
The Mason-Stothers theorem for natural numbers

Orges Leka1

1 Germany, Limburg; orges.leka@gmail.com

[Draft as of March 25, 2024]

Abstract

Based on the proof of Serge Lang given in his Book ”Algebra” of the Mason-Stothers theorem, we give
a proof of this theorem for natural numbers.

Introduction

This introduction was written with ChatGPT, after the notes were written by the author:

These notes offer a detailed examination of the Mason-Stothers theorem as it applies to natural
numbers, drawing inspiration from Serge Lang’s proof outlined in his seminal work ”Algebra”. This
exploration into the arithmetic derivative, a concept introduced by José Mingot Shelly in 1911,
underscores the intriguing parallels between polynomials and natural numbers, offering fresh insights
into their interplay. With a rigorous mathematical framework, this paper delves into the theorem’s
implications, supported by definitions, propositions, and a comprehensive proof that sheds light on
the underlying principles of arithmetic derivatives. Through the lens of this theorem, the paper
endeavors to contribute to the ongoing discourse in mathematical circles, providing a foundational
text for further academic inquiry.

The Mason-Stothers theorem for natural numbers

Let n be a natural number and let n′ := n
∑

p|n
vp(n)
p denote the arithmetic derivative, which

according to Wikipedia was introduced by the Spanish mathematician Josè Mingot Shelly in 1911.

It satisfies the Leibniz Rule:

(mn)′ = m′n+mn′ (1)

It is known that there is an analogy between polynomials and natural numbers. Using this
analogy, we define the polynomials, given the natural number n:

fn(x) =
∏

p|n,p prime

(x+ p)vp(n) (2)

It has the property, that when putting x = 0 we get the number n back and the derivatives for
x = 0 coincide:

fn(0) = n (3)

f ′
n(x)|x=0 = n′ (4)



Let rad(n) :=
∏

p|n p denote the radical of the natural number n and let:

rad(g(x)) :=
∏
α∈Ωg

x− α (5)

where Ωg := is the set of distinct roots of g. It is known, that

rad(g(x)) =
g(x)

gcd(g(x), g′(x))
(6)

and also if g(x) =
∏s

i=1 gi(x)
ri is the decomposition of g(x) into irreducible factors, then:

rad(g(x)) =
s∏

i=1

gi(x) (7)

Proposition 0.1. Let f(x) ∈ N[x] be a polynomial with f(0) ̸= 0. Then the natural number
rad(f(x))|x=0 is a divisor of f(0).

Proof. Let f(x) =
∏s

i=1 fi(x)
ri be the decomposition of f(x) into irreducible factors fi(x), some

of which might (ri > 1) occur with repetition. Then 0 ̸= f(0) =
∏s

i=1 fi(0)
ri and rad(f(x)) =∏s

i=1 fi(x). But then the natural number rad(f(x))|x=0 =
∏s

i=1 fi(0) is a divisor of
∏s

i=1 fi(0)
ri =

f(0).

Proposition 0.2. Let m,n be two natural numbers with gcd(m,n) = 1, such that:

W (m,n) := m′n−mn′ ̸= 0 (8)

where W (m,n) denotes the Wronskian of the arithmetic derivative. Let g(x) := fm(x) + fn(x).
Then we have the following inequality:

mn(m+ n) ≤ rad(mn) |rad(g(x))|x=0| · |W (m,n)| (9)

Proof. Since gcd(m,n) = 1 and we know the complete factorization of fm(x), fn(x), we see that
also gcd(fm(x), fn(x)) = 1 and so, fm(x), fn(x), g(x) are pairwise prime polynomials. We have:

g′(x) = f ′
m(x) + f ′

n(x) (10)

hence:

g′(x)|x=0 = f ′
m(x)|x=0 + f ′

n(x)|x=0 = m′ + n′ (11)

and also:

g(0) = fm(0) + fn(0) = m+ n (12)

Let Fm(x) := fm(x)
g(x) , Fn(x) :=

fn(x)
g(x) so that:

Fm(x) + Fn(x) = 1 (13)

Taking the derivative of this last equation we get:



F ′
m(x) + F ′

n(x) = 0 (14)

which we write as in ”Algebra” by Serge Lang as:

F ′
m(x)

Fm(x)
Fm(x) +

F ′
n(x)

Fn(x)
Fn(x) = 0 (15)

from which we deduce that:

F ′
m(x)

Fm(x)

F ′
n(x)

Fn(x)

= − Fn(x)

Fm(x)
= − fn(x)

fm(x)
(16)

By the quotient rule we have:

F ′
m(x) =

f ′
m(x)g(x)− g′(x)fm(x)

g(x)2
(17)

and we deduce that:
F ′
m(x)

Fm(x)
=

f ′
m(x)g(x)− g′(x)fm(x)

fm(x)g(x)
(18)

Hence it follows that

F ′
m(x)

Fm(x)
|x=0 =

m′(m+ n)− (m′ + n′)m

m(m+ n)
=

m′

m
− m′ + n′

m+ n
=

W (m,n)

m(m+ n)
(19)

which by assumption on the Wronskian is a non-zero rational number. If

g(x) = c
∏
k

(x− γk)
rk (20)

is the factorization of g(x) over the complex numbers, then by Exercise 11 in Serge Lang’s book
”Algebra”, we have:

fn(x)

fm(x)
= −

F ′
m(x)

