [(pi, ;)| (small).

Given a token window (i1, ...,1,), encode it by block-concatenation and unit-normalization
. ~ X _
z = P(itw) = [Pir; -+ Pia | GRdwa T = e e st



For two windows 41.y, j1: Write p; = (pi,, p;,) and define the (position-wise) Hamming similarity

) ) 1 ) .
O‘(Zl:wyjlz'w) = E#{t L = ]t}-

Because blocks are disjoint, the cosine between normalized concatenations is the average of the
per-position cosines:

cos(z,7) = wy) L Zpt. (9)

lllallyll: — w &

Maximal separation gives for each position: p; = 1 if iy = j; and py € [—p, p] if iy # ji. Hence
the window cosine obeys the tight bounds

—p+al+p) < cos(2,9) < p+a(l—p), (10)
which invert to an affine sandwich for a:

cos(@,9) — i <a< cos(%,9) + p (1)
1—p 1+p

We use the (clipped) soft Hamming similarity estimator

a(e.9) = eip( L 00), Du(e.g) = 1-aG.9). (12)
—p
Classifier and loss. Assume each class ¢ € {1,..., K} has a fixed reference (prototype) g, in

the same space. We define softmaz scores from soft Hamming similarity,

esy (ﬁ)

sc() = Ba(z, ge), Lce(®,y) = —log =g

1

where § > 0 is a scale (inverse temperature). This makes the CE-loss depend monotonically on
estimated Hamming similarity.

5.1 Assumptions and concentration

We analyze the regime of long windows w — oco. Write E[-] for expectation over the joint
randomness of windows and their labels.

(A1) Identifiability by Hamming means. There exists § > 0 such that for (almost) every
input with true class v,

Intuitively, the true class yields a strictly larger ezpected fraction of position-wise matches
than any competitor.

(A2) Boundedness and weak dependence. For each fixed pair (#,9.), the summands p;
in (9) are bounded in [—u,1] and either independent across t or sufficiently weakly
dependent (e.g., a bounded-difference martingale or a geometrically mixing process) so
that a Hoeffding/Azuma-type inequality holds:

we2
Pr( 25) < Qexp<(12+2)2>.

(A3) Small coherence. p < 1 is fixed and small so that the affine map in (11) is well-
conditioned; a single flip changes the cosine by ~ (1 — u)/w.

1 w
= o —Ep]
Wiz




By (11) and (A2), the estimator &(%,9.) concentrates around its mean at rate O(1/y/w) for
each class c:

w — 2 62
Pr(a(a,9.) — Ela(#,3.)]| = ) < zexp(—m>. (14)

(We used that & is an affine transform of the average % > pt followed by clipping.)

5.2 Main result: expected loss converges as w — oo

Theorem 1 (Consistency of soft-Hamming softmax). Suppose (A1)—(A3) hold. Fix any >0
and let Lcg be given by (13). Then there exist constants ¢ = c¢(u,0) > 0 and C = C(K, B) such
that, for all window lengths w,

E[Lcr(Z,y)] < log(1+ (K — 1)6—65/2) L Ceew.
In particular,
J%OE[LCE(i,y)] < log(l + (K — 1)6755/2)7
and letting b — oo after w — oo yields vanishing 0-1 error.

Proof. We show that, with high probability for large w, the true class y has a score gap of at
least $0/2 against every competitor, which makes the cross-entropy uniformly small on that
event.

Step 1 (means are separated). By (Al), writing a. = E[a(Z, 9.)],

Qy—a; >0 for all j # y.

Step 2 (estimators concentrate). Let a. = E[a(Z,§.)]. Since @ is an affine image of the
average cosine (plus clipping), (14) gives, for any ¢ > 0,

. = 2w (1 — p)? €
Pr(|a.—ac| >€) < 2exp<—((1+:))2>.

Moreover, because & and « are linked by (11), Ey — Ej is bounded below by an affine image of
@, — @;, hence also > ¢ ¢ for some ¢y € (0,1] depending only on . (With small p, we can take
¢p ~ 1 and drop this technicality; to keep the exposition simple we keep writing § below.)

Step 3 (a good event). Fix ¢ = §/4. Define the event

K —

&= N{la-al<e}

j=1

By a union bound and (14),
2w (1 — p)?e? 1—p)282
Pr(€°) < 2Kexp —10(—”)26 = 2K exp —M def e Y,
(T4 n) 8(1+ p)

(1-p)?8* _ log(2K)

8(1+p)? w
On & we have, for all j # v,

cw

with ¢ = ; for all large w, ¢ is positive and we can absorb constants into e~

PO = = = ) 0
ay—a; > (ay—¢€)—(aj+¢) = (ay—a;) —2€ > 6—2~Z = 3

Therefore, the score gap satisfies

~

sy —sj = Play —a;) > B

NGRS

(j#y) on€.



Step 4 (cross-entropy bound). On &,

Lcg = log (1 + Z 6—(%—3;‘)) < 10g(1 + (K — 1)6—55/2) '
J7#y

Outside € we can use the trivial bound 0 < s. < f (since 0 < @ < 1), hence Lcg < log)_, e* <
log(KeB) =p+logK.

Step 5 (take expectations). Split by ¥¢:
E[Lcr] < log(1+ (K —1)e=#/2) - Pr(€) + (8+log K) - Pr(£°).

Using Pr(€¢) < e finishes the claim with C' = 4 log K. Finally, taking § — oo after w — oo
forces the error probability under the argmax rule to 0 (the margin in scores explodes), yielding
0-1 consistency. (]

Remark 1 (About the FWNN backbone). The theorem does not require universal approximation
by the backbone: it relies on the input-level geometry (unit-norm code blocks and cosine <>
Hamming via (11)). An FWNN layer that linearly mizes coordinates (followed by an L2-
normalization before scoring) preserves the boundedness and the Lipschitz dependence of the
cosine, so the concentration and gap arguments remain valid as long as the mixing does not
systematically collapse the expected gap in (A1).

5.3 When the conclusion can fail (counterexamples)

The assumptions are essential:

e (C1) No mean gap (A =0). Two classes y and j may have the same expected match
fraction (e.g., identical unigrams but different higher-order structure). Then any score that
is a monotone function of « is Bayes-inefficient: no matter how large w is, the expected
CE cannot converge to the Bayes optimum.

o (C2) Large coherence (u ~ 1). If the code is poorly separated, the affine map in (11) is
ill-conditioned and a single flip changes the cosine by ~ (1 — p)/w < 1/w. Concentration
becomes weak and the finite-w probability of misranking may not decay fast enough for
the bound to be useful.

o (C3) Strong temporal dependence. If the per-position cosines p; exhibit long-range
dependence or adversarial phase behavior, Hoeffding/Azuma bounds do not apply; the
average need not concentrate at rate O(1/4/w), and the score gaps may not stabilize.

o (C4) Head misspecification. If scores are not an increasing function of a statistic
aligned with class separation (e.g., using a non-monotone transform of the cosine), the
argmax can be systematically biased even as w — oo.

5.4 Takeaways

1. Unit-norm concatenations from a well-separated spherical code yield a cosine that is an
affine, tightly controlled proxy for Hamming similarity; its variance shrinks as O(1/w).

2. A simple softmax with logits s. = S a(Z,9.) is consistent: under a fixed mean gap and
mild dependence, the expected CE converges to a small limit and 0—1 error vanishes as
w — oo and then 8 — oo.

10



3. Universal approximation by the backbone is not required for this conclusion; the argument
is geometric and concentration-based at the input level.

4. Violate the assumptions (no mean gap, large u, strong dependence), and convergence can
fail—use these cases as stress tests.