Fm(x)

F ′
n(x)

Fn(x)

= −
∑

p|m
vp(m)
x+p −

∑
k

rk
x−γk∑

q|n
vq(n)
x+q −

∑
k

rk
x−γk

(21)

A common denominator of F ′
m(x)/Fm(x), F ′

n(x)/Fn(x) is given by the product:

N0(x) :=
∏
p|m

(x+ p)
∏
q|n

(x+ q)
∏
k

(x− γk) (22)

We observe, that if we put x = 0 in the last equation, we get:

N0(0) = rad(m) rad(n) rad(g(x)) |x=0 (23)

We observe also, that N0(x)F
′
m(x)/Fm(x), N0(x)F

′
n(x)/Fn(x) are both polynomials in C[x] and

we have:

fn(x)

fm(x)
= −N0(x)F

′
m(x)/Fm(x)

N0(x)F ′
n(x)/Fn(x)

(24)



It is known that for any polynomial f(x) we have:

rad(f(x)) =
f(x)

gcd(f(x), f ′(x))
(25)

Hence

rad(g(x)) =
g(x)

gcd(g(x), g′(x))
(26)

from which we see, that:

|rad(g(x))|x=0| = |
∏
k

γk| =
∏
k

|γk| (27)

is a natural number. So by equation (19) and the last equation we get:

n

m
=

fn(0)

fm(0)
= | −

F ′
m(x)

Fm(x)

F ′
n(x)

Fn(x)

|x=0| = | −
∑

p|m
vp(m)

p −
∑

k
rk
−γk∑

q|n
vq(n)
q −

∑
k

rk
−γk

| (28)

which after multiplying by |N0(0)| gets:

n

m
= |

rad(mn) rad(g(x))|x=0(
∑

p|m
vp(m)

p −
∑

k
rk
−γk

)

rad(mn) rad(g(x))|x=0(
∑

q|n
vq(n)
q −

∑
k

rk
−γk

)
| (29)

The left hand side of this last equation consists of a ratio n/m of two natural numbers n,m
with gcd(n,m) = 1. The right hand side of this last equation consists of a ratio of two natural
numbers.

Hence we must have:

n ≤ |N0(0)F
′
m(0)/Fm(0)| (30)

and also:

m ≤ |N0(0)F
′
n(0)/Fn(0)| (31)

But we have determined the value of the natural number:

|N0(0)F
′
m(0)/Fm(0)| = rad(mn) |rad(g(x))|x=0|

|W (m,n)|
m(m+ n)

(32)

and by the last inequality about n, we get:

n ≤ rad(mn) |rad(g(x))|x=0|
|W (m,n)|
m(m+ n)

(33)

and after multiplying with m(m+ n) we get the desired inequality.



Proposition 0.3. Let f(x), g(x) ∈ N[x] be two polynomials with gcd(f(x), g(x)) = 1, f(0) ̸=
0, g(0) ̸= 0 and let F (x) := f(x)

f(x)+g(x) , G(x) := g(x)
f(x)+g(x) and suppose that F ′(0) ̸= 0, G′(0) ̸= 0. Then

g(0)

gcd(f(0), g(0))
≤ rad(f(x)g(x)(f(x) + g(x)))|x=0|F ′(0)/F (0)| (34)

Proof. The proof is analogous to the proof given of the proposition before.

Proposition 0.4. Let m,n be two natural numbers with gcd(m,n) = 1,W (m,n) ̸= 0,mn >
|W (m,n)|, rad(fm(x) + fn(x))|x=0 ≤ rad(m+ n). Then:

m+ n < rad(mn(m+ n)) (35)

Proof. Consider in the last proposition f(x) := fm2n(x), g(x) := fmn2(x) with

gcd(f(0), g(0)) = gcd(m2n,mn2) = mn

. Then

f(x)g(x) = fm2n(x)fmn2(x) = fm3n3(x) = fmn(x)
3 (36)

and

f(x) + g(x) = fm2n(x) + fmn2(x) = fmn(x)(fm(x) + fn(x)) (37)

From this we get:

rad(f(x)g(x)(f(x) + g(x)))|x=0 = rad(fmn(x)
4(fm(x) + fn(x)))|x=0 = . . . (38)

. . . = rad(mn) · rad(fm(x) + fn(x))|x=0 (39)

It follows by the last proposition and since |F ′(0)/F (0)| = |W (m,n)|
m(m+n) :

n =
n2m

mn
=

g(0)

gcd(f(0), g(0))
≤ rad(mn) rad(f(x) + g(x))|x=0 · |F ′(0)/F (0)| (40)

which leads to :

n ≤ rad(mn) rad(f(x) + g(x))|x=0 ·
|W (m,n)|
m(m+ n)

(41)

hence by multiplying with m(m+ n) we get:

mn(m+ n) ≤ rad(mn) rad(f(x) + g(x))|x=0|W (m,n)| (42)

which by assumptions on is

mn(m+ n) ≤ rad(mn) rad(f(x) + g(x))|x=0|W (m,n)| < mn rad(mn(m+ n)) (43)

and the inequality follows when dividing by mn.
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