6 Hilbert Space Interpretation for w — oo

Corollary 1 (Unit-norm limit vectors in ¢2). For each finite window length w, the concatenated
and normalized vector

sy _ [P Pii P ] paw
I[Pirs -5 D ll2
is a unit vector in the Hilbert space R™, i.e. ||#()|y = 1.
As w — oo, the ambient dimension dw also diverges. We may embed all 2 into the

infinite-dimensional Hilbert space

KQ(N;Rd) = {(ul,UQ, .. ) U € Rd, Z ||’U,t”% < OO} .
t=1

Then every &) is still a unit-norm element of (2.
If the sequence of tokens (i) is generated by a stationary ergodic process, the law of large
numbers implies that for any other window sequence (j;),

@, 9" — Elp]  asw— oo,

where py = (pi,, pj,)- In other words, the family {2}, remains on the unit sphere in Hilbert
space, and while the vectors themselves spread over more coordinates, their inner products
converge to deterministic limits given by the expected (soft) Hamming similarity.

Intuition. For small w, 2(*) is just a normalized vector in some finite-dimensional space. As w
grows, the vector lives in higher and higher dimensions, but always has length 1. In the infinite
limit, the vector itself does not settle to a single finite object, but any inner product between
two such vectors does converge to a well-defined expected value. Thus the “geometry” stabilizes
even though the coordinates keep expanding.

7 Possible Applications

The proposed framework of spherical codes with FWNN backbones has potential in several
domains:

e Mini-scale text generation. By calibrating similarity directly against Hamming error,
the model is well-suited for lightweight language models on constrained hardware, such as
mobile devices or embedded systems.

e Communication systems. The same spherical code geometry underlies error-correcting
signal constellations; the soft-Hamming classifier can naturally extend to joint source—channel
coding and symbol recovery tasks.

« Biological sequence modeling. DNA and protein strings are inherently discrete;
mapping them through maximally separated codes yields interpretable similarity measures
with calibrated gradients.

11



e Information retrieval. Matching queries against a large database can be phrased as
nearest-neighbor search under Hamming-like metrics; the FWNN-based surrogate provides
differentiable, trainable scoring functions.

e Resource-efficient deep learning. FWNN layers compress dense transformations into
a handful of Fourier coefficients, offering practical gains in model size and inference speed
without sacrificing accuracy.

8 Application: Single-Instance Sampling of Polyphonic Music
via Spherical Codes

Overview. From a single symbolic input (e.g., MIDI) we build a self-contained pipeline: (i)
tokenize the piece and write the tokens to a plain-text file; (ii) train and sample a Fourier-
weighted neural network (FWNN) on spherical codes to produce a new token text file; (iii) decode
that new token file back into polyphonic music.

Step 1: Tokenization from a single piece (write tokens to text). We extract polyphonic
intervals Z = {(v,s,e,v)}, with voice v, onsets/offsets s,e € R>o (quarter lengths), and
v = ((pi,di, i, ;)™ (MIDI pitch p;, local duration d;, velocity «;, rest flag r;). An interval
graph G is built from temporal overlap and pruned by a chord/voice kernel; its connected
components C1, . .., Cys are our atomic units. Each component is embedded by a Fourier-weighted
encoder onto the unit sphere, z = Ey(C) € ST, A spherical codebook C = {cy,...,cx} C ST
defines tokens by nearest-codeword quantization:

= arg max(z,c;), T is the token.
J

We write the chronological token sequence to a text file (one space-separated line). For decoding
later, we also persist a vocabulary in which each token 73 indexes the set (“bucket”) of components
assigned to cg; optionally, buckets are refined by a timing-invariant kernel threshold K (C,C") > 4.

Step 2: Train & sample spherical codes with FWNN (produce a new token file).
We train a next-token FWNN on the text tokens. Let the context window collect the last w
codewords ¢k, ,,,...,Ck,_, (concatenated and normalized) as input x;. The FWNN outputs logits
that respect the spherical geometry by using cosine similarity to a learnable class embedding
E € RE*4 (or re-using C) with a coherence-aware scale; a standard cross-entropy trains the
model to predict k;. At inference, we autoregress over tokens with temperature/top-k (or nucleus)
sampling to generate a new token sequence, which we again write to a text file.

Step 3: Decode the new tokens back to music. Given the new token text file 74,,...,7,,
we map each token to a concrete component by selecting from its bucket: either random (seeded)
or round-robin (modulo) for diversity without repetition. Inside each chosen component C,,

relative micro-timing is preserved by local onset subtraction t — ¢ — tin(Cy ), and components
are concatenated by a running offset (optionally with a gap):

A

(s,e) (s — tmin(én) + offset, e — tmin(Ch) + offset), offset < offset + len(C),) + gap.

We then emit note-on/off per voice to a Standard MIDI File (PPQ grid) or stream to a live
MIDI port.
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Why this split works. Separating token writing (Step 1), FWNN training/sampling on
spherical codes (Step 2), and decoding (Step 3) cleanly divides concerns: the first step fixes the
discretization (geometry-aware, style-preserving), the second learns sequence structure purely
over text tokens, and the third restores the original intra-component timing while controlling
phrasing via the global offset and gap.

Reproducibility. We log: encoder checkpoint 6, codebook C (and version), token text files
(original and generated), FWNN checkpoint and sampling temperature/top-k, the bucket
refinement threshold d, and the within-bucket selection mode (random/round-robin) with RNG
seed. This suffices to exactly regenerate MIDI from the generated token file.

“‘latex

9 Further Ideas: Kernel-Based Tokenization on Arbitrary Se-
mantic Spaces

Setup. Let (X, k) be any finite or countably-finite semantic space equipped with a positive

definite (p.d.) kernel k : X x X — [—1,1]. (If k is not already bounded, replace it by the
k(z,y)

———=2 ¢ [-1,1].) Assume we are given a single trainin
Hemkm © 01 & & &

cosine-normalized kernel k(z,y) =

sequence (7;)L_; with x; € X.

Kernel-threshold tokenization. Fix a similarity threshold ¢ € (0,1) and form the graph
Gs=(V,E) withV={z;:1<t<T} and

E={{u,v} CV : Ek(u,v) >d}.

The connected components of Gs define a quotient V/~s. Each equivalence class becomes a
token; write w5 : V' — T for the map from elements to tokens. Optionally pick a representative
r(7) € 7 (e.g. the medoid that maximizes ) . k(z,-)) for fast decoding. This generalizes the
music “connected-components” idea: two items x, y receive the same token whenever there exists
a path © = xg, ...,z =y with k(z;,z,41) > ¢ for all i.

Learning on spherical codes (FWNN back-end). Embed tokens into S~! by constructing
a spherical code {c¢, € S¥! : 7 € T} with large minimal pairwise angle. We then train a
lightweight Fourier-Weighted Neural Network (FWNN) classifier fg : R? — RI7| with targets ¢,
(cosine or cross-entropy loss) for next-token prediction: given a context window around time ¢,
the model predicts ms(x;11).!

Generative procedure. After training, generation proceeds in two steps. (i) From the
current context, sample a token 7y according to the FWNN scores. (ii) Decode to an element
Tiy1 € Ti41, €.8. by drawing uniformly from the class, by choosing the class representative
r(7t41), or by a soft kernel-weighted pick within the class. Iterating yields a sequence &1, Zo, . ..
in X given a seed #1. Hence, any finite p.d. semantic space (X, k) together with a single observed
sequence induces a generative next-element model.

Examples.

« Word—context prototypes. Let X be the set of representative contexts for word types
derived from BPE tokens (left/right slots in a fixed window). Choose a context kernel

! Any standard context featurization is admissible: kernel mean embeddings; Nystrom/RFF features of k; or
direct RKHS features via k(-,z;) on a dictionary.
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k (content overlap x positional similarity), normalize to [—1, 1], and cluster by k& > 4.
FEach word obtains one or several context tokens; FWNN learns to predict the next token
and thereby the next BPE/word. This supports polysemy naturally by allowing multiple
tokens per word.

o Logical semantic spaces. Let X be a finite set of logical objects (e.g. predicates,
formulas, or world—formula pairs) with a p.d. semantic kernel k that captures logical
proximity (e.g. agreement across a model set, or a proof-theoretic overlap). The same
thresholding/tokenization yields symbols for “semantically similar” objects; FWNN then
models next-token dynamics in logical sequences.

Why this works. Because k is p.d., there exists a feature map ¢ : X — H with k(z,y) =
(¢p(x), d(y)). Thresholding at § > 0 groups elements with acute angles in #; connected compo-
nents create coherent clusters that are robust to small perturbations (transitive closure). The
spherical-code target set for tokens gives large inter-class margins while keeping the classifier
small (FWNN uses a compact Fourier basis).

Practical notes.

1. Normalization. Use cosine normalization so that k(z,z) = 1 and k € [—1, 1]; then ¢ has
a direct geometric meaning.

2. Controlling granularity. Tune 0 or require k(x,y) > § 4+ v with margin v > 0; or use
size-capped components to avoid giant classes.

3. Representatives. Medoids maximize within-class kernel sum and serve as canonical
decodings; multiple representatives per token can better cover multi-modal classes.

4. Efficiency. Build the similarity graph with approximate neighbors in the RKHS (Nys-
trom/RFF 4+ ANN). All steps are streaming: tokens can be updated online as new items
arrive.

Outlook. The scheme turns any p.d. semantic space into a symbolic process: kernel-threshold
tokenization yields a compact alphabet; spherical codes give a geometric target for classification;
FWNN provides a fast predictor. This unifies music components, word—context prototypes,
and logical objects under the same kernel-to-token pipeline, enabling one-sequence training and
generation on top of (X, k).

10 Why the kernel—-token—FWNN pipeline works (theory &
heuristics)

Setting. Let (X,k) be a finite (or countably finite) set with a positive—definite kernel k :
X x X — [-1,1]. W.Lo.g. assume cosine normalization so that k(x,y) = (¢(z), ¢(y)) for an
embedding ¢ : X — H with ||¢(z)]| = 1 for all x € X. Fix a threshold ¢ € (0,1) and form
the similarity graph Gs on the observed items (nodes are the distinct elements seen in a single
training sequence) with an undirected edge {x,y} iff k(x,y) > 0. Tokens are the connected
components of Gs. Tokens are embedded as unit vectors on the sphere (a spherical code), and a
lightweight FWNN classifier is trained to predict the next token from context features.

We first give a recoverability statement for the tokenization step, then explain why the spherical-
code/FWNN back-end admits large margins and consistent learning from a single (long) sequence.
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A cluster-recoverability guarantee. Assume that X admits a latent partition {C1,...,Ca}
(“semantic classes”), well-separated in the RKHS.

Assumption A (spherical cluster model). There exist unit vectors p1,...,uy € H and a
radius r € (0,1) such that for every = € Cj,
[o(2) = pyll <

and inter-class center similarity is bounded by v < 1:
(g me) <v (G #0).

This is a standard “small within-class, large between-class angle” condition. It is satisfied, e.g.,
when classes are tight in cosine geometry (same meaning or function) and different classes point
to sufficiently different directions.

Proposition 1 (Tokenization correctness under a margin). Under Assumption A, if the threshold
0 satisfies

1—2r2 > 46 > ’y+2r+7“2

then for any finite sample whose distinct elements cover a subset of U; Cj, the graph G5 has no
inter-class edges and every within-class pair is connected; hence the connected components of G
coincide with (the observed parts of) the true classes {C;}.

Proof sketch. For unit vectors u,v we have (u,v) = 1 — %[lu —v||%. If 2,y € C; then
[¢(z) — ¢(y)|| < 2r, hence (¢(z),d(y)) = 1 — 3(2r)? = 1 — 2r%; this is the within-class lower
bound. If x € Cj, y € C; with j # £, then by polarization

(D(x), 9(y)) = (1j, ) + (D(T) — a5, pe) + (g, () — o) + (P(x) — 5, ¢(y) — pre),

whose absolute correction terms are bounded by 7, r, and 72 respectively. Thus (¢(z), ¢(y)) <
v+ 2r + 12, the between-class upper bound. Choosing § strictly between these bounds forbids
inter-class edges while ensuring every within-class pair is (directly) adjacent. Connectivity in

each Cj follows immediately. O

Consequences. (i) Tokenization is stable: as long as perturbations keep r and « within the
margin, the components (tokens) do not change. (ii) The choice of § controls granularity: larger
J yields finer tokens; smaller ¢ yields coarser tokens. (iii) The argument works for any p.d.
kernel k € [—1,1] after cosine normalization, hence applies to connected components of music,
to word—context prototypes, and to logical semantic objects alike.

Why spherical codes for token targets. Let {c, € S?~!} be the token targets with minimal
pairwise inner product max,..(cr,c) < 8 < 1 (i.e., a spherical code with angular margin
m = arccos 3). When training a cosine/softmax classifier f5 : R — R? to map context features z
to scores (fp(2), ¢r), the induced inter-class angular margin translates into a margin in probability
space, which tightens standard generalization bounds for margin-based losses. Heuristically: the
larger m, the smaller the overlap of class score distributions, and the lower the required model
capacity to separate tokens—precisely why spherical codes are well suited as targets.

Why FWNN suffices. FWNN realises a structured linear operator with bounded spectrum
(controlled by its few Fourier coefficients) followed by a smooth nonlinearity. Two key properties
make it effective here: (i) Lipschitz control: bounded weights keep the cosine scores stable under
small input shifts (robustness to contextual noise); (ii) Bias toward smooth decision boundaries:
with spherical targets, FWNN needs only to align a few Fourier modes with the principal
directions of the token clusters—far fewer degrees of freedom than a dense layer of the same
width, yet retaining universal approximation over the sphere at mild depth.
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From one sequence to a predictor (consistency heuristic). Assume the token sequence
(1¢) induced by ms(z¢) is generated by a stationary, S-mixing process with finite memory
m (a standard assumption for language/music-style sequences). Then empirical conditional
frequencies p(7y41 | Tt—m+1:¢) computed along one long sample converge to the Bayes conditionals.
Any sufficiently expressive predictor fed with context features that determine 7_,,11.¢ (e.g.
kernel features, Nystrom/RFF embeddings, or learned context encodings) will therefore achieve
vanishing excess risk as sequence length grows. In practice, FWNN learns a smooth approximation
of these conditionals with the spherical-code margin making the classification easier (higher
signal-to-noise ratio between tokens).

Generation is coherent by construction. At inference, we (i) sample a next token according
to the learned scores and (ii) decode it into an element of its component (representative/medoid
or kernel-weighted sampling within the class). Because every class is a d-tight component in
the cosine geometry, replacements are constrained to semantically similar items (k > ¢ ). Thus
the generated sequence stays in-distribution w.r.t. the kernel geometry learned from the single
training trajectory—exactly the intended “same meaning, new surface” effect.

Examples (instantiations of X, k).

o Word—context prototypes: X are representative contexts of word types (built from
BPE tokens). k combines soft content overlap with positional similarity; § clusters contexts
into sense-specific tokens; FWNN on spherical codes predicts the next token; decoding
yields the next word (or BPE) as a member of the predicted token.

o Logical semantic spaces: X are formulas/predicates or world—formula pairs; k£ measures
semantic proximity (agreement across a model set, proof overlap). The same pipeline
yields next-formula prediction that respects logical similarity.

Summary. The PD kernel places X on the unit sphere of an RKHS; thresholding at § recovers
semantically coherent components under a mild angular-margin assumption; spherical codes
turn tokens into well-separated targets; FWNN learns a smooth, margin-friendly next-token
map from a single long sequence. Taken together, these steps yield a principled and practical
generative method on arbitrary (X, k).

16



	Introduction
	Introduction to Spherical Codes
	Introduction to Fourier Weighted Neural Networks
	Why Maximally Separated Spherical Codes with FWNNs?
	From Cosine to (Soft) Hamming Similarity
	A ``Soft Hamming'' Error and Calibrated Loss
	Why an FWNN Backbone?
	Takeaways

	Consistency of a Soft-Hamming Softmax with Unit-Norm Code Windows
	Assumptions and concentration
	Main result: expected loss converges as w
	When the conclusion can fail (counterexamples)
	Takeaways

	Hilbert Space Interpretation for w 
	Possible Applications
	Application: Single-Instance Sampling of Polyphonic Music via Spherical Codes
	Further Ideas: Kernel-Based Tokenization on Arbitrary Semantic Spaces
	Why the kerneltokenFWNN pipeline works (theory & heuristics)

